
Sequential Synthesis

History: Combinational Logic ! single FSM ! Hier-

archy of FSM's.

MISII

Facilities for managing
networks of FSMs

Sequential Circuit

Partitioning

Facilities for handling latches

SIS

Optimization
(single machine) Sequential Circuit

VIS (handles hierarchy)

Original Final

Sub ckt 1 Sub ckt N
Optimize

Verify

Partition Combine /
Flatten

Interface logic
(asynchronous?)

. . . .

partition
 for
 layout

1

What are Combinational Circuits?

De�nition: A circuit is combinational if it computes

a function which depends only on the inputs applied

to the circuit; for every input value, there is a unique

output value.

� Circuits with an acyclic underlying topology are

combinational.

� Cyclic circuits can be combinational, in fact, there

are combinational circuits whose minimal form must

have cycles [Kautz 1970].

� Recent work on checking if circuit combinational

[Malik'94, Shiple'95]. These are based on X-valued

simulation.

2

What are Sequential Circuits?

� Some sequential circuits have memory elements.

Synchronous circuits have clocked latches. Asyn-

chronous circuits may or may not have latches

(e.g. C-elements), but these are not clocked.

� Feedback (cyclic) is a necessary, but not su�cient

condition for a circuit to be sequential.

� Synthesis of sequential circuits is not as well devel-

oped as combinational. Sequential synthesis tech-

niques not really used in commercial software.

out 1

Latch
Present State Next State

in 1

in 2

in 3

in 4

P
rim

ar
y

O
ut

pu
t

P
rim

ar
y

In
pu

t

0

1

−
−

−
−

/1

−−−1/1

(−
−

00, 11−
0)/0

(1010, 0110)/1

Registers and Latches
 (Netlist)

State Transition Graph
 (STG)

The above circuit is sequential since output depends

on the state and input.

3

Representations of Sequential Circuits

ns

pi

ps

ns’

ns’
ns

1

2

ns3

1

2

ns’3

ns’n

nsn

out 1

Latch
Present State Next State

in 1

in 2

in 3

in 4

P
rim

ar
y

O
ut

pu
t

P
rim

ar
y

in
pu

ts
t

0

1

−−−−/1

−−−1/1

(−−00, 11−0)/0

(1010, 0110)/1

Transition Relation

Gates and Latches
 (Netlist)

State Transition Graph
 (STG)

� Transition relation is T (pi; ps; ns) or T (pi; ps; ns; po).

It is the characteristic function of all edges of the STG.

T (pi; ps; ns) =
Y

(nsi�fi(pii; psi))

� Each representation has its advantages and disad-

vantages. STG is like a two-level description - can

blow up. Netlist only way for large circuits. Transi-

tion T usually represented by BDD's. Can blow up,

but can also express it as separate relations for each

latch which are implicitly conjoined:

T =
Y

Ti(pii; psi; nsi)

4

Example - Highway Light (Verilog)

module hwy_control(clk, car_present, enable_hwy,

short_timer, long_timer, hwy_light,

hwy_start_timer, enable_farm);

input clk,car_present,enable_hwy,short_timer,

long_timer;

output hwy_light,hwy_start_timer,enable_farm;

boolean wire car_present;

wire short_timer, long_timer, hwy_start_timer,

enable_farm, enable_hwy;

color reg hwy_light;

initial hwy_light = GREEN;

assign hwy_start_timer = (((hwy_light == GREEN)

&& ((car_present == YES) && long_timer))

||

(hwy_light == RED) && enable_hwy);

assign enable_farm=((hwy_light==YELLOW)&&short_timer);

always @(posedge clk) begin

case (hwy_light)

GREEN: if ((car_present == YES) &&

long_timer) hwy_light = YELLOW;

YELLOW: if (short_timer) hwy_light = RED;

RED: if (enable_hwy) hwy_light = GREEN;

endcase

end

endmodule

5

Finite State Machines

Finite State Machines in STG or transition relation

form are a behavioral view of sequential circuits. They

describe the transitional behavior of these circuits. They

can distinguish among a �nite number of classes of in-

put histories: these classes are the internal states of

the machine.

Moore Machine: is a quintuple

M = (S; I; O; �; �)

S : �nite non-empty set of states

I : �nite non-empty set of inputs

O : �nite non-empty set of outputs

� : S � I 7! S transition (or next state) function

� : S 7! O output function

Mealy Machine: M = (S; I;O; �; �) but

� : S � I 7! O

For digital circuits, typically I = f0; 1gm and O =

f0;1gn.

In addition certain states may be classi�ed as reset or

initial states.

Automata are similar to FSM's, however they do not

produce any outputs, they just accept input sequences

(accepting set of states is given).

6

Representing State Machines

State Transition Graphs and Tables

Example: Tra�c Light Controller - Mealy machine

HG

HY

FG

FY

State Transition Graph: Example

PS IN NS OUT

HG c and t1 HY hl = GREEN; fl = RED; st = 1

HG HG hl = GREEN; fl = RED; st = 0

HY not(ts) HY hl = YELLOW; fl = RED; st = 0

HY ts FG hl = YELLOW; fl = RED; st = 1

FG FG hl = RED; fl = GREEN; st = 0

FG
not(not(c) or t1)

FYnot(c) or t1 hl = RED; fl = GREEN; st = 1

FY not(ts) FY hl = RED; fl = YELLOW; st = 0
FY ts HG hl = RED; fl = YELLOW; st = 1

State Transition Table: Example

not(c and t1)/
hl = GREEN; fl = RED; st = 0

c and t1/
hl = GREEN; fl = RED; st = 1

not(ts)/
hl = YELLOW; fl = RED; st = 0

ts/
hl = YELLOW; fl = RED; st = 1

not(not(c) or t1)/
hl = RED; fl = GREEN; st = 0

not(c) or t1/
hl = RED; fl = GREEN, st = 1

not(ts)/
hl = RED; fl = YELLOW; st = 0

ts/
hl = RED; fl = YELLOW; st = 0

 not(c and t1)

7

Representing State Machines

� State Transition Graphs and State Transition Ta-

bles are similar; the �rst is graphical, the second

is tabular.

� In this example the edges (transitions) are labeled

with general logic functions (predicates) of the in-

puts.

� Traditionally minterms or cubes have been used for

the transitions (e.g. KISS format), especially for

tables, since used as input to two-level minimizers.

Minterms need the most edges and arbitrary logic

functions (predicates) the least.

8

Transition and Output Relations

R � I � S � S �O is the transition and output relation.

r = (in; sps; sns; out) 2 R if and only if input in causes a

transition from sps to sns and produces output out.

Since R is a set, it can be represented by its charac-

teristic function (and hence as a BDD).

Depending on the application it may be preferable to

keep the transition and output relation separate:

Transition Relation: R� � I � S � S

Output Relation: R� � I � S �O

9

Non-Determinism and Incomplete Speci-
�cation

a/0

a/1

s0

s1

s2

� In automata theory, non-determinism is associ-

ated with many transitions; from a given current

state and under the same input conditions we may

go to di�erent states and have di�erent outputs.

Each behavior is considered valid. Nondetermin-

ism provides a compact way to describe a set of

valid behaviors.

� In classical sequential function theory, transition

functions and output functions can be incompletely

speci�ed (i.e. the functions can have don't cares),

i.e. de�ned only on a proper subset of their input

space. Where it is unde�ned, we consider it to

allow any behavior. This also describes a set of

valid behaviors.

10

Non-Determinism and Incomplete Speci-
�cation

Given an input and present state:

� Nondeterminism: some next states and outputs

are ruled out. Result is subset of next states and

outputs admissible for a transition.

� Don't cares: all next states and outputs are al-

lowed. These may be because the given state

can't be reached, so will never occur, or the state

is a binary code not used during state assignment.

� Incomplete transition structure: It may be that

no next state is allowed. If this is because that

input will never occur at that state we need to

"complete" the description by adding transitions

to all states and allowing all outputs. On the other

hand, we may want the machine to do nothing

(e.g. as an automaton). Sometimes we "com-

plete" the transition structure by adding a dummy

state and calling it a non-accepting state.

All describe a set of behaviors. These are used to de-

scribe
exibility for the implementation during synthe-

sis, and to describe a subset of acceptable behaviors.

11

Non-Determinism and Incomplete Speci-
�cation

� Optimization tools for logic synthesis and veri�ca-

tion exploit in various fashions incomplete speci�-

cation to achieve optimization objectives.

More recently, methods to exploit
exibility given

by non-determinism have been devised [Kim and

Newborn, Somenzi, Wang, Watanabe, Kam&Villa

]

� At the implementation level, only one of the pos-

sible next states and outputs is chosen (complete

speci�cation).

12

Incompletely Speci�ed Machines

Next state and output functions have don't cares.

However, for an implementation, � and � are func-

tions, thus they are uniquely de�ned for each input

and state combination.

Don't cares arise when some combinations are of no

interest:

� they will not occur or

� their outputs will not be observed.

For these, the next state or output may not be speci-

�ed. (In this case, � and � are relations, but of special

type). (We should make sure we want these as don't

cares). Such machines called incompletely speci�ed.

Example:

s1 s2

1/1

1/−

0/0
s1 s2

1/1

1/−

0/0

0/−

−/−
d

s1 s2

1/1

1/−

0/00/−

0/−

By adding a dummy state this can be converted to a

machine with only the output incompletely speci�ed.

Could also make "error" as the output when transiting

to the dummy state. Alternately (better), can interpret

unde�ned next state as allowing any next state.

13

Initializing Sequences

Reference: [C. Pixley, TCAD Dec. 1992]

Q: How many states does a circuit (implementation)

with n memory elements have?

A: 2n, one for each possible vector of values of these

memory elements. Must assume on power up, that any

of the 2n states is allowed.
States visited in

normal operation

States visited only

at startup

No initialization sequence possible Initialization sequence is possible

M1: M2:

The set of states of normal operation forms a strongly

connected component.

Initializing Sequence: A sequence of input vectors that

gets the machine to an equivalence class of known reset

states.

May be implemented using a single reset signal.

Pixley: If an aligning sequence exists for each state

pair, then an initializing sequence exists.

14

FSM Extraction

Problem: Given a netlist, extract an FSM from it.

Extraction of the Transition and Output Relation

Method 1:

Represent it by its characteristic function, ��(i; p; o; n).

η χI

P

N

O

variable

function

next state and
output logic

δ()

λ() η

��(i; p; o; n) = (�(i; p)�n) ^ (�(i:p)�o)

�� is the characteristic function of the transition and

output relation.

�� may be represented in several ways, the ROBDD

representation seems to be most useful.

15

FSM Extraction

Explicit/Semi-Implicit Extraction of all Transitions

Method 1:

Reference: [Devadas-Ma-Newton88]

Visit states starting from the reset states (in breadth-

�rst-order).

extract(C) { /* C is the given circuit */

st_table = { };

list = { };

foreach(s in reset_states)

add_list(list, s);

while((ps = next_unvisited(list)) != NIL) {

/* iterate till all states have been visited */

while([(in, ns, out) <= generate_ns(ps)] != NIL) {

/* generate transitions from ps one by one */

st_table = st_table + {(in, ps, ns, out)};

if(! in_list(list, ns)) add_list(list, ns);

}

mark_visited(list,ps);

}

return(st_table);

}

Of course, could do this in DFS order too, but see next

slide.

16

FSM Extraction

Semi-Implicit Extraction of all Transitions

generate ns(ps):

1. Set present state lines to ps.

2. Select a value for the next state and output lines

(sequentially go through all possibilities).

3. Find input values (possibly none) that will result

in that next state and output value. This need

not be a minterm but may be a cube. Use ATPG

justi�cation techniques to �nd input cube. (How-

ever, must also �nd a cover of input cubes - i.e.

must enumerate all possible edges.)

Semi-Implicit Extraction:

� method is exponential in the number of states.

� May not be possible to represent �� in reasonable

space as a STT.

Implicit Method

� Use BDD's to represent ��.

17

Interconnected FSMs - FSM Networks

� Natural way of describing complex systems (hier-

archy, decomposition). Naturally extracted from

HDL's with modules or sub-processes.

A B

C

PO

PO

PI
L2

L3

x

� Interconnected FSMs � Single product machine

(similar to
attening in boolean circuits)

� Directed Graph - Each node an FSM. Arcs are

variables used for communication.
== FSM

Similar to Boolean network, possibly cyclic.

18

FSM Networks

1
2

3 4

k

k−1

k−2

Consider k component machines

Mi = (Ii; Si; Oi; �i; �i); i = 1; :::; k

interconnected to form a network of FSMs (or com-

posite machine or decomposed machine)

MN =M1 �M2 � ::: �Mk = (I; SN ; O; �N ; �N):

The state set of MN is SN = S1 � S2 � ::: � SK, and

�N and �N are the next state and output mappings

induced by the properties of the component machines.

MN realizes (or de�nes) the product (
attened or

lumped or composed) machine M = (I; S; O; �; �).

Using BDD's, the transition relation for the product

machine is:

T (I; S;O; S0) =

kY

i=1

Ti(Ii; Si; Oi; S
0
i)

19

FSM Networks

If we had perfect optimization tools, product machine

is best, however

� product machine is huge (state explosion prob-

lem).

� tools are heuristic (imperfect)

Tools needed for

� synthesis on a network (optimize components sep-

arately, using global information)

� veri�cation on a network (verify network of re-

duced components)

� restructuring FSM networks (decomposition/
attening).

Tools analogous to ones we have for Boolean networks.

Research:

� near-minimal collapsing of networks of FSMs (Wolf,

1991)

� Component minimization.

� VIS development.

20

Near-Minimal Collapsing of FSM Networks

� Collapsing a network of completely speci�ed min-

imized FSMs may create a huge product machine

� If the product machine contains many equivalent

states, a small product FSM may be obtained af-

ter minimization. However intermediate machines

may be too big.

Is it sometimes possible to detect, while collapsing,

most equivalence classes to produce directly a small

product FSM [Wolf, 1991].

� Key observation: network of FSMs have many

equivalences recognizable in a single cycle. If two

states have the same outputs and go to the same

next states, then equivalent.

� A network composed of state-minimized compo-

nent FSM's can still have equivalent product

states because the transitions which make states

in a component distinguishable may not be allowed

in the network (called communication equivalence)

21

Communication Equivalence

M1

M2

t2

t1
x1

t3

x2

s1 s2
−/w1=1

w1=1/o1=0

−/o1=1

w1 o1

−/o1=0w1=0/o1=1

w1=0/o1=1

w1=1/o1=0

Example:

When M1 in state s1, w1 = 1 and M2 goes to state

t3 (from t1 or t2) with output o1 = 0. Since M1

never outputs w1 = 0, product machine never goes

into states s2 � x1 or s2 � x2. Since x1 and x2 make

t1 and t2 non-equivalent, product states s1 � t1 and

s1� t2 are equivalent.

t1t2 t3
1/0

Procedure: Use communication equivalences to de-

duce other state equivalences by working backward

one-cycle implications from known equivalences. If two

states have the same outputs and go to the same next

(equivalent) states then equivalent.

Result: Only undetected equivalences are those de-

pendent on nets not visible as primary inputs or primary

outputs.

22

Sequential Input Don't Cares

� Input don't care vectors

A B

C

PO

PO

PI
L2

L3

x

Machine A does not output a certain combination l at

x, when B is in set of states Sl. The transitions of B

from states in Sl under input l are therefore unspeci�ed.

Exploited by state minimization and state encoding al-

gorithms.

23

Sequential Input Don't Cares

� Input don't care sequences of vectors

q1

q2

q3

1/01

1/01

1/10
0/10

0/11

0/00

S1 S2

S3 S4

S5 S6

−0/1

−0/0

−0/111/0

−0/0

11/0 −0/0

−0/1

11/0

01/0

11/1

The sequence (11, 11) is a don’t care.

B
A

Suppose that machine A (left) drives machine B (right).

The two outputs of A are the inputs to B. A does not

produce all possible output sequences. For instance,

(11; 11) is don't care input sequence. This implies that

a certain sequence of transitions will not occur in B.

However, note that can't simply remove states in B.

24

Kim and Newborn Procedure

−0/1

−0/1 −0/1 −1/0

11/0 11/1
A B C

1A 2B

3B

1B2C

3A

01/1

11/0

01/1

10/1

10/1

00/1

01/111/1
01/0

10/1

10/1 00/1

1

2

3

1/01

0/11

1/01

0/10

1/10
0/00

FSM

01

11

01

10

10

00

1

2

3

Automaton

M1

M2

Product

M1 M2

1. In general, automaton may be nondeterministic.

Then have to determinize it with "subset construc-

tion".

2. Note that product machine is incompletely speci�ed.

Can use this to state-minimize M2.

� Input don't care sequences are due to the con-

strained controllability of the driven machine B in

a cascade A! B.

� Papers by Unger, Kim-Newborn, Devadas, Somenzi,

Wang to exploit input don't care sequences for log-

ical optimization.

25

Sequential Output Don't Cares

� Output don't cares. Due to the constrained ob-

servability of the driving machine A.

qb1
qb1
qb2
qb2
qb3
qb3

qb2
qb3
qb2
qb2
qb2
qb3

sa1
sa1
sa2
sa2
sa3
sa3

sa2
sa3
sa1
sa3
sa1
sa2

i1
i2
i1
i2
i1
i2

A B

I1
I2
I2
I1
I1
I1

I1
I2
I1
I2
I1
I2

o1
o2
o3
o3
o4
o1

I1/o1

I2/o1

I1/o4
I2/o2

i2/I1
i2/I1

i1/I1

i1/I2

i1/I1

i2/I2

sa1 sa2

sa3

qb1 qb2

qb3

(I1 or I2)/o3

A feeds B. The third transition of A can output either

I1 or I2, without changing the terminal behavior of the

cascade A ! B. Called output expansion. (Starting

state of A is sa1 and of B is qb1).

26

Sequential Output Don't Cares

� Output expansion produces a multiple-output FSM

in which a transition outputs any element of a sub-

set of symbolic or binary values (rather than any

element of all possible values as in the case of an

unspeci�ed transition).

� Modify state minimization procedures to exploit

output don't cares. In previous example sa2 be-

comes compatible with sa3. One less state after

state minimization (at the beginning both A and

B are individually state minimized).

i2/I1
i2/I1

i1/I1

i1/I1

i2/I2

sa1 sa2

sa3

i1/I1
sa1 sa23

i1/I1

i2/I1
i1/I2

i1/I1

27

Overview of FSM Optimization

� obtain the FSM description

{ provided by the designer as a state table

{ extracted from netlist

{ derived from HDL description

� obtain as a by-product of high-level synthesis

� translate to netlist, extract from netlist

� state minimization Combine equivalent states to

reduce the number of states. For most cases, min-

imizing the states results in smaller logic, though

this is not always true.

� state assignment Assign a unique binary code to

each state. The logic structure depends on the

assignment, thus this needs to be done optimally.

(NOVA, JEDI)

� minimization of a node in an FSM network.

� decomposition of FSM's and/or Collapsing

� sequential redundancy removal using ATPG tech-

niques.

28

