
THESIS REVIEW, AT&T RESEARCH, 18 MARCH 1996

Infrastructure for the Design and Rapid
Deployment of Telecommunications

Applications

Wan-Teh Chang

Prof. David G. Messerschmitt

Prof. Edward A. Lee

Department of Electrical Engineering
and Computer Sciences

University of California at Berkeley

UNIVERSITY OF CALIFORNIA AT BERKELEY

Overview

Objective: proliferation of telecom applications

• Design telecom applications faster

• Introduce/deploy telecom applications faster

Design: telecom applications are

• Concurrent programs

• Control-intensive

• Design environment: specialized model for control,
and mixing models of computation

Deployment:

• Architectural constraints

• Economic barrier

• Dynamic deployment: architecture, session
establishment protocol

UNIVERSITY OF CALIFORNIA AT BERKELEY

Terminology

Networked applications:

• Client-server: video on demand, WWW browsing, and
file transfer

• Peer-to-peer: telephony, video conferencing,
electronic mail, and voice mail

Peer-to-peer networked applications include general
telecom applications (often called telecom services)
and collaborative applications .

Bitways

Services

Applications

UNIVERSITY OF CALIFORNIA AT BERKELEY

Design Environment: Motivation

Telecom applications are

• Heterogeneous in design styles: signal processing,
control

• Intricate distributed control

Objective: a design environment for telecom
applications that supports

• Better abstractions for specifying control

• Mixing signal processing and control

UNIVERSITY OF CALIFORNIA AT BERKELEY

Models of Computation

A system is organized into modules or components.

Modules are written in a high-level programming
language (e.g. C++): host language

Modules interact with each other according to a model
of computation (MoC): coordination language

MoCs are domain-specific, intuitive.

Examples of MoCs:

• Dataflow

• Discrete-event

• Synchronous reactive (Esterel, Lustre, Argos)

• Finite-state machines

UNIVERSITY OF CALIFORNIA AT BERKELEY

Heterogeneous Approach

Heterogeneous approach: combines small, specialized
models of computation

• Achieves generality

• Automatic synthesis and formal verification

Mixing concurrency models

Mixing hierarchical finite-state machines with
concurrency

UNIVERSITY OF CALIFORNIA AT BERKELEY

Ptolemy and Tcl/Tk

Ptolemy is a simulation and rapid prototyping
environment.

• Software modules in Ptolemy can be parameterized
and interconnected to form systems

• Models of computation can be mixed

• Simulation and code generation (C, DSP assembly)
capabilities

Tcl is an embeddable interpreted command language.

Tk is a windowing toolkit based on Tcl.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Concurrency Models

Concurrency: processes (modules)

Communication: events

Process

Process

Process

Events

UNIVERSITY OF CALIFORNIA AT BERKELEY

Discrete-Event

Discrete-event (DE): events have time stamps.

• Events are totally ordered by time stamp.

The DE simulator sorts the events by time stamp and
process the events in chronological order.

T1

T2

. . .

A

B

. . .

. . .

. . .

Block A fires at time T1, generating an event with time
stamp T2 (T2 >= T1). Block B fires at time T2.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Synchronous Dataflow

Synchronous dataflow (SDF): a block consumes a
fixed number of tokens and produces a fixed number
of tokens in each firing.

• Good for modeling multirate digital signal
processing.

• Block firings are partially ordered , sequenced only
by data dependency .

enabled fired enabled fired

Repeated firings of a dataflow block

UNIVERSITY OF CALIFORNIA AT BERKELEY

Modeling Discrete-Event Systems

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

continuous time

discrete time

multirate discrete time

totally-ordered discrete events

partially-ordered discrete events

UNIVERSITY OF CALIFORNIA AT BERKELEY

Mixing MoCs by Hierarchical Nesting

• MoCs are mixed hierarchically .

• Blocks in the MoCs have discrete firings.

• Key constraint: each MoC have a well-defined
quantum of computation .

• Execution proceeds as a sequence of quanta of
computation with time stamps

X

Y

A subsystem of MoC Y embedded in MoC X as a hierarchical block

UNIVERSITY OF CALIFORNIA AT BERKELEY

Abstractions for Control

Statechart: finite-state machine + hierarchy +
concurrency

UNIVERSITY OF CALIFORNIA AT BERKELEY

Mixing Hierarchical FSM with Concurrency

Invoking dataflow graphs
from within FSM

A dataflow block invokes
a hierarchical FSM

• Sequential behavior (finite-state machine), hierarchy ,
and concurrency are orthogonal semantic
components.

• Hierarchical finite-state machines (FSMs) can be
nested with different concurrency models (SDF,
synchronous reactive) to get (essentially) variants of
Statecharts.

UNIVERSITY OF CALIFORNIA AT BERKELEY

FSM Controls Invocation of Dataflow Graphs

Dataflow
graphs

Control
(FSM)

Internal events

Data in Data out

Control outControl in

A block is replaced by one of a set of dataflow graphs.

The choice of dataflow graph is controlled dynamically
by a FSM.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Summary of Hierarchical FSM

• Defined semantics of hierarchical FSM

• When combined with concurrency, well suited for
specifying complex control functionality

• Graphical editor for state transition diagrams

• Simulation and code generation (C, Tcl)

• FSM controls signal processing tasks specified as
dataflow graphs

UNIVERSITY OF CALIFORNIA AT BERKELEY

Rapid Deployment: Motivation

Two obstacles to rapid deployment of new networked
applications:

• Architectural constraints: network-based
applications

• Standardization at application level

Major economic barrier to deployment of peer-to-peer
applications:

• Network externality problem: early users derive little
benefit from the applications

UNIVERSITY OF CALIFORNIA AT BERKELEY

Solution

Applications defined in user terminals , and
increasingly in software.

Network deployment: software-defined applications
can be distributed via the network.

• Web browsers, document viewers, audio players, etc.
on the Internet use this distribution mechanism.

• Users still have to anticipate the need and install the
application software.

Dynamic deployment: transfer application definition at
session establishment (and during the session).

UNIVERSITY OF CALIFORNIA AT BERKELEY

The Dynamic Deployment Approach

• Platform

• Application definition language

• Protocol for transfer of application definitions

Repository of
applications

Application
design
environment

Transfer of
application definitions

ApplicationApplication

Programmable
terminal

Programmable
terminal

Platform Platform
Computer
with O.S.
and resources

UNIVERSITY OF CALIFORNIA AT BERKELEY

Dynamic Deployment: Discussion

• Limit standardization to infrastructure elements

• Downloadable software definition of remainder of
application functionality

• Functionality similar to LAN/fileserver, but new
problems introduced

• Bypass network externality problem: a community of
interest consisting of all networked platforms

• Requires software definition of application and high-
speed network

UNIVERSITY OF CALIFORNIA AT BERKELEY

Dynamic Deployment: Issues

Security: executing application definitions from
external sources

• Application definition language must be a high-level
language with restricted functionality

• Authentication of trusted sources

Hardware/O.S. independence ==> high-level language

Performance:

• Session establishment time: application program
size, network bandwidth, interpretation/compilation

• Run-time: interpretation overhead

Pricing and charging; licensing

UNIVERSITY OF CALIFORNIA AT BERKELEY

Prototype of Dynamic Deployment Approach

• Platform: Ptolemy running on Unix workstation

• Application definition language: Ptolemy interpreter
language Ptcl

• Protocol for transfer: Tcl-DP

Sun, Dec, HP

Unix

Ptolemy

Resources

Sun, Dec, HP

Unix

Ptolemy

Resources

Repository of
application

Transfer of
application definitions

voice, video, data
streams in the application

Network

Application
design
environment definitions

UNIVERSITY OF CALIFORNIA AT BERKELEY

Application Design and Deployment Flow

Models of
computation,Application

Intermediate
form

Interpret
Compile

Interpreter

Application

Unix processes

Translate, optimize, schedule

User terminal

Dataflow, hierarchical FSMs,

Ptcl interpreter files

etc. in Ptolemy

deployment

design languages

UNIVERSITY OF CALIFORNIA AT BERKELEY

Steps in Dynamic Deployment

Start

User to user
signaling connect

Deployment

Configuration

Application I

Modify

Application II

Local Remote

TCP connection

Application definition

User-to-user signaling

Control
Audio

Control
Audio

Signaling

Control
Audio 1
Audio 2

UNIVERSITY OF CALIFORNIA AT BERKELEY

Software Emulation of Telephone

UNIVERSITY OF CALIFORNIA AT BERKELEY

Software Emulation of Telephone (cont’d)

GUI

Ptolemy system for generating the ringing tone

UNIVERSITY OF CALIFORNIA AT BERKELEY

Collaborative Design Applications

Shared whiteboard

Collaborative editor

– Dynamic deployment of
features

UNIVERSITY OF CALIFORNIA AT BERKELEY

Related Work

• Safe-Tcl: Enabled Mail (Safe-Tcl scripts embedded in
email messages)

• The Telescript language of General Magic: agents
(mobile programs)

• The Java language of Sun Microsystems: Java
applets in Web pages

UNIVERSITY OF CALIFORNIA AT BERKELEY

Conclusions

Heterogeneous approach

• Impose small, specialized models of computation on
a programming language

• Combine models of computation

• We can mix dataflow, discrete-event, synchronous
reactive, and hierarchical FSM models.

Dynamic deployment approach

• Avoid standardization of actual application

• Limit network externality problems

• We have a real working prototype we can demo

