H/S Codesign:
A CAD Perspective

Margarida F. Jacome

The University of Texas at Austin

Margarida Jacome - UT Austin - Spring 97

BWEEN The Co-Synthesis Approach

B rous o

algorithmic FSMs

level

Compilation Mathematical

HDL Models [Bsfl]l Abstract Models

Output

Logic
Synthesis

Behavioral
Synthesis

Description Representation

MODELING

SYNTHESIS &
OPTIMIZATION

Y

VALIDATION/
VERIFICATION

The hardware software co-design problem is posed as an “evolu-
tion” of existing synthesis methods

Margarida Jacome - UT Austin - Spring 97

Page 1

BWNNN The Cosynthesis Approach

I Working hypothesis: the overall system can be
modeled consistently and be partitioned (either
manually or automatically) into hardware and software
components.

0 hardware components

» performance

» implemented using existing hardware synthesis tools
0 software components

» low cost, flexibility

» generated automatically (software compilation)

ninterfaces and synchronization

Margarida Jacome - UT Austin - Spring 97

BWEEN H/S Codesign: Research |ssues

I Models and Specification Languages

| Design Space Exploration, Estimation,
Partitioning

| Co-simulation/Verification
| Software, Hardware, and Interface Synthesis
| Scheduling, Real-time Operating Systems

Margarida Jacome - UT Austin - Spring 97

Page 2

RN Co-Synthesis

=> | Vulcan (Stanford - DeMicheli et al)
| Polis (UC Berkeley - Vicentelli et al)

Margarida Jacome - UT Austin - Spring 97

AN \/ulcan

| Leverages research in behavioral synthesis

omodeling: flow graphs (O sequencing
graphs)

nscheduling techniques (O relative
scheduling)

Dautomatic path to synthesis (Olympus)
| Automatic partitioning
| Deterministic constraint analysis

Margarida Jacome - UT Austin - Spring 97

Page 3

ENNEN \/ulcan

E>| Modeling

| Constraint Analysis
| Software and Runtime Environment

| Target Architecture - H/S Interface
| Partitioning

Margarida Jacome - UT Austin - Spring 97

BN Example - Algorithmic Description
proceséhgianple (a, b, c¢)

in port a[8],

i n channel b[8];
out port c| 8];

enables blocking of

the read operation

based on the availability
of data on the channel

{

bool ean x[8], y[8], z[8];
X = read(a);
if (x >y)

wrrgerTaaoacome - UT Austin - Spring 97

Page 4

ENEEN Flow Graph

| Hierarchical control/data-flow graph:

o control flow primitives (iteration and model call)
modelled through hierarchy

| Acyclic
nmodels a partial order of tasks/operations
nacyclic dependencies suffice [0 iteration is modeled
outside the graph
| Polar
nsource and sink vertices model No-Operations

Margarida Jacome - UT Austin - Spring 97

N L Flow Graph

@ |:>conjoined output: directs the flow
of control to all its branches

disjoined output: selects one of the
successors based on a condition

conjoined

10 @ 11

conjoined

Qo) 12

1

Margarida Jacome - UT Austin - Spring 97

Page 5

ENEEN Flow Graph

nodes O

no-op: no operation
cond: conditional fork
join: conditional join
op-logic: logical operations
op-arithmetic: arithmetic operations
op-relational: relational operations
op-io: 1/O operations
wait. wait on a signal variable (synchronization)
link: hierarchical operations
0 call: procedure call (invocation times = 1)

0 Ioog: iteration Sinvocation times > 12
y

Margarida Jacome - UT Austin - Spring 97

BN System Modél

E> System Model: @ = {G*, G2*, ...,Gn*}
where

Gi* : process graph model G; and all the flow graphs
hierarchically linked to G;.

¥ Flow graph models can common to more than one hierarchy
[0 shared models

Margarida Jacome - UT Austin - Spring 97

Page 6

EWANN | mplementation Attributes

I Implementation, /(G), of a graph model G:

nassignment of delays and size properties
to operationsin G

0 choice of a runtime scheduler, Y, that
enables the execution of source operations
in G

Y => enables source operation once:
* “top-level” graphs: the sink operation completes
% conditionally invoked graphs: the graph enabling
condition is TRUE

Margarida Jacome - UT Austin - Spring 97

BNl Timing Properties

| Operation delay
| Graph Latency
| Rate of Execution (operations)

Margarida Jacome - UT Austin - Spring 97

Page 7

EEEN Operation Delay

Margarida Jacome - UT Austin - Spring 97

BWENN | atency
| Latency, A(G): execution delay of G U LAY,

<= latency of a non-hierarchical
flow graph may be varible
(conditional paths)

Margarida Jacome - UT Austin - Spring 97

Page 8

EWEEN Execution Delay of Link Vertices

I 3(v)) = A(G1)*x
0 can be

> variable

> unbounded (loop vertices with unbounded indices)

<& Link vertices: cal | and/or | oop (point
to other flow graphs in the hierarchy)

Margarida Jacome - UT Austin - Spring 97

EWENN Rate of Execution (operations)

| assuming a synchronous execution model with cycle
time T,

the rate of execution at invocation k of operation v;
is given by the time interval between its current and
previous execution

. 1
pilk) = (Vi) - tea (Vi) (sec)

-t .
(V) - e (V) (cycle-)

Margarida Jacome - UT Austin - Spring 97

Page 9

EWEEN Timing Properties

| Operation delay
| Graph Latency
| Rate of Execution (operations)

e

fixed, variable, bounded/unbounded

are termed non-deterministic delay or ND operations

Margarida Jacome - UT Austin - Spring 97

EWENN Scheduling

| For each invocation of a flow graph model,
an operation is invoked zero, one, or many
times depending upon its position on the
hierarchy of the flow model

|:>The execution times t,(y) of an operation v are determined
by two separate mechanisms

& The runtime scheduler, y

Y determines the invocation time of flow graphs

e#] The operation scheduler, Q

Margarida Jacome - UT Austin - Spring 97

Page 10

EWEEN Scheduling of Operations

——>> Given a graph model G = (V, E), the selection of a schedule
refers to the choice of a function Q that determines the start
time of operations such that

t(vi)) = max [tv) + 9(V)]

Jviv)OE

is satisfied for each invocation k>0 of
operations v; and v;j

Margarida Jacome - UT Austin - Spring 97

EWEEN Modified Relative Schedule

Relative Offset

Vertex Vi V3 Vg

Vi -- - -
V2 0
V3 0
V4 1
V5 1
Ve 1

\% (2 1 -
Vs (2 1 - Vo
Vo (2 1 -

V10 == - -
Vi1 - - -
V12 - - - 1
Vi3 - -- 0 -

o O

Margarida Jacome - UT Austin - Spring 97

Page 11

ENNEN \/ulcan

| Modeling
E>| Constraint Analysis
| Software and Runtime Environment
| Target Architecture - H/S Interface
| Partitioning

Margarida Jacome - UT Austin - Spring 97

BN Timing Congtraints

= | Operation delay constraints
0O unary. bounds on the delay of an operation

0 binary: bounds on the delay between the
starting time of two operations

I Execution rate constraints

Margarida Jacome - UT Austin - Spring 97

Page 12

t
Vj

EWEEN Binary Delay Constraints ‘i]_j
0

t
| Minimum timing constraint, lij =0 from operation

vertex vito vjjs defined as
tk(Vj) > tk(Vi) +lij

1 sequencing dependencies between operations
induce default minimum timing constraints

Maximum timing constraint, uij =0 from operation
vertex vito v;is defined as

tw(V)) = t(vi) +uij

Margarida Jacome - UT Austin - Spring 97

EWEEN Constraint Graph

implementation delay multiplication O 2
delay addition O 1

:) MIN
TIME
MAX A
TIME
\>'-~\4
INOF,

Margarida Jacome - UT Austin - Spring 97

Page 13

EWNNN Timing Congtraints

| Operation delay constraints
— > | Execution rate constraints

0 constraints on the interval of time between
successive executions of an operation

i —,
Vi ' '
T_ll_i]_> t

Margarida Jacome - UT Austin - Spring 97

EENN Data Rate Constraints

| Minimum data rate constraint, ri (cycles-t) on operation ..
lower bound on the execution rate of v;

i(K) = ri [Jk>0 [min rate]

| Maximum data rate constraint, R; (cycles-1) on operation vi.
upper bound on the execution rate of v;

Puik) <R; [Tk >0 [max rate]

O t(vi)- tea(vy) 2 TRy [Jk>o

Margarida Jacome - UT Austin - Spring 97

Page 14

NN Re ative Execution Rate Constraint

=—=>> relative rate of execution of vi with respect to G:
[0 constraint on the rate of execution of v; when
G is continuously enabled and executing

r®< pP,ik) sR® [Tk>0

and, there exists an execution, j, of G such that

ti(Vo(G)) < tka(vy) = t(vy) = ti(vy(G))

Vo and Vy: source and sink nodes of G

I'. R . >
enabled T Lo : :

Margarida Jacome - UT Austin - Spring 97

EEEN Ex.: Specification of Rate Constraints

process exanple (a,b,c)
in port a[8],b[8];

out port c[8]; G
{

bool ean x[8],y[8],z[8],W 8];

Q)

X = read(a);

y = read(b);

z=x*y; / relative min

TN il /ﬂ = ———— constraints -

whi | e(w >= 0) indexed by the
corresponding
w=w- L } r=0.01percycle loops

Z =7Z - W

wite c =z }
attribute “constraint mnrate of A = 100 cycl es/sanpl e”
attribute “constraint mnrate O of A = 1 cycles/sanple’
attribute “constraint mnrate 1 of A = 10 cycl es/sanpl e”

}

Margarida Jacome - UT Austin - Spring 97

Page 15

EWEEN Timing Congtraints and Scheduling

| Given a scheduling function, a timing constraint is
considered satisfied if

Othe operation starting times determined by the
scheduling function satisfy the inequalities

te(V)) = t(vi) +l; [mindelay]

te(V)) < t(vi) +ui; [max delay]

Pi(k) <R; [max rate]

Pui(k) = i [min rate]

Margarida Jacome - UT Austin - Spring 97

BNEEN Satisfiability - Delay Constraints

=>A minimum delay constraint is always satisfiable

&i(vi) = max (I(v;,v)), Iy)

=>A maximum delay constraint may not always be satisfiable

Margarida Jacome - UT Austin - Spring 97

Page 16

ENENN Modified Relative Schedule

Relative Offset
V3

Margarida Jacome - UT Austin - Spring 97

BNEEN Satisfiability - Delay Constraints

Feasibility:

=> A constraint graph is considered feasible if it contains
no positive cycle when the delay of ND operations
Is assigned to zero.

Condition necessary and sufficient to determine the satisfiability

of constraints in the presence of ND operations:
i Operation delay constraints are satisfiable if and only if

the constraint graph is feasible
there exists no cycles with ND operations

Margarida Jacome - UT Austin - Spring 97

Page 17

ENEN Example

satisfiable
feasible

Margarida Jacome - UT Austin - Spring 97

BN Examples

Constraints are not satisfiable can be modified ~ Constraints are satisfiable
(maybe feasible) such that...

Margarida Jacome - UT Austin - Spring 97

Page 18

BWENN Saticfiability - Rate Constraints

=>Maximum rate constraints are always satisfiable

min
-4

{¥ appropriate choice of overhead delay (y)applicable
to every execution of G

Margarida Jacome - UT Austin - Spring 97

BIWEEN Example- max rate

max-rate of write
operation = 1/2 cycle!

Margarida Jacome - UT Austin - Spring 97

Page 19

ENNEN Min Rate Constraint

E>A minimum rate constraint ri on an operation v; [JV(G), where
G contains no ND operations is satisfiable if

m f
G
bound on b ImM(G)

latency

overhead delay

max

I A minimum rate constraint places an upper bound on the interval of
successive executions of an operation |

Margarida Jacome - UT Austin - Spring 97

EEEN Overhead Delay

| Yk(G): reinvocation delay for G

nomay be a fixed quantity: overhead due to arun time
scheduler

omay be variable: in case of conditional invocation
of G

Overhead Delay == (SR \Z(€)) Ea HYN(€))

in series with the sink
@ operation Vy(G)

Margarida Jacome - UT Austin - Spring 97

Page 20

HNEN Min Rate Constraints Vi max

E>General case: involves two bounds I h‘ >
Y(G) +A(G) < (T/ry)]—>

Margarida Jacome - UT Austin - Spring 97

ENEEN Min Rate: satisfiability

feasible by Vi

the runtime —

scheduler

Margarida Jacome - UT Austin - Spring 97

Page 21

ENEN Min Rate: satisfiability

In the presence of ND operations in G: Y(G) +A(G) < (1/r))

The latency A(G) is not bounded

O relative rate constraints -- represented as a backward edge (i.e., max delay
constraint) from G’s sink to source vertices => ND cycle in the constraint graph

(Uri-Y(G))

=== min rate constraint [bound on loop index, X

AN \/ulcan

| Specification
| Modeling
I Constraint Analysis
gl Software and Runtime Environment
| Target Architecture - H/S Interface
| Partitioning

Margarida Jacome - UT Austin - Spring 97

Page 22

NN Micro-controller Architecture

/ Sensors Actuators

Processor

Embedded System)
Environment

Margarida Jacome - UT Austin - Spring 97

BWEEN Target Architecture

communication channels

BUSA (one per variable)
/
/
/
/
Processor ’f
rl M
<2 >
L3 o | ASIC
<! >
SW Model W Model

Margarida Jacome - UT Austin - Spring 97

Page 23

AN Runtime System

Hardware Model Software Model

Detailed Scheduling,

Detailed Scheduling,
Allocation, and Binding

Allocation, and Binding

Margarida Jacome - UT Austin - Spring 97

NNl Software Modd

| Dependence between two threads T1 and T2

ndependencies between operations in the
bodies of T1 and T2

Tl T2
- runs until right before dependent
.............. ¥ operation ke (by run time
’ scheduler)
/ resumed (by run time
‘ scheduler)

simpler alternative: modify “in-body”
dependencies I make graphs convex

Margarida Jacome - UT Austin - Spring 97

Page 24

BWENN Convex Graph

I A (sub)graph is defined to be convex if it has
only one single entry and exit operations.

The corresponding program thread, once invoked,

can run to completion without need to detach in order
to observe dependencies

Potential loss of concurrency

“cost” || CONstraint analysis must be performed on the
modified graphs

All routines can be implemented as independent programs

benefit"l/ \vith statically embedded control dependencies

Margarida Jacome - UT Austin - Spring 97

RN Example

|:>Flow graph to be implemented
In software

{¥2ND operations (b and c)
[0 2threads

Operations with the same
anchor set belong to the same
thread

operations k, I, f, h: anchor set

O band C@

according with the choice of thread for these operations # control
dependencies will exist between the two resulting threads

Margarida Jacome - UT Austin - Spring 97

Page 25

dependency
created due to
.- one entry convexity
point ializati
serialization

NN Alternative 1

Margarida Jacome - UT Austin - Spring 97

RN Alternative 2

entry

[>(c, f) substituted by (c,b)
(g9, h) substituted by (g,c)

Margarida Jacome - UT Austin - Spring 97

Page 26

RN Alternative 3

Margarida Jacome - UT Austin - Spring 97

NN A Modd for Software

| Software is constructed as a set of concurrent
program threads

|:> A tread is defined as a linearization of operations
that may or may not begin by an ND operation
(the latency of a thread (A) is defined as the sum of the

delay of its operations without including the ND
\operation

T

merged into the delay of the runtime scheduler

Margarida Jacome - UT Austin - Spring 97

Page 27

INEN Control Flow in the Software

I There may be dependencies between
operations that belong to separate threads

<

known statically 0 programs threads are
constructed to observe these dependencies

4

Margarida Jacome - UT Austin - Spring 97

IEEN Non-prioritized FIFO Scheduler

I A thread is enabled when its “id” is in the control FIFO

| Before detaching, a thread performs one or more
engueue operations to the FIFO, for its dependent
threads

Processor

Threadl

control
FIFO

Page 28

WWNEN |nter-thread Control Dependencies

Control FIFO
@ Thread T1 :

/ \ <body> Before T1:

enqueue(T2) on cFI FO

@ @ enqueue(T3) on cFl FO T1
det ach
After T1:

linearized
set of operations T2|T3

Margarida Jacome - UT Austin - Spring 97

INNEN Thread with Multiple Control Dependencies

Thread T1
@ @ while (count !'= 1)
{
\ / count = count + 1; synchronization
@ detach <:| preamble
} code

<pody>

count = 0O;

engueue(successor threads)on cFl FO
det ach

Margarida Jacome - UT Austin - Spring 97

Page 29

EWENN Software Size/Delay Estimation

Runtime

Flow graph @

@\ Step | Step Il \
m—»@» Storage Overhead
/ Allocation Estimation

@ Variable

Interval
Processor Graph Spill Set
Cost Model (Conflict Graph) P Software

delay of G

Margarida Jacome - UT Austin - Spring 97

AN \/ulcan

| Specification

| Modeling

I Constraint Analysis

| Software and Runtime Environment
| Target Architecture - H/S Interface

E>| Partitioning

I Co-simulation

Margarida Jacome - UT Austin - Spring 97

Page 30

NNV Problem Formulation

For a given set of flow graph models and timing constraints,
create two sets of flow graph models such that one can be
implemented in hardware and the other in software and the
following is true:

=>Timing constraints are satisfied

=> Processor utilization, P <1 cumulative size of variables
. . — transferred across the partition
=> Bus utilization, B<B

=> A cost function f(Sn, Ssn, B, P-1, m) is minimized...

T r

weights: represent a desired tradeoffs between size of
the hardware, processor and bus utilization,
and communication overhead

Margarida Jacome - UT Austin - Spring 97

NNl Software Modd

Bus
reaction ... Processor A
rate b pl p2 p3 p4
(constraints) . _
- 2 >
latency ... Al A3 3 . ASIC
i A2 A\ <4 ol
SW Model v W Model
Processor Utilization Bus Utilization

Margarida Jacome - UT Austin - Spring 97

Page 31

BN Software Modd Busy
Processor
reaction .. ol p2 p3 pd
rate """ .
[_— - L o
Bus Utilization P g
latency N A3 a3 > ASIC
BRI A2 A -4 -
i W Model
B:= 2 r,<bus bandwidth SW Mode
; S~ m variables
bounded by bus bandwidth:
: function of the bus cycle time
inverse of the time interval and memory access time
between two consecutive
samples for a variable “j”
Margarida Jacome - UT Austin - Spring 97
WWEEN Software Modé Bus
Processor
reaction ... VP-pl p2 p3 p4
rate ‘"
Il >
2 -
.) latency el A A3 all > ASIC
Processor Utilization et
' ald -
A2 M
SW Model W Model
n threads

Margarida Jacome - UT Austin - Spring 97

Page 32

ENEEN Satisfiability to reaction rates of program threads

Bound on Processor Utilization

considering case where all threads are enabled
simultaneously

n
P:= 2 pie) <1| necessary butnot sufficient!
<

B bounds the reaction
rate of all program threads
below the inverse of its
latency!

2 NS e
E I | - cycle

: PB {; Asﬁ (pe = Ag) may be small yet

Margarida Jacome - UT Austin - Spring 97

RN Satidfiability to reaction rates of program threads

Sufficient condition for a program thread (for non-preemptive
non-prioritized runtime scheduler)

(Upma) 2 A <= necessary and sufficient for
all threads k independent threads (can be

weakened for dependent threads)

maximum reaction rate over all
program threads

Margarida Jacome - UT Austin - Spring 97

Page 33

BNl Partitioning Feasibility

| Determined based on a worst case scenario
oensure that worst case scenario is handled

I:> Timing constraints: min/max delay and execution rate

|:> Performance constraints: processor and bus utilization,
run-time scheduler (software)

Margarida Jacome - UT Austin - Spring 97

BWENN “ Greedy” Partition Algorithm

graph_partition(G) {

Vu =V(G);
Vs={};
forv O V(G){ /* initialization */
if visa ND link operation /* All ND Loops go to Software */
Vs=Vs +{v}
}
create software threads (Vs); /* serialization, etc. */
compute reaction rates for each thread; /* based on rate constraints */
if not check_feasibility (Vh,Vs) /* timing cnstr, processor and bus utilization */
exit;
fmin =T (Vy,Vs) /* initialize cost function */
repeat {
forv [JVuandvis not ND /* pick HW operation --> SW */
Tmin = move(v); /* move(v) calls check_feasibility */

} until no further reduction in f;,
return (Vy Vs)

Margarida Jacome - UT Austin - Spring 97

Page 34

