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idea

HDL Models Abstract Models

MODELING

Textual

Description

Mathematical

Representation

Compilation

Output

SYNTHESIS &
OPTIMIZATION

VALIDATION/
VERIFICATION

Behavioral
Synthesis

algorithmic
level

Logic
Synthesis

FSMs

POLISVULCAN

The hardware software co-design problem is posed  as an “evolu- 
tion” of existing synthesis methods  
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The Cosynthesis ApproachThe Cosynthesis Approach

l Working hypothesis: the overall system can be 
modeled consistently and be partitioned (either 
manually or automatically) into  hardware and software 
components.

◆ hardware components 
» performance 
» implemented  using existing hardware synthesis tools

◆ software components 
» low cost, flexibility
» generated automatically (software compilation) 

◆ interfaces and synchronization 
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H/S Codesign: Research IssuesH/S Codesign: Research Issues

l Models and Specification Languages
l Design Space Exploration, Estimation, 

Partitioning
l Co-simulation/Verification 
l Software, Hardware, and Interface Synthesis
l Scheduling, Real-time Operating Systems
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Co-SynthesisCo-Synthesis

l Vulcan (Stanford - DeMicheli et al)
l Polis (UC Berkeley - Vicentelli et al)
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VulcanVulcan

l Leverages research  in behavioral synthesis
◆ modeling: flow graphs (⇐  sequencing 

graphs)
◆ scheduling techniques (⇐  relative 

scheduling)
◆ automatic  path to synthesis (Olympus)

l Automatic partitioning
l Deterministic constraint analysis 
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VulcanVulcan

l Modeling 
l Constraint Analysis 
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning 
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Example - Algorithmic DescriptionExample - Algorithmic Description

z = x - y;

process example (a, b, c)
in port a[8],
in channel b[8];
out port c[8];

{
boolean x[8], y[8], z[8];
x = read(a);
y = receive(b);
if (x > y)

else 
    z = x * y;
while (z >= 0)
    { write c = y;
      z = z - 1; }
}

enables blocking of 
the read operation
based on the availability 
of data on the channel  
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Flow GraphFlow Graph

l Hierarchical control/data-flow graph: 
◆ control flow primitives (iteration and model call) 

modelled through hierarchy  

l Acyclic
◆ models a partial order of tasks/operations
◆ acyclic dependencies suffice ⇒  iteration is modeled 

outside the graph
l Polar 

◆ source and sink vertices model No-Operations
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Flow GraphFlow Graph

conjoined output: directs the flow 
of control to all its branches

disjoined output: selects one of the
successors based on a condition 
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Flow GraphFlow Graph

l no-op: no operation
l cond: conditional fork
l join: conditional join
l op-logic: logical operations
l op-arithmetic: arithmetic operations
l op-relational: relational operations
l op-io: I/O operations
l wait: wait on a signal variable (synchronization)
l link: hierarchical operations

◆ call: procedure call  (invocation times = 1)
◆ loop: iteration (invocation times ≥ 1)

nodes ⇒ 

Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97

System ModelSystem Model

System Model: Φ = {G1*, G2*, ...,Gn*}
where

Gi* : process graph model Gi and all the flow graphs 
         hierarchically linked to Gi.

Flow graph models can common to more than one hierarchy
⇒   shared models
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Implementation AttributesImplementation Attributes

l Implementation, Ι(G), of a graph model G :
◆ assignment of delays and size properties 

to operations in G 

◆ choice of a runtime scheduler, γ, that 
enables the execution of source operations 
in G

enables source operation once: 
   “top-level” graphs: the sink operation completes 
   conditionally invoked graphs: the graph enabling  
                                                            condition is TRUE

γ
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Timing PropertiesTiming Properties

l Operation delay 
l Graph Latency 
l Rate of Execution (operations)
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Operation DelayOperation Delay
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LatencyLatency
l Latency, λ(G): execution delay of G ⇒

1

+

+

0

3 1

0

0

0

λ(G) = 2λ(G) = 4

λk(G) = tk(vn) - tk(v0)

latency of a non-hierarchical 
flow graph may be varible
(conditional paths)
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Execution Delay of Link VerticesExecution Delay of Link Vertices

Link vertices: call and/or loop  (point
to other flow graphs in the hierarchy)

l δ(vi) = λ(G1)•x
◆  can be 

variable
unbounded (loop vertices with unbounded indices)

G

G1

vi
δ

λ(G1)
x
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Rate of Execution (operations)Rate of Execution (operations)
l assuming a synchronous execution model with cycle 

time τ, 
   the rate of execution at invocation k of operation vi 

is given by the time interval between its current and 
previous execution

ρi(k) := tk(vi) - tk-1(vi)
1 (sec-1)

= tk(vi) - tk-1(vi)
τ (cycle-1)

t
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Timing PropertiesTiming Properties

l Operation delay 
l Graph Latency 
l Rate of Execution (operations)
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fixed, variable, bounded/unboundedfixed, variable, bounded/unboundedfixed, variable, bounded/unbounded

Data dependent loop and synchronization operations
are termed non-deterministic delay or ND operations

Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97

SchedulingScheduling
l For each invocation of a flow graph model, 

an operation is invoked zero, one, or many 
times depending upon its position on the 
hierarchy of the flow model

The execution times  tk(v) of an operation v are determined
by two separate mechanisms  

The runtime scheduler, γ

The operation scheduler, Ω

determines the invocation time of flow graphs

G

G1

vl

x
viγ
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Scheduling of OperationsScheduling of Operations

tk(vi) ≥     max    [ tk(vj)  +   δ (vj) ]
j:(vj, vi) ∈   E

Given a graph  model G = (V, E), the selection of a schedule
refers to the choice of a function Ω  that determines the start
time of operations such that

is satisfied for each invocation k>0 of 
operations  vi and  vj

vi

vj
tk(vj) 

tk(vi) 

≥ δ (vj)
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Modified Relative ScheduleModified Relative Schedule

NOP
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VulcanVulcan

l  Modeling 
l Constraint Analysis
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning
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Timing Constraints Timing Constraints 

l Operation delay constraints
◆ unary: bounds on the delay of an operation
◆ binary: bounds on the delay between the 

starting time of two operations
l Execution rate constraints
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Binary Delay ConstraintsBinary Delay Constraints

l Minimum timing constraint, lij ≥ 0 from operation 
vertex vi to vj is defined as

◆ sequencing dependencies between operations 
induce default minimum timing constraints

l Maximum timing constraint, uij ≥ 0 from operation 
vertex vi to vj is defined as

tk(vj) ≥  tk(vi) +lij 

tk(vj) ≤  tk(vi) +uij 

vj

vi
tk(vi) 

tk(vj) 

t

t

vi

vj

Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97

Constraint GraphConstraint Graph

*

+

NOP

*

+

NOP

MAX
TIME
    3

MIN
TIME
    4

*

+

NOP

*

+

NOP

4

0 0

2 2

1 1

-3

delay multiplication ⇒  2
delay addition ⇒  1

implementation
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Timing Constraints Timing Constraints 

l Operation delay constraints
l Execution rate constraints

◆ constraints on the interval of time between 
successive executions of an operation

t
vi
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Data Rate ConstraintsData Rate Constraints

ρvi(k) ≤ Ri              ∀  k > 0                 [max rate]

⇒   tk(vi)- tk-1(vi)  ≥  τ . Ri
-1       ∀  k > 0   

ρvi(k) ≥  ri            ∀  k > 0                 [min rate]

⇒   tk(vi)- tk-1(vi)  ≤  τ . ri-1      ∀  k > 0   

l Minimum data rate constraint, ri (cycles-1) on operation vi : 
lower boundlower boundlower bound on the execution rate of vi  

l Maximum data rate constraint, Ri (cycles-1) on operation vi: 
upper boundupper boundupper bound on the execution rate of vi
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Relative Execution Rate ConstraintRelative Execution Rate Constraint

riG ≤   ρvi(k) ≤ RiG              ∀  k > 0               

relative rate of execution of vi with respect to G:
⇒   constraint on the  rate of execution of vi whenwhenwhen
      G is continuously enabled and executing      G is continuously enabled and executing      G is continuously enabled and executing 

and, there exists an execution, j, of G such that

tj(v0(G)) ≤  tk-1(vi)  ≤  tk(vi)  ≤   tj(vN(G))    

v0 and vN: source and sink nodes of G

G

G1

vi

enabled
t

vi
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Ex.: Specification of Rate ConstraintsEx.: Specification of Rate Constraints
process example (a,b,c)

in port a[8],b[8];
out port c[8];

{

boolean x[8],y[8],z[8],w[8];
tag A;
x = read(a);
y = read(b);
z = x * y;
w = x + y;
while(z >= 0) {

while(w >= 0)  { 
write c = y; 
w = w - 1; }

z = z - w;
write c = z;   }

}

A:

attribute “constraint minrate of A = 100 cycles/sample”
attribute “constraint minrate 0 of A = 1 cycles/sample”
attribute “constraint minrate 1 of A = 10 cycles/sample”

1

0

r = 0.01 per cycler = 0.01 per cycle

relativerelative min  min 
constraints --constraints --
indexed by theindexed by the
 corresponding  corresponding 
 loops loops

G

G1

vi
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Timing Constraints and SchedulingTiming Constraints and Scheduling

l Given a scheduling function, a timing constraint is 
considered satisfied if 

◆ the operation starting times determined by the 
scheduling  function satisfy the inequalities

tk(vj) ≥  tk(vi) +lij       [min delay]

tk(vj) ≤  tk(vi) +uij      [max delay]

ρvi(k) ≤ Ri                 [max rate]

ρvi(k) ≥  ri                  [min rate]

vi

vj
tk(vj) 

tk(vi) 

Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97

Satisfiability - Delay ConstraintsSatisfiability - Delay Constraints

A minimum delay constraint is always satisfiable

θvj(vi)   ≥   max (l(vj,vj), lij) 

A maximum delay constraint may not always be satisfiable
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Modified Relative ScheduleModified Relative Schedule

NOP
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Satisfiability - Delay ConstraintsSatisfiability - Delay Constraints

A constraint graph is considered feasible if it contains 
no positive cycle when the delay of ND operations  
is assigned to zero.

Condition Condition Condition necessary and sufficientnecessary and sufficientnecessary and sufficient to determine the  to determine the  to determine the satisfiabilitysatisfiabilitysatisfiability   
of constraints in the presence of of constraints in the presence of of constraints in the presence of NDNDND operations: operations: operations:

Feasibility:Feasibility:Feasibility:

Operation delay constraints are satisfiable if and only if

the constraint graph is feasible

there exists no cycles with ND operations
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ExampleExample

*

+

NOP

+

NOP

-4

0 0
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1 1

-3

rcvfeasible
satisfiable
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ExamplesExamples

a

vi

vj

δa

-uij

a1 a2

vi vj

-uij

δa1 δa2

a1 a2

vi vj

-uij

δa2δa2

Constraints are not satisfiable
(maybe feasible)

δa1

Constraints are satisfiablecan be modified
such that...
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Satisfiability -  Rate ConstraintsSatisfiability -  Rate Constraints

lm(G) ≥ Ri
-1 

Maximum rate constraints  are always satisfiableMaximum rate constraints  are always satisfiableMaximum rate constraints  are always satisfiable

appropriate choice of overhead delay ( γ ) applicable 
to every execution of G

G

γ lm

vn

v0

min
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Example - max rateExample - max rate
NOP

cond

1

2

4

rd
3

rcv

join

5

7

mpy
6

sub

loop

NOP13

8
10wr 11sub

NOP 9

NOP 12

 *

+

0 0

1 δ -> 0

0

3 1
0 0

1 2

0

G1
G2

 *

+

0

lm = 2 *

 *
δ -> 0

max-rate of write max-rate of write max-rate of write 
operation = 1/2 cycleoperation = 1/2 cycleoperation = 1/2 cycle-1-1-1   

1/l1/l1/lmmm

min
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Min Rate ConstraintMin Rate Constraint

G

viγ(G)

rrriii

A minimum rate constraint ri on an operation vi ∈  V(G),  where
G contains no ND operations is satisfiable if

γ(G) + lM(G) ≤  (τ/ri)

overhead delay

bound on 
latency

 lM(G) 

l A minimum rate constraint places an upper bound on the interval of 
successive executions of an operation

max
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Overhead DelayOverhead Delay
l γk(G):   reinvocation delayreinvocation delayreinvocation delay for  G

◆ may be a fixed quantity: overhead due to a run time 
scheduler

◆ may be variable:  in case of conditional invocation 
of G

Overhead Delay Overhead Delay Overhead Delay γk(G) = tk+1(v0(G)) - tk(vN(G))

additional delay operation  
in series with the sink 
operation vN(G)vN

v0

G γk(G)
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Min Rate ConstraintsMin Rate Constraints
General case: involves two bounds 

G

Gv

v
xv

viγ(G)

rrriii

λ(G)

γ(G) +λ(G) ≤  (τ/ri)

xk

maxvi
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Min Rate: satisfiability Min Rate: satisfiability 

G+

Ga

G0

c

γavail

feasible by
the runtime
scheduler

vi
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Min Rate : satisfiabilityMin Rate : satisfiability

The latency λ(G) is not  bounded 
In the presence of In the presence of In the presence of NDNDND operations in G: operations in G: operations in G:

relative rate constraints -- represented as a backward edge (i.e., max delay 
constraint) from G’s sink to source vertices => ND cycle in the constraint graph

vN

v0
G

γ(G)
λ(G)

link
vi

vN

v0
G

-(1/ri- γ(G))

vi

min rate constraint min rate constraint min rate constraint ⇒⇒⇒  bound on loop index, x bound on loop index, x bound on loop index, x

γ(G) +λ(G) ≤  (1/ri)
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VulcanVulcan

l Specification 
l  Modeling 
l Constraint Analysis 
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning
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Micro-controller ArchitectureMicro-controller Architecture

Memory ASIC

Processor

Embedded System
Environment

Sensors Actuators
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Target ArchitectureTarget Architecture

ASICASICASIC

r1

r2

r3

r4

ProcessorProcessorProcessor

BusBusBus

HW ModelSW Model

communication channels
(one per variable)
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Runtime SystemRuntime System

Hardware Model

Detailed Scheduling,Detailed Scheduling,Detailed Scheduling,
Allocation, and BindingAllocation, and BindingAllocation, and Binding

Olympus

Software Model

Detailed Scheduling,Detailed Scheduling,Detailed Scheduling,
Allocation, and BindingAllocation, and BindingAllocation, and Binding

Vulcan
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Software ModelSoftware Model

l Dependence  between two threads T1 and T2
◆ dependencies between operations in the 

bodies of T1 and T2

T1

T2

T1 T2
runs until right before dependent
operation

detached (by run time
scheduler) 

resumed (by run time
scheduler) 

simpler alternative: modify “in-bodyin-bodyin-body”
dependencies ⇒  make graphs convex



Page 25

Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97Margarida Jacome - UT Austin -  Spring 97

Convex GraphConvex Graph
l A (sub)graph is defined to be convex if it has 

only one single entry and exit operations.

The corresponding program thread, once invoked, 
can run to completion without need to detach in order
to observe dependencies 

Potential  loss of concurrency 

Constraint analysis must be performed on the
 modified graphs

All routines can be implemented as independent programsAll routines can be implemented as independent programsAll routines can be implemented as independent programs
with statically embedded control dependencieswith statically embedded control dependencieswith statically embedded control dependencies

“cost”“cost”“cost”

“benefit”“benefit”“benefit”
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ExampleExample

k

b

d e

j

i

l

f

c

g

h

Flow graph to be implemented
in software 

2 ND operations (b and c)
⇒   2 threads

operations k, l, f, h:  anchor set
 ⇒  b and c... 

Operations with the same 
anchor set belong to the same
thread

according with the choice of thread for these operations ≠ control
dependencies will exist between the two resulting threads
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Alternative 1Alternative 1

k

b

d e

j

i

l

f

c

g

h

Tb Tc 

dependency
created due to
convexity 
serialization

one entry
point
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Alternative 2Alternative 2

k

b

d e

j

i

l

f

c

g

h

Tb Tc 

(c, f)  substituted by (c,b)
(g, h) substituted by (g,c)

entry
point
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Alternative 3Alternative 3

k

b

d e

j

i

l

f

c

g

h

Tb Tc 

Tf 

entry
point
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A Model for SoftwareA Model for Software

l Software is constructed as a set of concurrent 
program threads

A tread is defined as a linearization of operations
that may or may not begin by an ND operation

the latency of a thread (λ) is defined as the sum of the
delay of its operations without including the ND
operation

merged into the delay of the runtime scheduler
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Control Flow in the SoftwareControl Flow in the Software
l There may be dependencies between 

operations that belong to separate threads

known statically ⇒  programs threads are 
constructed to observe these dependencies

T1

T2 T3 T1

T2 T3
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l A thread is enabled when its “id” is in the control FIFO
l Before detaching, a thread performs one or more 

enqueue operations to the FIFO, for its dependent 
threads

Processor

Thread1

Scheduler

Thread2

ASIC

control
FIFO

data 
queue

Non-prioritized FIFO SchedulerNon-prioritized FIFO Scheduler
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Inter-thread Control DependenciesInter-thread Control Dependencies

T1

T2 T3

Control FIFOControl FIFOControl FIFO

T1

Before T1:

T2

After T1:

T3

Thread T1
<body>
enqueue(T2)on cFIFO
enqueue(T3)on cFIFO
detach

linearized
set of operations
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Thread with Multiple Control DependenciesThread with Multiple Control Dependencies

T1

T2 T3
Thread T1
while (count != 1)
{ 
  count = count + 1;
  detach
}
<body>
count = 0;
enqueue(successor threads)on cFIFO
detach

synchronization
preamble
code
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Software Size/Delay EstimationSoftware Size/Delay Estimation

G

Π

Flow graph

Processor 
Cost Model

Linearize Gi Storage
Allocation Ss

Variable
Interval
Graph
(Conflict Graph)

Spill Set

Overhead
Estimation

γ
Runtime

SoftwareSoftwareSoftware
delay of Gdelay of Gdelay of G

Step IStep IStep I Step IIStep IIStep II
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VulcanVulcan

l Specification 
l  Modeling 
l Constraint Analysis 
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning
l Co-simulation 
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Problem FormulationProblem Formulation
For a given set of flow graph models and timing constraints,
create two sets of flow graph models such that one can be 
implemented in hardware and the other in software and the
following is true:

cumulative size of variables
transferred across the partition

weights: represent a desired tradeoffs between size of 
                 the hardware, processor and bus utilization, 
                 and communication overhead

Timing constraints are satisfied

Processor utilization, P ≤ 1

Bus utilization, B ≤ B

A cost function f(SH, SSΠ, B, P-1, m) is minimized... 
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Software ModelSoftware Model

ρ1 ρ2 ρ3 ρ4

λ1

λ2

λ3

λ4

ASICASICASIC

r1

r2

r3

r4

reaction
rate
(constraints)

latency

ProcessorProcessorProcessor
BusBusBus

HW ModelSW Model

Processor Utilization Bus Utilization
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Software ModelSoftware Model

Bus Utilization

Σ rj ≤ bus bandwidth

ρ1 ρ2 ρ3 ρ4

λ1

λ2

λ3

λ4

ASICASICASIC

r1

r2

r3

r4

reaction
rate

latency

ProcessorProcessorProcessor

BusBusBus

HW ModelSW Model

inverse of the time interval
between two consecutive
samples for a variable “j”

bounded by bus bandwidth: 
function of the  bus cycle time 
and memory access time 

B := 
j=1

m

m variables
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Software ModelSoftware Model

Processor Utilization

Σ ρi • λi 

ρ1 ρ2 ρ3 ρ4

λ1

λ2

λ3

λ4

ASICASICASIC

r1

r2

r3

r4

reaction
rate

latency

ProcessorProcessorProcessor

BusBusBus

HW ModelSW Model

P := 
i=1

n
n threads
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Satisfiability to reaction rates of program threadsSatisfiability to reaction rates of program threads

Bound on Processor Utilization

Σ ρi • λi  ≤ 1P := 
i=1

n

considering case where all threads are enabled
simultaneously

A

B

cycle

cycle

necessary but not sufficient!

(ρB • λB) may be small yetρB      λB 

B bounds the reaction
rate of all program threads
below the inverse of its
latency!
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Satisfiability to reaction rates of program threadsSatisfiability to reaction rates of program threads

Sufficient condition for a program thread (for non-preemptive Sufficient condition for a program thread (for non-preemptive Sufficient condition for a program thread (for non-preemptive 
non-prioritized runtime scheduler)non-prioritized runtime scheduler)non-prioritized runtime scheduler)

Σ λk (1/ρmax)  ≥ 
all threads k

necessary and sufficient for 
independent threads (can be
weakened for dependent threads)

maximum reaction rate over all 
program threads
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Partitioning FeasibilityPartitioning Feasibility

l Determined based on a worst case scenario
◆ ensure that worst case scenario is handled

Timing constraints: min/max delay and execution rateTiming constraints: min/max delay and execution rateTiming constraints: min/max delay and execution rate

Performance constraints: processor and bus utilization,Performance constraints: processor and bus utilization,Performance constraints: processor and bus utilization,
                                              run-time scheduler (software)                                               run-time scheduler (software)                                               run-time scheduler (software) 
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“Greedy” Partition Algorithm“Greedy” Partition Algorithm
graph_partition(G) {
  VH = V(G);
  VS = {};
  for v  ∈  V(G) {                                                          /*  initialization  */
      if v is a ND link operation                                /*  All ND Loops go to Software  */
          VS = VS  + {v};                    
  }
  create software threads (VS);                                  /*  serialization, etc.  */
  compute reaction rates for each thread;               /*  based on rate constraints  */
  if not check_feasibility (VH,VS)                            /*  timing cnstr, processor and bus utilization  */
     exit;
  fmin = f (VH,VS) ;                                                        /* initialize cost function  */
  repeat {
     for v  ∈  VH and v is not ND                             /* pick HW operation --> SW  */
     fmin = move(v);                                                    /* move(v) calls check_feasibility */
     } until no further reduction in fmin
  return  (VH,VS) ;


