
Page 1

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

H/S Codesign:H/S Codesign:
A CAD PerspectiveA CAD Perspective

Margarida F. Jacome

The University of Texas at Austin

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

The Co-Synthesis ApproachThe Co-Synthesis Approach

idea

HDL Models Abstract Models

MODELING

Textual

Description

Mathematical

Representation

Compilation

Output

SYNTHESIS &
OPTIMIZATION

VALIDATION/
VERIFICATION

Behavioral
Synthesis

algorithmic
level

Logic
Synthesis

FSMs

POLISVULCAN

The hardware software co-design problem is posed as an “evolu-
tion” of existing synthesis methods

Page 2

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

The Cosynthesis ApproachThe Cosynthesis Approach

l Working hypothesis: the overall system can be
modeled consistently and be partitioned (either
manually or automatically) into hardware and software
components.

◆ hardware components
» performance
» implemented using existing hardware synthesis tools

◆ software components
» low cost, flexibility
» generated automatically (software compilation)

◆ interfaces and synchronization

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

H/S Codesign: Research IssuesH/S Codesign: Research Issues

l Models and Specification Languages
l Design Space Exploration, Estimation,

Partitioning
l Co-simulation/Verification
l Software, Hardware, and Interface Synthesis
l Scheduling, Real-time Operating Systems

Page 3

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Co-SynthesisCo-Synthesis

l Vulcan (Stanford - DeMicheli et al)
l Polis (UC Berkeley - Vicentelli et al)

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

VulcanVulcan

l Leverages research in behavioral synthesis
◆ modeling: flow graphs (⇐ sequencing

graphs)
◆ scheduling techniques (⇐ relative

scheduling)
◆ automatic path to synthesis (Olympus)

l Automatic partitioning
l Deterministic constraint analysis

Page 4

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

VulcanVulcan

l Modeling
l Constraint Analysis
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Example - Algorithmic DescriptionExample - Algorithmic Description

z = x - y;

process example (a, b, c)
in port a[8],
in channel b[8];
out port c[8];

{
boolean x[8], y[8], z[8];
x = read(a);
y = receive(b);
if (x > y)

else
 z = x * y;
while (z >= 0)
 { write c = y;
 z = z - 1; }
}

enables blocking of
the read operation
based on the availability
of data on the channel

Page 5

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Flow GraphFlow Graph

l Hierarchical control/data-flow graph:
◆ control flow primitives (iteration and model call)

modelled through hierarchy

l Acyclic
◆ models a partial order of tasks/operations
◆ acyclic dependencies suffice ⇒ iteration is modeled

outside the graph
l Polar

◆ source and sink vertices model No-Operations

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Flow GraphFlow Graph

conjoined output: directs the flow
of control to all its branches

disjoined output: selects one of the
successors based on a condition

NOP

cond

1

2

4

rd
3

rcv

join

5

7

mpy

6
sub

loop

NOP13

8
10wr 11sub

NOP 9

NOP 12

conjoined
 *

disjoined
 +

conjoined

conjoined

conjoined

disjoined

1 1

1 1

c c’

c c’
1 1

1 1

1

1

Page 6

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Flow GraphFlow Graph

l no-op: no operation
l cond: conditional fork
l join: conditional join
l op-logic: logical operations
l op-arithmetic: arithmetic operations
l op-relational: relational operations
l op-io: I/O operations
l wait: wait on a signal variable (synchronization)
l link: hierarchical operations

◆ call: procedure call (invocation times = 1)
◆ loop: iteration (invocation times ≥ 1)

nodes ⇒

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

System ModelSystem Model

System Model: Φ = {G1*, G2*, ...,Gn*}
where

Gi* : process graph model Gi and all the flow graphs
 hierarchically linked to Gi.

Flow graph models can common to more than one hierarchy
⇒ shared models

Page 7

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Implementation AttributesImplementation Attributes

l Implementation, Ι(G), of a graph model G :
◆ assignment of delays and size properties

to operations in G

◆ choice of a runtime scheduler, γ, that
enables the execution of source operations
in G

enables source operation once:
 “top-level” graphs: the sink operation completes
 conditionally invoked graphs: the graph enabling
 condition is TRUE

γ

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Timing PropertiesTiming Properties

l Operation delay
l Graph Latency
l Rate of Execution (operations)

Page 8

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Operation DelayOperation Delay

1

+

+

0

0 3

0

4

0

G

*

0

1

0

1

2 3

4

5
7

6

8

t

δ

δ(v7) = 1

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

LatencyLatency
l Latency, λ(G): execution delay of G ⇒

1

+

+

0

3 1

0

0

0

λ(G) = 2λ(G) = 4

λk(G) = tk(vn) - tk(v0)

latency of a non-hierarchical
flow graph may be varible
(conditional paths)

Page 9

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Execution Delay of Link VerticesExecution Delay of Link Vertices

Link vertices: call and/or loop (point
to other flow graphs in the hierarchy)

l δ(vi) = λ(G1)•x
◆ can be

variable
unbounded (loop vertices with unbounded indices)

G

G1

vi
δ

λ(G1)
x

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Rate of Execution (operations)Rate of Execution (operations)
l assuming a synchronous execution model with cycle

time τ,
 the rate of execution at invocation k of operation vi

is given by the time interval between its current and
previous execution

ρi(k) := tk(vi) - tk-1(vi)
1 (sec-1)

= tk(vi) - tk-1(vi)
τ (cycle-1)

t

Page 10

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Timing PropertiesTiming Properties

l Operation delay
l Graph Latency
l Rate of Execution (operations)

1

+

+

0

0 3

0

4

0

G

*

0

1

0

1

2 3

4

5
7

6

8

fixed, variable, bounded/unboundedfixed, variable, bounded/unboundedfixed, variable, bounded/unbounded

Data dependent loop and synchronization operations
are termed non-deterministic delay or ND operations

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

SchedulingScheduling
l For each invocation of a flow graph model,

an operation is invoked zero, one, or many
times depending upon its position on the
hierarchy of the flow model

The execution times tk(v) of an operation v are determined
by two separate mechanisms

The runtime scheduler, γ

The operation scheduler, Ω

determines the invocation time of flow graphs

G

G1

vl

x
viγ

Page 11

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Scheduling of OperationsScheduling of Operations

tk(vi) ≥ max [tk(vj) + δ (vj)]
j:(vj, vi) ∈ E

Given a graph model G = (V, E), the selection of a schedule
refers to the choice of a function Ω that determines the start
time of operations such that

is satisfied for each invocation k>0 of
operations vi and vj

vi

vj
tk(vj)

tk(vi)

≥ δ (vj)

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Modified Relative ScheduleModified Relative Schedule

NOP

cond

1

2

4

rd
3

rcv

join

5

7

mpy

6
sub

loop

NOP13

8
10wr 11

NOP 9

NOP 12

0 0

1

0 0

3 1
0

1

0

Vertex

Relative Offset
 v1 v3 v8

v1 -- -- --
v2 0 -- --
v3 0 -- --
v4 1 0 --
v5 1 0 --
v6 1 0 --
v7 (2,4) (1,3) --
v8 (2,4) (1,3) --
v9 (2,4) (1,3) --
v10 -- -- --
v11 -- -- --
v12 -- -- --
v13 -- -- 0

0

1

sub
v9

0
0
1
--

Page 12

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

VulcanVulcan

l Modeling
l Constraint Analysis
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Timing Constraints Timing Constraints

l Operation delay constraints
◆ unary: bounds on the delay of an operation
◆ binary: bounds on the delay between the

starting time of two operations
l Execution rate constraints

Page 13

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Binary Delay ConstraintsBinary Delay Constraints

l Minimum timing constraint, lij ≥ 0 from operation
vertex vi to vj is defined as

◆ sequencing dependencies between operations
induce default minimum timing constraints

l Maximum timing constraint, uij ≥ 0 from operation
vertex vi to vj is defined as

tk(vj) ≥ tk(vi) +lij

tk(vj) ≤ tk(vi) +uij

vj

vi
tk(vi)

tk(vj)

t

t

vi

vj

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Constraint GraphConstraint Graph

*

+

NOP

*

+

NOP

MAX
TIME
 3

MIN
TIME
 4

*

+

NOP

*

+

NOP

4

0 0

2 2

1 1

-3

delay multiplication ⇒ 2
delay addition ⇒ 1

implementation

Page 14

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Timing Constraints Timing Constraints

l Operation delay constraints
l Execution rate constraints

◆ constraints on the interval of time between
successive executions of an operation

t
vi

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Data Rate ConstraintsData Rate Constraints

ρvi(k) ≤ Ri ∀ k > 0 [max rate]

⇒ tk(vi)- tk-1(vi) ≥ τ . Ri
-1 ∀ k > 0

ρvi(k) ≥ ri ∀ k > 0 [min rate]

⇒ tk(vi)- tk-1(vi) ≤ τ . ri-1 ∀ k > 0

l Minimum data rate constraint, ri (cycles-1) on operation vi :
lower boundlower boundlower bound on the execution rate of vi

l Maximum data rate constraint, Ri (cycles-1) on operation vi:
upper boundupper boundupper bound on the execution rate of vi

Page 15

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Relative Execution Rate ConstraintRelative Execution Rate Constraint

riG ≤ ρvi(k) ≤ RiG ∀ k > 0

relative rate of execution of vi with respect to G:
⇒ constraint on the rate of execution of vi whenwhenwhen
 G is continuously enabled and executing G is continuously enabled and executing G is continuously enabled and executing

and, there exists an execution, j, of G such that

tj(v0(G)) ≤ tk-1(vi) ≤ tk(vi) ≤ tj(vN(G))

v0 and vN: source and sink nodes of G

G

G1

vi

enabled
t

vi

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Ex.: Specification of Rate ConstraintsEx.: Specification of Rate Constraints
process example (a,b,c)

in port a[8],b[8];
out port c[8];

{

boolean x[8],y[8],z[8],w[8];
tag A;
x = read(a);
y = read(b);
z = x * y;
w = x + y;
while(z >= 0) {

while(w >= 0) {
write c = y;
w = w - 1; }

z = z - w;
write c = z; }

}

A:

attribute “constraint minrate of A = 100 cycles/sample”
attribute “constraint minrate 0 of A = 1 cycles/sample”
attribute “constraint minrate 1 of A = 10 cycles/sample”

1

0

r = 0.01 per cycler = 0.01 per cycle

relativerelative min min
constraints --constraints --
indexed by theindexed by the
 corresponding corresponding
 loops loops

G

G1

vi

Page 16

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Timing Constraints and SchedulingTiming Constraints and Scheduling

l Given a scheduling function, a timing constraint is
considered satisfied if

◆ the operation starting times determined by the
scheduling function satisfy the inequalities

tk(vj) ≥ tk(vi) +lij [min delay]

tk(vj) ≤ tk(vi) +uij [max delay]

ρvi(k) ≤ Ri [max rate]

ρvi(k) ≥ ri [min rate]

vi

vj
tk(vj)

tk(vi)

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Satisfiability - Delay ConstraintsSatisfiability - Delay Constraints

A minimum delay constraint is always satisfiable

θvj(vi) ≥ max (l(vj,vj), lij)

A maximum delay constraint may not always be satisfiable

Page 17

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Modified Relative ScheduleModified Relative Schedule

NOP

cond

1

2

4

rd
3

rcv

join

5

7

mpy
6

sub

loop

NOP13

8 10wr 11

NOP 9

NOP 12

0 0

1 drcv

0 0

3 1
0

1

0

0

Vertex

Relative Offset
 v1 v3 v8

v1 -- -- --
v2 0 -- --
v3 0 -- --
v4 1 0 --
v5 1 0 --
v6 1 0 --
v7 4 3 --
v8 4 5 3 --
v9 4 5 3 --
v10 -- -- --
v11 -- -- --
v12 -- -- --
v13 -- -- 0

0

1

sub

v9

0
0
1
--

5

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Satisfiability - Delay ConstraintsSatisfiability - Delay Constraints

A constraint graph is considered feasible if it contains
no positive cycle when the delay of ND operations
is assigned to zero.

Condition Condition Condition necessary and sufficientnecessary and sufficientnecessary and sufficient to determine the to determine the to determine the satisfiabilitysatisfiabilitysatisfiability
of constraints in the presence of of constraints in the presence of of constraints in the presence of NDNDND operations: operations: operations:

Feasibility:Feasibility:Feasibility:

Operation delay constraints are satisfiable if and only if

the constraint graph is feasible

there exists no cycles with ND operations

Page 18

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

ExampleExample

*

+

NOP

+

NOP

-4

0 0

2

1 1

-3

rcvfeasible
satisfiable

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

ExamplesExamples

a

vi

vj

δa

-uij

a1 a2

vi vj

-uij

δa1 δa2

a1 a2

vi vj

-uij

δa2δa2

Constraints are not satisfiable
(maybe feasible)

δa1

Constraints are satisfiablecan be modified
such that...

Page 19

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Satisfiability - Rate ConstraintsSatisfiability - Rate Constraints

lm(G) ≥ Ri
-1

Maximum rate constraints are always satisfiableMaximum rate constraints are always satisfiableMaximum rate constraints are always satisfiable

appropriate choice of overhead delay (γ) applicable
to every execution of G

G

γ lm

vn

v0

min

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Example - max rateExample - max rate
NOP

cond

1

2

4

rd
3

rcv

join

5

7

mpy
6

sub

loop

NOP13

8
10wr 11sub

NOP 9

NOP 12

 *

+

0 0

1 δ -> 0

0

3 1
0 0

1 2

0

G1
G2

 *

+

0

lm = 2 *

 *
δ -> 0

max-rate of write max-rate of write max-rate of write
operation = 1/2 cycleoperation = 1/2 cycleoperation = 1/2 cycle-1-1-1

1/l1/l1/lmmm

min

Page 20

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Min Rate ConstraintMin Rate Constraint

G

viγ(G)

rrriii

A minimum rate constraint ri on an operation vi ∈ V(G), where
G contains no ND operations is satisfiable if

γ(G) + lM(G) ≤ (τ/ri)

overhead delay

bound on
latency

 lM(G)

l A minimum rate constraint places an upper bound on the interval of
successive executions of an operation

max

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Overhead DelayOverhead Delay
l γk(G): reinvocation delayreinvocation delayreinvocation delay for G

◆ may be a fixed quantity: overhead due to a run time
scheduler

◆ may be variable: in case of conditional invocation
of G

Overhead Delay Overhead Delay Overhead Delay γk(G) = tk+1(v0(G)) - tk(vN(G))

additional delay operation
in series with the sink
operation vN(G)vN

v0

G γk(G)

Page 21

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Min Rate ConstraintsMin Rate Constraints
General case: involves two bounds

G

Gv

v
xv

viγ(G)

rrriii

λ(G)

γ(G) +λ(G) ≤ (τ/ri)

xk

maxvi

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Min Rate: satisfiability Min Rate: satisfiability

G+

Ga

G0

c

γavail

feasible by
the runtime
scheduler

vi

Page 22

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Min Rate : satisfiabilityMin Rate : satisfiability

The latency λ(G) is not bounded
In the presence of In the presence of In the presence of NDNDND operations in G: operations in G: operations in G:

relative rate constraints -- represented as a backward edge (i.e., max delay
constraint) from G’s sink to source vertices => ND cycle in the constraint graph

vN

v0
G

γ(G)
λ(G)

link
vi

vN

v0
G

-(1/ri- γ(G))

vi

min rate constraint min rate constraint min rate constraint ⇒⇒⇒ bound on loop index, x bound on loop index, x bound on loop index, x

γ(G) +λ(G) ≤ (1/ri)

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

VulcanVulcan

l Specification
l Modeling
l Constraint Analysis
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning

Page 23

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Micro-controller ArchitectureMicro-controller Architecture

Memory ASIC

Processor

Embedded System
Environment

Sensors Actuators

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Target ArchitectureTarget Architecture

ASICASICASIC

r1

r2

r3

r4

ProcessorProcessorProcessor

BusBusBus

HW ModelSW Model

communication channels
(one per variable)

Page 24

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Runtime SystemRuntime System

Hardware Model

Detailed Scheduling,Detailed Scheduling,Detailed Scheduling,
Allocation, and BindingAllocation, and BindingAllocation, and Binding

Olympus

Software Model

Detailed Scheduling,Detailed Scheduling,Detailed Scheduling,
Allocation, and BindingAllocation, and BindingAllocation, and Binding

Vulcan

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Software ModelSoftware Model

l Dependence between two threads T1 and T2
◆ dependencies between operations in the

bodies of T1 and T2

T1

T2

T1 T2
runs until right before dependent
operation

detached (by run time
scheduler)

resumed (by run time
scheduler)

simpler alternative: modify “in-bodyin-bodyin-body”
dependencies ⇒ make graphs convex

Page 25

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Convex GraphConvex Graph
l A (sub)graph is defined to be convex if it has

only one single entry and exit operations.

The corresponding program thread, once invoked,
can run to completion without need to detach in order
to observe dependencies

Potential loss of concurrency

Constraint analysis must be performed on the
 modified graphs

All routines can be implemented as independent programsAll routines can be implemented as independent programsAll routines can be implemented as independent programs
with statically embedded control dependencieswith statically embedded control dependencieswith statically embedded control dependencies

“cost”“cost”“cost”

“benefit”“benefit”“benefit”

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

ExampleExample

k

b

d e

j

i

l

f

c

g

h

Flow graph to be implemented
in software

2 ND operations (b and c)
⇒ 2 threads

operations k, l, f, h: anchor set
 ⇒ b and c...

Operations with the same
anchor set belong to the same
thread

according with the choice of thread for these operations ≠ control
dependencies will exist between the two resulting threads

Page 26

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Alternative 1Alternative 1

k

b

d e

j

i

l

f

c

g

h

Tb Tc

dependency
created due to
convexity
serialization

one entry
point

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Alternative 2Alternative 2

k

b

d e

j

i

l

f

c

g

h

Tb Tc

(c, f) substituted by (c,b)
(g, h) substituted by (g,c)

entry
point

Page 27

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Alternative 3Alternative 3

k

b

d e

j

i

l

f

c

g

h

Tb Tc

Tf

entry
point

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

A Model for SoftwareA Model for Software

l Software is constructed as a set of concurrent
program threads

A tread is defined as a linearization of operations
that may or may not begin by an ND operation

the latency of a thread (λ) is defined as the sum of the
delay of its operations without including the ND
operation

merged into the delay of the runtime scheduler

Page 28

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Control Flow in the SoftwareControl Flow in the Software
l There may be dependencies between

operations that belong to separate threads

known statically ⇒ programs threads are
constructed to observe these dependencies

T1

T2 T3 T1

T2 T3

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

l A thread is enabled when its “id” is in the control FIFO
l Before detaching, a thread performs one or more

enqueue operations to the FIFO, for its dependent
threads

Processor

Thread1

Scheduler

Thread2

ASIC

control
FIFO

data
queue

Non-prioritized FIFO SchedulerNon-prioritized FIFO Scheduler

Page 29

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Inter-thread Control DependenciesInter-thread Control Dependencies

T1

T2 T3

Control FIFOControl FIFOControl FIFO

T1

Before T1:

T2

After T1:

T3

Thread T1
<body>
enqueue(T2)on cFIFO
enqueue(T3)on cFIFO
detach

linearized
set of operations

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Thread with Multiple Control DependenciesThread with Multiple Control Dependencies

T1

T2 T3
Thread T1
while (count != 1)
{
 count = count + 1;
 detach
}
<body>
count = 0;
enqueue(successor threads)on cFIFO
detach

synchronization
preamble
code

Page 30

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Software Size/Delay EstimationSoftware Size/Delay Estimation

G

Π

Flow graph

Processor
Cost Model

Linearize Gi Storage
Allocation Ss

Variable
Interval
Graph
(Conflict Graph)

Spill Set

Overhead
Estimation

γ
Runtime

SoftwareSoftwareSoftware
delay of Gdelay of Gdelay of G

Step IStep IStep I Step IIStep IIStep II

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

VulcanVulcan

l Specification
l Modeling
l Constraint Analysis
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning
l Co-simulation

Page 31

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Problem FormulationProblem Formulation
For a given set of flow graph models and timing constraints,
create two sets of flow graph models such that one can be
implemented in hardware and the other in software and the
following is true:

cumulative size of variables
transferred across the partition

weights: represent a desired tradeoffs between size of
 the hardware, processor and bus utilization,
 and communication overhead

Timing constraints are satisfied

Processor utilization, P ≤ 1

Bus utilization, B ≤ B

A cost function f(SH, SSΠ, B, P-1, m) is minimized...

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Software ModelSoftware Model

ρ1 ρ2 ρ3 ρ4

λ1

λ2

λ3

λ4

ASICASICASIC

r1

r2

r3

r4

reaction
rate
(constraints)

latency

ProcessorProcessorProcessor
BusBusBus

HW ModelSW Model

Processor Utilization Bus Utilization

Page 32

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Software ModelSoftware Model

Bus Utilization

Σ rj ≤ bus bandwidth

ρ1 ρ2 ρ3 ρ4

λ1

λ2

λ3

λ4

ASICASICASIC

r1

r2

r3

r4

reaction
rate

latency

ProcessorProcessorProcessor

BusBusBus

HW ModelSW Model

inverse of the time interval
between two consecutive
samples for a variable “j”

bounded by bus bandwidth:
function of the bus cycle time
and memory access time

B :=
j=1

m

m variables

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Software ModelSoftware Model

Processor Utilization

Σ ρi • λi

ρ1 ρ2 ρ3 ρ4

λ1

λ2

λ3

λ4

ASICASICASIC

r1

r2

r3

r4

reaction
rate

latency

ProcessorProcessorProcessor

BusBusBus

HW ModelSW Model

P :=
i=1

n
n threads

Page 33

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Satisfiability to reaction rates of program threadsSatisfiability to reaction rates of program threads

Bound on Processor Utilization

Σ ρi • λi ≤ 1P :=
i=1

n

considering case where all threads are enabled
simultaneously

A

B

cycle

cycle

necessary but not sufficient!

(ρB • λB) may be small yetρB λB

B bounds the reaction
rate of all program threads
below the inverse of its
latency!

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Satisfiability to reaction rates of program threadsSatisfiability to reaction rates of program threads

Sufficient condition for a program thread (for non-preemptive Sufficient condition for a program thread (for non-preemptive Sufficient condition for a program thread (for non-preemptive
non-prioritized runtime scheduler)non-prioritized runtime scheduler)non-prioritized runtime scheduler)

Σ λk (1/ρmax) ≥
all threads k

necessary and sufficient for
independent threads (can be
weakened for dependent threads)

maximum reaction rate over all
program threads

Page 34

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

Partitioning FeasibilityPartitioning Feasibility

l Determined based on a worst case scenario
◆ ensure that worst case scenario is handled

Timing constraints: min/max delay and execution rateTiming constraints: min/max delay and execution rateTiming constraints: min/max delay and execution rate

Performance constraints: processor and bus utilization,Performance constraints: processor and bus utilization,Performance constraints: processor and bus utilization,
 run-time scheduler (software) run-time scheduler (software) run-time scheduler (software)

Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97Margarida Jacome - UT Austin - Spring 97

“Greedy” Partition Algorithm“Greedy” Partition Algorithm
graph_partition(G) {
 VH = V(G);
 VS = {};
 for v ∈ V(G) { /* initialization */
 if v is a ND link operation /* All ND Loops go to Software */
 VS = VS + {v};
 }
 create software threads (VS); /* serialization, etc. */
 compute reaction rates for each thread; /* based on rate constraints */
 if not check_feasibility (VH,VS) /* timing cnstr, processor and bus utilization */
 exit;
 fmin = f (VH,VS) ; /* initialize cost function */
 repeat {
 for v ∈ VH and v is not ND /* pick HW operation --> SW */
 fmin = move(v); /* move(v) calls check_feasibility */
 } until no further reduction in fmin
 return (VH,VS) ;

