

Constraint Analysis in Vulcan

© Copyright by Margarida F. Jacome

The University of Texas at Austin

Margarida Jacome - UT Austin - Spring 98

The Co-Synthesis Approach

- 1 Hierarchical control/data-flow graph
 - control flow primitives (iteration and model call modeled though hierarchy
- 1 Acyclic
 - models partial order of tasks/operations
 - iteration is modeled outside the graph
- 1 Polar
 - source and sink vertices model No-Operatios

Margarida Jacome - UT Austin - Spring 98

Operation vertices in a Flow Graph

- 1 no-op: no operation
- 1 cond: conditional fork
- 1 join: conditional join
- 1 op-logic: logical operations
- 1 op-arithmetic: arithmetic operations
- 1 op-relational: relational operations
- 1 op-io: I/O operations
- 1 wait: wait on a signal variable
- 1 link: hierarchical operations
 - call: procedure call (invocation times = 1)
 - ◆ *loop*: iteration (invocation times ≥ 1)

Margarida Jacome - UT Austin - Spring 98

- Consists of one or more flow graphs that may be hierarchically linked to other flow graphs
- System Model: $\Phi = \{G_1^*, G_2^*, ..., G_n^*\}$ where

 G_i^* represents the process graph model G_i and all the flow graphs that are hierarchically linked to G_{i^*}

★ A flow graph model that is common to two hierarchies of a system model is called a *shared model*

Margarida Jacome - UT Austin - Spring 98

Flow Graphs: Execution Semantics

- 1 At any time, an operation may be
 - waiting for execution
 - presently executing
 - having completed its execution

The state of a vertex is defined as being one of $\{s_r, s_{e_r}, s_{d}\}$

s_r: reset state ==> waiting for execution

s_e: enable state ==> presently executing

s_d: done state ==> completed execution

			E	<u>xan</u>	npl	0 * 8							
1	2	3	4	5	6	7	8	9	10	11	12	13	+
-	-	-	-	-	-	-	-	-	-	-	-	-	5 6
е	-	-	-	-	-	-	-	-	-	-	-	-	7 9
d	е	е	-	-	-	-	-	-	-	-	-	-	
-	d	d	е	-	-	-	-	-	-	-	-	-	
-	-	-	d	е	-	-	-	-	-	-	-	-	
-	-	-	-	d	-	е	-	_	-	-	-	_	
-	-	-	-	-	-	d	е	-	-	-	-	-	
-	_	_	-	-	-	-	е	е	-	-	-	_	
-	-	-	-	-	-	-	e	d	е	е	-	-	- 📫 reset
-	-	-	-	-	-	d	е	-	d	d	е	-	
-	-	-	-	-	-	-	d	-	_	-	d	е	e 📥 enable
е	-	-	-	-	-	-	-	-	-	-	-	d	
							0.1						d ⊳ done

No assumption about timing of the operations is made => (consecutive rows can be spaced arbitrarily over the time axis)

Margarida Jacome - UT Austin - Spring 98

- 1 Operation delay
- **1** Graph Latency
- 1 Rate of Execution (operations)
- 1 Rate of Reaction (graphs)

1 Latency, $\lambda(G)$, of a graph model G refers to

Latency

- 1 Given by
 - latency of the corresponding graph model times the number of times the called graph is invoked
 - execution delay of a link vertex can be
 - → variable
 - → unbounded (loop vertices with unbounded indices)

Link vertices: call and/or loop (point to other flow graphs in the hierarchy)

Margarida Jacome - UT Austin - Spring 98

λ(**G**₁)

- 1 Operation delay
- 1 Graph Latency

- Rate of Execution (operations)
- > 1 Rate of Reaction (graphs)

Rate of Reaction (Graphs)

1 For a graph model, G, its *rate of reaction* is defined as the <u>rate of execution of its source</u> <u>operation</u>

 $\rho_{\mathbf{G}}(\mathbf{k}) := \rho_{\mathbf{0}}(\mathbf{k})$

- The reaction rate is used to capture the effect on the run-time system of the type of implementation chosen for the graph model
- $\gamma_{k}(G)$ $\lambda_{k}(G)$
- e.g., the choice of a non-pipelined implementation leads to

 $\square \rho_{\mathbf{G}}(\mathbf{k}) = \lambda_{\mathbf{k}}(\mathbf{G}) + \gamma_{\mathbf{k}}(\mathbf{G})$

where $\gamma_k(G)$ represents the overhead delay (delay of reinvocation of G).

- 1 the delay of an operation may be variable, depending on
 - the value of input data: e.g., loops with data dependent iteration counts, call vertices with conditionals
 - the *timing* of input data: e.g., wait operation
- 1 the latency of a graph may be variable

Non-determinism and Execution Rate

- 1 Data-dependent loop and synchronization operations introduce *uncertainty* over
 - the precise *execution delay* of the model
 - the order of execution of the operations in the model

Operations with *variable delays* are termed *non-deterministic delay* or *ND* operations.

Timing Constraints

- 1 Scheduling
- **1** Constraint Satisfiability

Margarida Jacome - UT Austin - Spring 98

→ 1 Operation delay constraints

- unary: bounds on the delay of an operation
- *binary*: bounds on the delay between the starting time of two operations
- 1 Execution rate constraints

Margarida Jacome - UT Austin - Spring 98

EX.: Specification of Data Rate Constraints

Margarida Jacome - UT Austin - Spring 98

Timing Constraints
Scheduling
Constraint Satisfiability

Margarida Jacome - UT Austin - Spring 98

For each invocation of a flow graph model, an operation is invoked zero, one, or many times depending upon its *position on the hierarchy* of the flow model

The execution times $t_{k(V)}$ of an operation v are determined by two separate mechanisms

- The runtime scheduler, γ
 - ➡ determines the invocation time of flow graphs

O The operation scheduler, Ω

Timing Constraints and Scheduling

- 1 Given a scheduling function, a timing constraint is considered *satisfied* if
 - the operation starting times determined by the scheduling function satisfy the inequalities

Margarida Jacome - UT Austin - Spring 98

Relative Scheduler

For a given vertex v_i a set $A(v_i)$ of *anchor* vertices is defined as the set of conditional (CD) and loop, wait (ND) vertices that have a path to v_i

A *relative schedule function* Ω_r is defined as a set of offsets for each operation such that the operation start time satisfies

Modified Relative Schedule

Margarida Jacome - UT Austin - Spring 98

Modified Relative Schedule

Margarida Jacome - UT Austin - Spring 98

Constraint Satisfiability

1 For constraint analysis purposes, it is not necessary to determine a schedule of the operations, but only to *verify* the *existence* of a schedule

Constraint satisfiability

identifying conditions under which no solution (i.e., schedule) exists

Satisfiability - Delay Constraints

Feasibility:

A constraint graph is considered <u>feasible</u> if it contains no positive cycle when the delay of the ND operations is assigned to zero.

Condition <u>necessary and sufficient</u> to determine the *satisfiability* of constraints in the presence of *ND* operations:

Operation delay constraints are *satisfiable* if and only if

the constraint graph is *feasible*

there exists no cycles with ND operations

A minimum rate constraint r_i on an operation $v_i \in V(G)$, where G contains no ND operations is satisfiable if

Margarida Jacome - UT Austin - Spring 98

General case: involves two bounds

ND Operations: Data-dependent Loops

The *loop index* determines the number of times the loop body is invoked for each invocation of the loop link operation

=> delay of the loop operation is its loop index times the latency of the loop body

If the constrained graph (G) contains <u>at most one</u> loop operation, v, on a path from source to sink

> The *minimum rate constraint* can be seen as a bound on the number of times the loop body (G) is invoked.

G

V

bound on loop index, $\overline{\mathbf{x}}$

Satisfiability of Min Rate Constraints

Consider a flow graph *G* with an *ND* operation *v* representing a loop in the flow graph

A minimum rate constraint r_i on operation $v_i \in V(G)$ and $v_i \neq v$ is satisfiable if the loop index, x_v indicating the number of times G_v is invoked for each execution of v is less than the bound

Margarida Jacome - UT Austin - Spring 98

Relative Min Rate Constraints

Relative min rate constraint relative to G ==> applied when G is enabled and executing

Margarida Jacome - UT Austin - Spring 98

Constraint Satisfiability in Vulcan

- **1. Construct the Constraint Graph**
 - add forward edges for *minimum delay* and *maximum rate* constraints
 - add backward edges for maximum delay and (relative) minimum rate constraints
- 2. Identify *cycles* by path enumeration for each of the *backward edges* in the constraint graph
 - ⇒ check for constraint satisfiability, bound delays, etc.
- 3. Propagate *minimum rate* constraints up the graph hierarchy