
Page 1

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Co-SynthesisCo-Synthesis

l Vulcan (Stanford - DeMicheli et al)
l Polis (UC Berkeley - Vicentelli et al)

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

PolisPolis

l Leverages research in logic synthesis
◆ modeling: FSM (<= CFSM)
◆ automatic path to logic synthesis and

formal verification (VIS)
l Assisted partitioning (non-automatic)

Page 2

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Polis OutlinePolis Outline

l System Modeling
l Target Architecture & Partitioning
l Software Implementation
l Scheduling
l Validation

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

FSM ModelFSM Model
popular model for describing control systems: the behavior
of a system is represented in terms of states and transitions
between states

FSM model consists of:
• a set of states
•a set of transitions between states
•a set of actions associated with these
 states or transitions

Page 3

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

FSM ModelFSM Model
FSM is a quintuple

<S, I, O, f: SxI -> S, h: SxI->O>

where:
S = {s1, s2, ..., sl} is a set of states;
 I = {i1, i2, ..., tm} is a set of inputs;
O = {o1, o2, ..., on} is a set of outputs;
f is a next state function, which determines the next state from the
current state and inputs;
h is an output function, which determines the outputs from the
current state and inputs.

s0

i1/o1

s1
i2/o2

start

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

A FSM ExampleA FSM Example

FSM State Diagram
for an Elevator
Controller
(3 floors)

I = {r1, r2, r3,}

s1
r2/u1

s2r1/d1start

s3

r1/n r2/n

r3/n

r3/u2
r2/d1

r3/u1r1/d2

floor requested (floor1, floor2, floor3)

O = {d2, d1, n, u1, u2}

 S = {s1, s2, s3,} current floor (floor1, floor2, floor3)

direction and number of floors the elevator
should go (“u” denotes up, “d” denotes down,
“n” denotes idle)

Page 4

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

FSMs FSMs

l "Classical" FSMs have an implied
synchronous hypothesis :

◆ all the FSMs used to model a system must
change state and produce their outputs
simultaneously

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

The Synchronous HypothesisThe Synchronous Hypothesis

s1

req // ack(t)

s0

reset/t:=0/

go/t:=t+1/Operational Cycle of a FSMOperational Cycle of a FSM

1. Idle

2. Detect input events

3. Transition, according to which events are present
 and a transition relation

4. Emit output events
FSM
phase 1: duration between
 zero and infinity
phases 2/3/4: duration of zero

Page 5

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

The Synchronous HypothesisThe Synchronous Hypothesis

l The chronometric notion of time is replaced
by a notion of order among events

System instantaneously reacts to events...

only relevant notions are simultaneity and
precedence between events

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

FSMs and CFSMsFSMs and CFSMs

l Mixed hardware-software systems may
contain components that proceed at very proceed at very proceed at very
different speedsdifferent speedsdifferent speeds

◆ synchronous hardware modules
» execute concurrently
» compute next state and outputs at each clock cycle

◆ software modules
» execute sequentially
» reaction to conditions may take hundreds of clock

cycles to compute and propagate

Page 6

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

FSMs and CFSMsFSMs and CFSMs

FSMs can be used to model such systems but their
use would be excessively cumbersome...

CFSMs: specialized model that incorporates the
unbounded delay assumptionunbounded delay assumptionunbounded delay assumption

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Operational Cycle of a CFSMOperational Cycle of a CFSM
Four PhasesFour Phases:

1. Idle

2. Detect input events

3. Transition, according to which events are present
 and match a a transition relation element

4. Emit output events

can have any
duration between
zero and infinity

takes at least
one time unit

FSM
phase 1: duration between
 zero and infinity
phases 2/3/4: duration of zero

Page 7

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

BasicsBasics
l System modeled as a network of interacting CFSMsnetwork of interacting CFSMsnetwork of interacting CFSMs

communicating through eventseventsevents
◆ Each CFSM takes a non-zero unbounded time to

perform its task
» at least before an implementation is chosen

l Protocol between communicating CFSMs
◆ receiver waits for the sender to emit the event
◆ sender can proceed after emitting the event without

the need to wait

implicit one place buffer between the sender
and each receiver saves the event until it is detected
(or overwritten)

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Network of CFSMs: Depth-1 BuffersNetwork of CFSMs: Depth-1 Buffers

CSFM2

B=>C

CSFM3

C=>B

C=>B (A==0)=>B

C=>F

C=>G C=>A

CSFM1

F

G

C
C

A B

F=>C
G=>C

Page 8

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

EventsEvents

l en is the name of the event
◆ i.e., the “communication port” where it occurs

l ev ∈ eV is the value of the event;
 (eV is the set of values the event can take)
l et , a non-negative integer, is the time of occurrence of

a particular instance of an event

An event is a triple e = (en, ev, et):

Ex.: event with a name "temperature" could occur every
 time a certain sensor reports a new value, in the range
 between 0 and 100oC.

Some events may not have “interesting” values (e.g., reset)--
in this case eV is the special symbol ε.

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Example: Seat BeltExample: Seat Belt
Five seconds after the key is turned on, if the belt has
not being fastened, an alarm will beep for ten seconds
or until the key is turned off.

input events of the system:

*BELT ----------------------- ON/OFF
*KEY ------------------------ ON/OFF

event name event values

output events of the system:

event name event values

*ALARM --------------------- ON/OFF

Page 9

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Example (cont.)Example (cont.)
Five seconds after the key is turned on, if the belt has
not being fastened, an alarm will beep for ten seconds
or until the key is turned off.

internal events of the system (i.e., events exchanged by
the system components and not visible outside):

*START ----------------------- ε
*END ------------------------ 5/10

event name event values

starting of the timer
elapsed time

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

CFSMsCFSMs

l A CFSM is basically constituted by
◆ a set of input events

» each with its associated set of values

◆ a set of output events
» each with its associated set of values and possibly

with an initial value

◆ a transition relation

The transition relation describes how input events can
cause output events.

Page 10

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Transition RelationTransition Relation

l It is a set of pairs of sets
◆ First member of each pair: set of input

names and values
◆ Second member of each pair: set of output

names and values

Describes how input events can cause output events.

• emits the output events with the appropriate values

• triggered by the input events with the appropriate values

Transition:

The reaction time is unbounded and non-zero

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Input EventsInput Events
l Trigger events

◆ can be used only once to cause a transition of a
given CFSM

» each occurrence is consumed by the triggered transition

◆ can cause many transitions in different CFSMs
l Pure value events

◆ cannot directly cause a transition
◆ can be used to choose among different

possibilities involving the same set of trigger
events (and their values).

Page 11

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Input EventsInput Events

Ex.: a given system must sample the temperature every minute, and react
appropriately.

System can be modeled as a CFSM with two input events:
time (trigger) and temperature (pure value).

the reaction (CFSM transition) can occur only due to a time change

Modeling both as events allows some other system component to
react to temperature changes rather than time changes

the reaction must take into account the value of the temperature
event when the time change event occurs.

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

StatesStates
l the state of a CFSM consists of a set of event

types that are at the same time input and
output for it.

◆ the non-zero reaction time of this feedback
loop provides the "storage" capability that
is required to implement the concept of
state.

CFSMs: reaction time is unbounded and non-zero

Page 12

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

CFSMsCFSMs

l I = {(i'n, i'V), (i"n, i"V),...} is a finite set of input event names and of the
corresponding finite set of allowed values

l E, I ⊇ E, is the set of "trigger" input event names
 Events with names in (I - E) are "pure data" events
l O = {(o'n, o'V), (o"n, o"V),...} is a finite set of output event names and

of the corresponding finite set of allowed values, such that E ∩ O =
∅ (i.e., the same event cannot be a trigger input and an output)

l R, {(en, ev) | (en, eV) ∈ O, ev ∈ eV} ⊇ R, is a set of possible initial
values of (some) output events

l F, {(fI, fO) | fI = {(e'n, e'v) | (e'n, e'V) ∈ I, e'v ∈ e'V}, f0 = {(e"n, e"v) |
(e"n, e"V) ∈ O, e"v ∈ e"V}⊇ F, is the transition relation

◆ for all (fI, fO) ∈ F there must exist at least one (in, iV) ∈ E, iv ∈ iV
such that (in, iv) ∈ fI (i.e., at least one trigger event)

A CFSM is a quintuple C = (I, E, O, R, F):

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Seat Belt Example RevisitedSeat Belt Example Revisited
Five seconds after the key is turned on, if the belt has not being fastened,
an alarm will beep for ten seconds or until the key is turned off.

input events:

*BELT ----------------------- ON/OFF
*KEY ------------------------ ON/OFF

event name event values

output events: event name event values

*ALARM --------------------- ON/OFF

internal events:

*START ----------------------- ε
*END ------------------------ 5/10

event name event values

Page 13

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Seat Belt ExampleSeat Belt Example
A CFSM describing the desired event/reaction pattern:

+ denotes the logic or condition
=> separates input and output events of a given transition

WAIT

ALARM

*KEY = ON => *START

*KEY = OFF +
*BELT = ON =>

OFF

*END = 10 +
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Example: Formal DescriptionExample: Formal Description

l I1 = {(*KEY, {ON, OFF}), (*BELT, {ON, OFF}),
 (*END, {5, 10}), (s1,{OFF, WAIT, ALARM})}
l E1= {(*KEY,{ON, OFF}), (*BELT,{ON, OFF}),
 *END, {5, 10})}

The formal description of the same CFSM
C1 = (I1, E1, O1, R1, F1) is

WAIT

ALARM

*KEY = ON =>
*START

*KEY = OFF +
*BELT = ON =>

OFF

*END = 10 +
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON

s1 => pure data event
(convention: name
not preceded by “*”)

Page 14

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Example: Formal Description (cont.)Example: Formal Description (cont.)

l O1 = {(*START, {ε}), (*ALARM, {ON, OFF}),
 (s1,{OFF, WAIT, ALARM})}
l R1 = {(s1,OFF)}

C1 = (I1, E1, O1, R1, F1):

WAIT

ALARM

*KEY = ON =>
*START

*KEY = OFF +
*BELT = ON =>

OFF

*END = 10 +
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON

s1: appears as input
and output event =>
state event

initialinitialinitial
valuesvaluesvalues

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Example: Formal Description (cont.)Example: Formal Description (cont.)

l F1 = {
 ({(*KEY, ON), (s1,OFF)} => {(s1, WAIT), (*START, ε)}),
 ({(*KEY, ON), (*BELT, ON), (s1,OFF)} => {(s1, OFF)}),
 ({(*KEY, OFF), (s1,WAIT)} => {(s1, OFF)}),
 ({(*BELT, ON), (s1,WAIT)} => {(s1, OFF)}),
 ({(*END, 5), (s1,WAIT)} => {(s1, ALARM), (*ALARM, ON)}),
 ({(*END, 10), (s1,ALARM)} =>
 {(s1, OFF), (*ALARM, OFF)}),
 ({(*BELT, ON), (s1,ALARM)} =>
 {(s1, OFF), (*ALARM, OFF)}),
 ({(*KEY, OFF), (s1,ALARM)} =>
 {(s1, OFF), (*ALARM, OFF)})
 }

C1 = (I1, E1, O1, R1, F1):

WAIT

ALARM

*KEY = ON =>
*START

*KEY = OFF +
*BELT = ON =>

OFF

*END = 10 +
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON

Page 15

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Network of CFSMsNetwork of CFSMs

A Network of CFSMs is a set of CFSMs

N = {C1 = (I1, E1, O1, R1, F1), C2 = (I2, E2, O2, R2, F2), ...}

such that no two different CFSMs have an output event name
in common (i.e., i ≠ j implies that Oi ∩ Oj = ∅)

Output sets are disjoint in order to avoid the difficulties
inherent in the implementation of the update of a single
object by two concurrent agents (would require some mutual
exclusion mechanism or some resolution function)

Input sets need not be disjoint, thus implying a broadcast
communication mechanism (as opposed to point-to-point)

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Seat Belt ExampleSeat Belt Example

l I2 = {(*START, {ε}), (*TICK, {ε}), (s2, {0,1, 2, 3, 4, 5, 6, 7, 8, 9})}

l E2 = {(*START, {ε}), (*TICK, {ε})}
l O2 = {(*END,{5, 10}), (s2, {0,1, 2, 3, 4, 5, 6, 7, 8, 9})}
l R2 = {(s2, 0)}

The network of CFSMs would be composed by C1 plus a
CFSM implementing the timer, C2 , defined as follows:

C2 = (I2, E2, O2, R2, F2):

represents an input event from the
environment occurring once a second

Page 16

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Seat Belt ExampleSeat Belt Example

l F2 = {
 ({(*TICK, ε), (s2,0)} => {(s2, 1)}),
 ({(*START, ε), (*TICK, ε), (s2,0)} => {(s2, 0)}),
 ({(*TICK, ε), (s2,1)} => {(s2, 2)}),
 ({(*START, ε), (*TICK, ε), (s2,1)} => {(s2, 0)}),
 ({(*TICK, ε), (s2,2)} => {(s2, 3)}),
 ({(*START, ε), (*TICK, ε), (s2,2)} => {(s2, 0)}),
 ...
 ({(*TICK, ε), (s2,4)} => {(s2, 5), (*END, 5)}),
 ({(*START, ε), (*TICK, ε), (s2,4)} => {(s2, 0), (*END, 5)}),
 ...
 ({(*TICK, ε), (s2,9)} => {(s2, 0), (*END, 10)}),
 }

C2 = (I2, E2, O2, R2, F2):

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Polis OutlinePolis Outline

l System Modeling
l Target Architecture & Partitioning
l Software Implementation
l Scheduling
l Validation

Page 17

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Partitioning, Target Architecture Partitioning, Target Architecture

l Non-automated partitioning ⇒ (manually)
specified by the designer

l Each partition may comprise one or more
CFSMs

◆ partitions are synthesized separately

General Embedded System Architecture

Target Architecture

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Embedded System Architecture Embedded System Architecture

CSFM5

CSFM6

O/S

events occurrences (triggers)
events values

SW Partition 3
CSFM7

HW

Partition 1

CSFM2

HW

Partition 1

CSFM1

CSFM3

P 5

CSFM4

P 4

P
1

P
2

P
3

e1

e2

e3

e8

e4

e5

e6

e7

e4 e5

controllers only

Bus-based, shared memory architectures
◆ significantly more expensive in terms
 of development cost and product cost ...

Page 18

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Interface Among PartitionsInterface Among Partitions

l Communication between partitions is based on
discrete event exchange

l In heterogeneous systems, “events” may be
implemented differently

Two implementation domains can currently be handled:

Synchronous hardwareSynchronous hardwareSynchronous hardware
Software embedded in a micro-controllerSoftware embedded in a micro-controllerSoftware embedded in a micro-controller

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Hardware Domain Hardware Domain

l An event type is represented as a wire
◆ event detection: input wire is found high
◆ event emission : setting an output wire for

a single clock tick

Page 19

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Software Domain Software Domain

l detecting the occurrence of an input event:
whenever task polls its input buffer, finds it
non-zero

◆occurred (event, InpBuff) != 0

l event emission : writing a value to a virtual
port

◆emit(event)

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Interface Between PartitionsInterface Between Partitions

Sender’s
Domain

Receiver’s
Domain

Channel’s
Domain

S A B C R

Translation of representations: sender to channel (A) and channel to receiver (C)

Block B: gets the event across (mixed hardware software implementation)

Page 20

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Interface TypesInterface Types

l Hardware to hardware
l Software to hardware
l Hardware to non-interrupt software
l Software to non-interrupt software on a

separate processor
l Software to non-interrupt software on the

same processor
l Software to interrupt software on a separate

processor
l Hardware to interrupt software

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

An Example of InterfaceAn Example of Interface
Hardware to non-interrupt software

x

ack

y

x

y

ack

Transform 1-clock pulse (event) into a value of a bit of an input port of a processor

Presence of the event must be saver until it is copied into the receiver’s input buffer

Mixed hardware software implementation

1. The pulse from the hardware sender is stored by an interface sequential circuit that
 keeps it until the receiver’s scheduler, after reading it, resets it
2. The scheduler sets the input buffers of the tasks which are sensitive to this event

Page 21

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Polis OutlinePolis Outline

l System Specification
l System Modeling
l Target Architecture & Partitioning
l Software Implementation
l Scheduling
l Validation

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Software ImplementationSoftware Implementation
l Input

◆ set of tasks (specified by CFSMs)
◆ set of timing constraints

» e.g., input event rates and response constraints

l Output
◆ set of C procedures that implement the

tasks
◆ Scheduler that satisfies the timing

constraints

Intermediate representation ⇒ S-Graphs(control/data S-Graphs(control/data S-Graphs(control/data
 flow graph) flow graph) flow graph)

Page 22

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

S-GraphsS-Graphs

l BEGIN (source)
l END (sink)
l TEST (disjoint paths -- expression might be

detect event)
l ASSIGN (includes emit event)

An s-graph is DAG containing the following types
of nodes:

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Software Time/Size EstimationSoftware Time/Size Estimation

END

BEGIN

*c

a:= a+1 a:=0

a<b

emit(*y)

F

T

F T

• timing estimation for a specific
 micro-controller

Cost assigned to S-Graph edges

Estimated time
• min: 26 cycles
• max: 126 cycles

40 41 63

918

14

26

◆ Cost parameters evaluated via
simple benchmarks

◆ need timing and size
measurements for each
target system

◆ implemented for several
micro-controllers

Page 23

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Polis OutlinePolis Outline

l System Specification
l System Modeling
l Target Architecture & Partitioning
l Software Implementation
l Scheduling
l Validation

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

The Scheduling ProblemThe Scheduling Problem

l Given
◆ estimates on the minimum and maximum

execution times for each CFSM transition (from
the S-graph)

◆ a set of timing constraints
» e.g., input event rates and input-to-output deadlines

l Find
◆ an execution ordering for the CFSM transitions

that satisfies the constraints
» static, pre-computed
» dynamic, decided at run-time

Page 24

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Supported Scheduling AlgorithmsSupported Scheduling Algorithms

l round-robin
l static, I/O rate-based
l static, pre-emptive, I/O rate based
l dynamic, pre-emptive,earliest deadline first

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Scheduling: Open IssuesScheduling: Open Issues

l Propagation of constraints from external I/O
behavior to each CFSM

l Satisfaction of constraints within a single
transition

l automatic choice of scheduling algorithm,
based on performance estimates and
constraints

Page 25

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Polis OutlinePolis Outline

l System Specification
l System Modeling
l Target Architecture & Partitioning
l Software Implementation
l Scheduling
l Validation

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

System ValidationSystem Validation

l with respect to specification
l with respect to some user defined property

Ensuring correctness of an implementation:

CosimulationFormal Verification

Page 26

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Formal VerificationFormal Verification

l Model described as a network of CFSMs ⇒
mapped into FSMs

l Time-independent and time-dependent
properties

Ex.:
“alarm will not be on forever”
“alarm will not be on for more than 6s”

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Cosimulation Cosimulation

l Used in a closed loop with system
partitioning - trade-off analysistrade-off analysistrade-off analysis

l Multiple simulations can be compared to
evaluate

◆ timing constraints
◆ processor occupation
◆ run time
◆ etc.

Uses Ptolemy as cosimulation engine

Page 27

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Cosimulation EnvironmentCosimulation Environment

l Each CFSM is mapped into a Star
l Each Star has input and output portholes --

carrying events

Ptolemy Discrete Event (DE) Domain:

A scheduling policy was implemented on “top”
of Ptolemy’s DE scheduler -- decides what “software”
 stars are to be interrupted/executed

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Polis: Trade-off AnalysisPolis: Trade-off Analysis
l Main emphasis: speed

◆ during simulation
◆ what-if analysis -- architectural changes

(⇒ target processor and H/S partition)

l embedded software executes on a host
workstation

◆ instructions that accumulate clock cycles
(estimated) are appended to each statement
in the C code generated from the S-graph.

Page 28

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Trade-off AnalysisTrade-off Analysis

l Perform simulation and gather profiling data
◆ event response times
◆ analysis of bottlenecks

l Use estimated clock cycles for fast H/S
cosimulation

◆ processor selection at early stages of
design

log files used to record information that may be
relevant for timing analysis (e.g., when an event
 is overwritten, missing deadlines)

Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997Margarida Jacome - UT Austin - 1997

Trade-off AnalysisTrade-off Analysis

l simulation NOT comparable with that provided by a
cycle-accurate processor model (considering
specific compilation options, etc.), and a hardware
simulator...

goal: support exploration of architectural trade-offs

Precise validation of final implementation must use
 a much more accurate model.

(reported 20% accuracy for a
 characterized microcontroller...)

POLIS does not provide support for detailed simulation

