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Co-SynthesisCo-Synthesis

l Vulcan (Stanford - DeMicheli et al)
l Polis (UC Berkeley - Vicentelli et al)
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PolisPolis

l Leverages research  in logic  synthesis
◆ modeling: FSM (<= CFSM)
◆ automatic  path to logic synthesis and  

formal verification (VIS)
l Assisted partitioning (non-automatic)
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Polis OutlinePolis Outline

l System Modeling 
l Target Architecture & Partitioning
l Software Implementation
l Scheduling 
l Validation 
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FSM ModelFSM Model
popular model for describing control systems: the behavior 
of a system is represented in terms of states and transitions 
between states 

FSM model consists of:
• a set of states
•a set of transitions between states
•a set of actions associated with these
   states or transitions
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FSM ModelFSM Model
FSM is a quintuple 

<S, I, O, f: SxI -> S, h: SxI->O>

where:
S = {s1, s2, ..., sl} is a set of states;
 I = {i1, i2, ..., tm} is a set of inputs;
O = {o1, o2, ..., on} is a set of outputs;
f is a next state function, which determines the next state from the
current state and inputs;
h is an output function, which determines the outputs from the
current state and inputs.

s0

i1/o1

s1
i2/o2

start
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A FSM ExampleA FSM Example

FSM State Diagram
for an Elevator 
Controller
(3 floors)

I = {r1, r2, r3,}

s1
r2/u1

s2r1/d1start

s3

r1/n r2/n

r3/n

r3/u2
r2/d1

r3/u1r1/d2

floor requested (floor1, floor2, floor3)

O = {d2, d1, n, u1, u2}

 S = {s1, s2, s3,} current floor (floor1, floor2, floor3)

direction and number of floors the elevator
should go (“u” denotes up, “d” denotes down,
“n” denotes idle)
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FSMs FSMs 

l "Classical" FSMs have an implied 
synchronous  hypothesis :

◆ all the FSMs used to model a system must 
change state and produce their outputs 
simultaneously
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The Synchronous HypothesisThe Synchronous Hypothesis

s1

req  // ack(t)

s0

reset/t:=0/

go/t:=t+1/Operational Cycle of a FSMOperational Cycle of a FSM

1. Idle

2. Detect input events

3. Transition, according to which events are present
     and a transition relation

4. Emit output events
FSM
phase 1: duration between
                zero and infinity
phases 2/3/4: duration of zero
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The Synchronous HypothesisThe Synchronous Hypothesis

l The chronometric notion of time is replaced 
by a notion of order among events

System instantaneously reacts to events...

only relevant notions are simultaneity and
precedence between events
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FSMs and CFSMsFSMs and CFSMs

l Mixed hardware-software systems may 
contain components that proceed at very proceed at very proceed at very 
different speedsdifferent speedsdifferent speeds

◆ synchronous hardware modules
» execute concurrently
» compute next state and outputs at each clock cycle

◆ software modules
» execute  sequentially 
» reaction to conditions may take hundreds of clock 

cycles to compute and propagate
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FSMs and CFSMsFSMs and CFSMs

FSMs can be used to model such systems but their
use would be excessively cumbersome...

CFSMs: specialized model that  incorporates the 
unbounded delay assumptionunbounded delay assumptionunbounded delay assumption
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Operational Cycle of a CFSMOperational Cycle of a CFSM
Four PhasesFour Phases:

1. Idle

2. Detect input events

3. Transition, according to which events are present
     and match a a transition relation element

4. Emit output events

can have any
duration between
zero and infinity

takes at least
one time unit

FSM
phase 1: duration between
                zero and infinity
phases 2/3/4: duration of zero
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BasicsBasics
l System modeled as a network of interacting CFSMsnetwork of interacting CFSMsnetwork of interacting CFSMs 

communicating through eventseventsevents
◆ Each CFSM takes a non-zero unbounded time to 

perform its task
» at least before an implementation is chosen

l Protocol between communicating CFSMs
◆ receiver waits for the sender to emit the event
◆ sender can proceed after emitting the event without 

the need to wait

implicit one place buffer between the sender 
and each receiver saves the event until it is detected
(or overwritten)
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Network of CFSMs: Depth-1 BuffersNetwork of CFSMs: Depth-1 Buffers

CSFM2

B=>C

CSFM3

C=>B

C=>B (A==0)=>B

C=>F

C=>G C=>A

CSFM1

F 

G

C 
C 

A B

F=>C
G=>C
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EventsEvents

l en is the name of the event
◆ i.e., the “communication port” where it occurs

l ev  ∈   eV is the value of the event;
   (eV is the set of values the event can take)
l et , a non-negative integer, is the time of occurrence of 

a particular instance of an event

An event is a triple e = (en, ev, et):

Ex.: event with a name "temperature" could occur every 
        time a certain sensor reports a new value, in the range
        between 0 and 100oC.

Some events may not have “interesting” values (e.g., reset)--
in this case eV is the special symbol ε.
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Example: Seat BeltExample: Seat Belt
Five seconds after the key is turned on, if the belt has
not being fastened, an alarm will beep for ten seconds
or until the key is turned off.

input events of the system:

*BELT ----------------------- ON/OFF
*KEY  ------------------------ ON/OFF

event name event values

output events of the system:

event name event values

*ALARM --------------------- ON/OFF
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Example (cont.)Example (cont.)
Five seconds after the key is turned on, if the belt has
not being fastened, an alarm will beep for ten seconds
or until the key is turned off.

internal events of the system (i.e., events exchanged by
the system components and not visible outside):

*START ----------------------- ε
*END  ------------------------ 5/10

event name event values

starting of the timer
elapsed time
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CFSMsCFSMs

l A CFSM is basically constituted by 
◆ a set of input events 

» each with its associated set of values

◆ a set of output events
» each with its associated set of values and possibly 

with an initial value

◆ a transition relation

The transition relation describes how input events can 
cause output events.
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Transition RelationTransition Relation

l It is a set of pairs of sets
◆ First member of each pair: set of input 

names and values
◆ Second member of each pair: set of output 

names and values

Describes how input events can cause output events.

• emits the output events with the appropriate values

• triggered by the input events with the appropriate values 

Transition:

The reaction time is unbounded and non-zero
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Input EventsInput Events
l Trigger events

◆ can be used only once to cause a transition of a 
given CFSM

» each occurrence is consumed by the triggered transition

◆ can cause many transitions in different CFSMs
l Pure value events

◆ cannot directly cause a transition
◆ can be used to choose among different 

possibilities involving the same set of trigger 
events (and their values).
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Input EventsInput Events

Ex.: a given system must sample the temperature every minute, and react 
appropriately.

System can be modeled as a CFSM with two input events: 
time (trigger) and temperature (pure value).

the reaction (CFSM transition) can occur only due to a time change

Modeling both as events allows some other system component to 
react to temperature changes rather than time changes 

the reaction must take into account the value of the temperature 
event when the time change  event occurs.
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StatesStates
l the state of a CFSM consists of a set of event 

types that are at the same time input and 
output for it.

◆ the non-zero reaction time of this feedback 
loop provides the "storage" capability that 
is required to implement the concept of 
state.

CFSMs: reaction time is unbounded and non-zero
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CFSMsCFSMs

l I = {(i'n, i'V), (i"n, i"V),...} is a finite set of input event names and of the 
corresponding finite set of allowed values

l E, I ⊇ E, is the set of "trigger" input event names
    Events with names in (I - E) are "pure data" events
l O = {(o'n, o'V), (o"n, o"V),...} is a finite set of output  event names and 

of the corresponding finite set of allowed values, such that E ∩ O = 
∅  (i.e., the same event cannot be a trigger input and an output)

l R,  {(en, ev) | (en, eV) ∈   O, ev  ∈  eV} ⊇ R, is a set of possible initial 
values of (some) output events

l F,  {(fI, fO) | fI =  {(e'n, e'v) | (e'n, e'V) ∈   I, e'v  ∈  e'V}, f0 =  {(e"n, e"v) | 
(e"n, e"V) ∈   O, e"v  ∈  e"V}⊇ F, is the transition relation

◆ for all (fI, fO) ∈  F there must exist at least one (in, iV) ∈  E, iv ∈  iV 
such that (in, iv) ∈  fI (i.e., at least one trigger event)

A CFSM is a quintuple C = (I, E, O, R, F): 
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Seat Belt Example RevisitedSeat Belt Example Revisited
Five seconds after the key is turned on, if the belt has not being fastened, 
an alarm will beep for ten seconds or until the key is turned off.

input events:

*BELT ----------------------- ON/OFF
*KEY  ------------------------ ON/OFF

event name event values

output events: event name event values

*ALARM --------------------- ON/OFF

internal events:

*START ----------------------- ε
*END  ------------------------ 5/10

event name event values
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Seat Belt ExampleSeat Belt Example
A CFSM describing the desired event/reaction pattern:

+  denotes the logic or condition
=> separates input and output events of a given transition

WAIT

ALARM

*KEY = ON => *START

*KEY = OFF +  
*BELT = ON => 

OFF

*END = 10  + 
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON 
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Example: Formal DescriptionExample: Formal Description

l I1 = {(*KEY, {ON, OFF}), (*BELT, {ON, OFF}),   
           (*END, {5, 10}), (s1,{OFF, WAIT, ALARM})}
l E1= {(*KEY,{ON, OFF}), (*BELT,{ON, OFF}), 
    *END, {5, 10})}

The formal description of the same CFSM 
C1 = (I1, E1, O1, R1, F1) is

WAIT

ALARM

*KEY = ON => 
*START

*KEY = OFF +  
*BELT = ON => 

OFF

*END = 10  + 
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON 

s1 => pure data event
(convention: name
not preceded by “*”)
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Example: Formal Description (cont.)Example: Formal Description (cont.)

l O1 = {(*START, {ε}), (*ALARM, {ON, OFF}),   
             (s1,{OFF, WAIT, ALARM})}
l R1 = {(s1,OFF)}

C1 = (I1, E1, O1, R1, F1):

WAIT

ALARM

*KEY = ON => 
*START

*KEY = OFF +  
*BELT = ON => 

OFF

*END = 10  + 
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON 

s1: appears as input 
and output event =>
state event

initialinitialinitial
valuesvaluesvalues
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Example: Formal Description (cont.)Example: Formal Description (cont.)

l F1 = { 
            ({(*KEY, ON), (s1,OFF)} => {(s1, WAIT), (*START, ε)}),
            ({(*KEY, ON), (*BELT, ON), (s1,OFF)} => {(s1, OFF)}),
            ({(*KEY, OFF),  (s1,WAIT)} => {(s1, OFF)}),
            ({(*BELT, ON),  (s1,WAIT)} => {(s1, OFF)}),
            ({(*END, 5),  (s1,WAIT)} => {(s1, ALARM), (*ALARM, ON)}),
            ({(*END, 10),  (s1,ALARM)} => 
                       {(s1, OFF), (*ALARM, OFF)}),
            ({(*BELT, ON),  (s1,ALARM)} => 
                       {(s1, OFF), (*ALARM, OFF)}),
            ({(*KEY, OFF),  (s1,ALARM)} => 
                       {(s1, OFF), (*ALARM, OFF)})
          }

C1 = (I1, E1, O1, R1, F1):

WAIT

ALARM

*KEY = ON => 
*START

*KEY = OFF +  
*BELT = ON => 

OFF

*END = 10  + 
*BELT = ON +
*KEY = OFF =>
*ALARM = OFF

*END = 5 =>
*ALARM = ON 
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Network of CFSMsNetwork of CFSMs

A Network of CFSMs is a set of CFSMs 

N = {C1 = (I1, E1, O1, R1, F1), C2 = (I2, E2, O2, R2, F2), ...}

such that no two different CFSMs have an output event name
in common (i.e., i ≠ j implies that Oi ∩ Oj = ∅)

Output sets are disjoint in order to avoid the difficulties 
inherent in the implementation of the update of a single 
object by two concurrent agents (would require some mutual
exclusion mechanism or some resolution function)

Input sets need not be disjoint, thus implying a broadcast 
communication mechanism (as opposed to point-to-point)
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Seat Belt ExampleSeat Belt Example

l I2 = {(*START, {ε}), (*TICK, {ε}), (s2, {0,1, 2, 3, 4, 5, 6, 7, 8, 9})}  

l E2 = {(*START, {ε}), (*TICK, {ε})}
l O2 = {(*END,{5, 10}), (s2, {0,1, 2, 3, 4, 5, 6, 7, 8, 9})}
l R2 = {(s2, 0)}

The network of CFSMs would be composed by C1 plus a 
CFSM implementing the timer, C2 , defined as follows:

C2 = (I2, E2, O2, R2, F2):

represents an input event from the 
environment occurring once a second 
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Seat Belt ExampleSeat Belt Example

l F2 = { 
            ({(*TICK, ε),  (s2,0)} => {(s2, 1)}),
            ({(*START, ε), (*TICK, ε),  (s2,0)} => {(s2, 0)}),
            ({(*TICK, ε),  (s2,1)} => {(s2, 2)}),
            ({(*START, ε), (*TICK, ε),  (s2,1)} => {(s2, 0)}),
            ({(*TICK, ε),  (s2,2)} => {(s2, 3)}),
            ({(*START, ε), (*TICK, ε),  (s2,2)} => {(s2, 0)}),  
            ...
            ({(*TICK, ε),  (s2,4)} => {(s2, 5), (*END, 5)}),
            ({(*START, ε),  (*TICK, ε),  (s2,4)} => {(s2, 0), (*END, 5)}),
            ...
            ({(*TICK, ε),  (s2,9)} => {(s2, 0), (*END, 10)}),
           }        

C2 = (I2, E2, O2, R2, F2):
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Polis OutlinePolis Outline

l System Modeling 
l Target Architecture & Partitioning
l Software Implementation
l Scheduling 
l Validation 
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Partitioning, Target Architecture Partitioning, Target Architecture 

l Non-automated partitioning ⇒  (manually) 
specified by the designer

l Each partition may comprise one or more 
CFSMs

◆ partitions are synthesized separately

General Embedded System Architecture

Target Architecture
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Embedded System Architecture Embedded System Architecture 

CSFM5

CSFM6

O/S

events occurrences (triggers)
events values

SW Partition 3 
CSFM7

HW 

Partition 1 

CSFM2

HW 

Partition 1 

CSFM1

CSFM3

P 5

CSFM4

P 4

P
1

P
2

P
3

e1

e2

e3

e8

e4

e5

e6

e7

e4 e5

controllers only

Bus-based, shared memory architectures
◆ significantly more expensive in terms 
    of development cost and product cost ...
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Interface Among PartitionsInterface Among Partitions

l Communication between partitions is based on 
discrete event exchange

l In  heterogeneous systems, “events” may be 
implemented differently 

Two implementation domains can currently be handled:

Synchronous hardwareSynchronous hardwareSynchronous hardware
Software embedded in a micro-controllerSoftware embedded in a micro-controllerSoftware embedded in a micro-controller
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Hardware Domain Hardware Domain 

l An event type is represented as a wire
◆ event detection: input wire is found high
◆ event emission : setting an output wire for 

a single clock tick
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Software Domain Software Domain 

l detecting the occurrence of an input event: 
whenever task  polls its input buffer, finds it 
non-zero

◆occurred (event, InpBuff) != 0

l event emission : writing  a value to a virtual 
port

◆emit(event)
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Interface Between PartitionsInterface Between Partitions

Sender’s
Domain

Receiver’s
Domain

Channel’s
Domain

S A B C R

Translation of representations: sender to channel (A) and channel to receiver (C)

Block B: gets the event across (mixed hardware software implementation)
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Interface TypesInterface Types

l Hardware to hardware
l Software to hardware
l Hardware to non-interrupt software
l Software to non-interrupt software on a 

separate processor
l Software to non-interrupt software on the 

same processor
l Software to interrupt software on a separate 

processor
l Hardware to interrupt software 
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An Example of InterfaceAn Example of Interface
Hardware to non-interrupt software

x

ack

y

x

y

ack

Transform  1-clock pulse (event) into a value of a bit of an input port of a processor

Presence of the event must be saver until it is copied into the receiver’s input buffer

Mixed hardware software implementation 

1. The pulse from the hardware sender is stored by an interface sequential circuit that 
                                      keeps it until the receiver’s scheduler, after reading it, resets it
2. The scheduler sets the input buffers of the tasks which are sensitive to this event
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Polis OutlinePolis Outline

l System Specification 
l System Modeling 
l Target Architecture & Partitioning
l Software Implementation
l Scheduling 
l Validation 
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Software ImplementationSoftware Implementation
l Input

◆ set of tasks (specified by CFSMs)
◆ set of timing constraints 

» e.g., input event rates and response constraints

l Output
◆ set of C procedures that implement the 

tasks
◆ Scheduler that satisfies the timing 

constraints 

Intermediate representation ⇒  S-Graphs(control/data S-Graphs(control/data S-Graphs(control/data 
                                                                            flow graph)                                                                            flow graph)                                                                            flow graph)
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S-GraphsS-Graphs

l BEGIN (source)
l END (sink)
l TEST (disjoint paths -- expression might be 

detect event)
l ASSIGN (includes emit event)

An s-graph is DAG containing the following types 
of nodes:
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Software Time/Size EstimationSoftware Time/Size Estimation

END

BEGIN

*c

a:= a+1 a:=0

a<b

emit(*y)

F

T

F T

• timing estimation for a specific 
    micro-controller

Cost assigned to S-Graph edges

Estimated time
• min: 26 cycles
• max: 126 cycles

40 41 63

918

14

26

◆ Cost parameters evaluated via 
simple benchmarks

◆ need timing and size 
measurements for each 
target system

◆ implemented for several  
micro-controllers
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Polis OutlinePolis Outline

l System Specification 
l System Modeling 
l Target Architecture & Partitioning
l Software Implementation
l Scheduling 
l Validation 
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The Scheduling ProblemThe Scheduling Problem

l Given
◆ estimates on the minimum and maximum 

execution times for each CFSM transition (from 
the S-graph)

◆ a set of timing constraints
» e.g., input event rates and input-to-output deadlines

l Find
◆ an execution ordering for the CFSM transitions 

that satisfies the constraints
» static, pre-computed
» dynamic, decided at run-time
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Supported Scheduling AlgorithmsSupported Scheduling Algorithms

l round-robin
l static, I/O rate-based
l static, pre-emptive, I/O rate based
l dynamic, pre-emptive,earliest deadline first

Margarida Jacome - UT Austin -  1997Margarida Jacome - UT Austin -  1997Margarida Jacome - UT Austin -  1997

Scheduling: Open IssuesScheduling: Open Issues

l Propagation of constraints from external I/O 
behavior to each CFSM

l Satisfaction of constraints within a single 
transition

l automatic choice of scheduling algorithm, 
based on performance estimates and 
constraints
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Polis OutlinePolis Outline

l System Specification 
l System Modeling 
l Target Architecture & Partitioning
l Software Implementation
l Scheduling 
l Validation 
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System ValidationSystem Validation

l with respect to specification
l with respect to some user defined property 

Ensuring correctness of an implementation:

CosimulationFormal Verification
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Formal VerificationFormal Verification

l Model described as a network of CFSMs ⇒  
mapped into FSMs

l Time-independent and time-dependent 
properties

Ex.: 
“alarm will not be on forever”
“alarm will not be on for more than 6s”
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Cosimulation Cosimulation 

l Used in a closed loop with system 
partitioning - trade-off analysistrade-off analysistrade-off analysis

l Multiple simulations can be compared to 
evaluate

◆ timing constraints
◆ processor occupation
◆ run time
◆ etc.

Uses Ptolemy as cosimulation engine
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Cosimulation EnvironmentCosimulation Environment

l Each CFSM is mapped into a Star 
l Each Star has input and output portholes -- 

carrying events

Ptolemy Discrete Event (DE) Domain: 

A scheduling policy was implemented on “top”
of Ptolemy’s DE scheduler -- decides what “software”
 stars are to be interrupted/executed 
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Polis: Trade-off AnalysisPolis: Trade-off Analysis
l Main emphasis: speed

◆ during simulation
◆ what-if analysis -- architectural changes 

(⇒  target processor and  H/S partition)

l embedded software executes on a host 
workstation

◆ instructions that accumulate clock cycles 
(estimated) are appended to each statement 
in the C code generated from the S-graph.
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Trade-off AnalysisTrade-off Analysis

l Perform simulation and gather profiling data
◆ event response times
◆ analysis of bottlenecks 

l Use estimated clock cycles for fast H/S 
cosimulation

◆ processor selection at early stages of 
design

log files used to record information that may be
relevant for timing analysis (e.g., when an event
 is overwritten,  missing deadlines)
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Trade-off AnalysisTrade-off Analysis

l simulation NOT comparable with that provided by a 
cycle-accurate processor model (considering 
specific compilation options, etc.), and a hardware 
simulator...

goal: support exploration of architectural trade-offs

Precise validation of final implementation must use
 a much more accurate model.

(reported 20% accuracy for a 
 characterized microcontroller...)

POLIS does not provide support for detailed simulation


