
Page 1

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

Constraint Analysis Constraint Analysis 
in Vulcanin Vulcan

© Copyright 
by

Margarida F. Jacome

The University of Texas at Austin

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

The Co-Synthesis ApproachThe Co-Synthesis Approach

idea

HDL Models Abstract Models

MODELING

Textual

Description

Mathematical

Representation

Compilation

Output

SYNTHESIS &
OPTIMIZATION

VALIDATION/
VERIFICATION

Behavioral
Synthesis

algorithmic
level

Logic
Synthesis

register-transfer
level

VULCAN POLIS

The hardware software co-design problem is posed as an 
evolution of existing synthesis Methods



Page 2

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

VulcanVulcan

l Specification 
l  Modeling 
l Constraint Analysis 
l Software and Runtime Environment
l Target Architecture - H/S Interface
l Partitioning
l Co-simulation 
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Model -- Flow GraphModel -- Flow Graph

l Hierarchical control/data-flow graph
◆ control flow primitives (iteration and model call 

modeled though hierarchy
l Acyclic 

◆ models partial order of tasks/operations
◆ iteration is modeled outside the graph

l Polar
◆ source and sink vertices model No-Operatios



Page 3

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

Flow Graph Flow Graph 
(CDFG)(CDFG)

conjoined output: directs the flow 
of control to all its branches

disjoined output: selects one of the
successors based on a condition index

NOP

cond
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rd
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rcv

join
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mpy
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sub

loop

NOP13

8 10wr 11sub

NOP 9
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       *

disjoined
       +

conjoined

conjoined

conjoined

disjoined

c c’

c c’

z = x - y;

process example (a, b, c)
in port a[8],
in channel b[8];
out port c[8];

{
boolean x[8], y[8], z[8];
x = read(a);
y = receive(b);
if (x > y)

else 
    z = x * y;
while (z >= 0)
    write c = y;
    z = z - 1; }
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Operation vertices in a Flow GraphOperation vertices in a Flow Graph
l no-op: no operation
l cond: conditional fork
l join: conditional join
l op-logic: logical operations
l op-arithmetic: arithmetic operations
l op-relational: relational operations
l op-io: I/O operations
l wait: wait on a signal variable
l link: hierarchical operations

◆ call: procedure call  (invocation times = 1)
◆ loop: iteration (invocation times ≥ 1)
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System ModelSystem Model

l Consists of one or more flow graphs that may 
be hierarchically linked to other flow graphs

System Model: Φ = {G1*, G2*, ...,Gn*}
where

Gi* represents the process graph model Gi and
all the flow graphs that are hierarchically linked
to Gi.

A flow graph model that is common to two hierarchies 
of a system model is called a shared model
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Flow Graphs: Execution SemanticsFlow Graphs: Execution Semantics

l At any time, an operation may be 
◆ waiting for execution
◆ presently executing
◆ having completed its execution

The state of a vertex is defined as being one of {sr, se, sd}

sr: reset state ==> waiting for execution

se: enable state ==> presently executing

sd: done state ==> completed execution
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Example Example 
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d   e   e   -   -   -   -   -   -   -   -   -   -
-   d   d   e   -   -   -   -   -   -   -   -   -
-   -   -   d   e   -   -   -   -   -   -   -   -
-   -   -   -   d   -   e   -   -   -   -   -   -
-   -   -   -   -   -   d   e   -   -   -   -   -
-   -   -   -   -   -   -   e   e   -   -   -   -
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-   -   -   -   -   -   d   e   -   d   d   e   -
-   -   -   -   -   -   -   d   -   -   -   d   e
e   -   -   -   -   -   -   -   -   -   -   -   d

No assumption about timing of the operations is made =>
(consecutive rows can be spaced arbitrarily over the time axis)
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Timing PropertiesTiming Properties

l Operation delay 
l Graph Latency 
l Rate of Execution (operations)
l Rate of Reaction (graphs)
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Operation DelayOperation Delay
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LatencyLatency
l Latency, λ(G), of a graph model G refers to 

the execution delay of G 

◆ the  latency of a non-hierarchical flow 
graph may be variable due to the presence 
of conditional paths

1

+

+

0

3 1

0

0

0

λ(G) = 2λ(G) = 4

λk(G) = tk(vn) - tk(v0)
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Execution Delay of Link VerticesExecution Delay of Link Vertices

Link vertices: call and/or loop  (point
to other flow graphs in the hierarchy)

l Given by
◆ latency of the corresponding graph model times the
   number of times the called graph is invoked
◆ execution delay of a link vertex can be 

variable
unbounded (loop vertices with unbounded indices)

G

G1

vi

δ
λ(G1)

x
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Timing PropertiesTiming Properties

l Operation delay 
l Graph Latency 
l Rate of Execution (operations)
l Rate of Reaction (graphs)
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Rate of Execution (operations)Rate of Execution (operations)
l assuming a synchronous execution model with cycle 

time τ, 
   the rate of execution at invocation k of operation vi 

is given by the time interval between its current and 
previous execution

ρi(k) := tk(vi) - tk-1(vi)
1 (sec-1)

= tk(vi) - tk-1(vi)
τ (cycle-1)

t
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Rate of Reaction (Graphs)Rate of Reaction (Graphs)
l For a graph model, G, its rate of reaction is 

defined as the rate of execution of its source 
operation 

The reaction rate is used to capture the effect 
on the  run-time system of the type of 
implementation  chosen for the graph model

◆ e.g., the choice of a non-pipelined 
implementation leads to

ρG(k) := ρ0(k)  

ρG(k)-1 =  λk(G) + γk(G) 

where  γk(G) represents the  overhead delay 
(delay of  reinvocation of G).

λk(G)γk(G)
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Timing PropertiesTiming Properties

l Operation delay 
l Graph Latency 
l Rate of Execution (operations)
l Rate of Reaction (graphs)
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Non-Determinism Non-Determinism 

l the delay of an operation may be variable, depending 
on

◆ the value of input data: e.g., loops with data 
dependent iteration counts, call vertices with 
conditionals

◆ the timing of input data: e.g., wait operation
l the latency of a graph may be variable
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Data Dependent Delays Data Dependent Delays 
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-   -   -   -   -   -   -   d   -   -   -   d   e
e   -   -   -   -   -   -   -   -   -   -   -   d

execution delay of
“link” vertex

alternative
paths
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Non-determinism and Execution RateNon-determinism and Execution Rate

l Data-dependent loop and synchronization 
operations introduce uncertainty over

◆ the precise execution delay of the model
◆ the order of execution of the operations in 

the  model

Operations with variable delays are termed 
non-deterministic delay or ND operations.
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A Single Rate ModelA Single Rate Model

NOP

add

1

2

4

rd
3

rd

add

5

7

mpy
6

sub

wr

NOP9

8

*

*

*

*

On each execution 
of the flow graph, 
each operation 
executes once

In this case, the reaction rate of the graph G is:

ρG(k) := ρ0(k) =  ρvi(k),
          for all vi  ∈ V(G) and for all k ≥0

The execution of G proceeds 
at single rate.
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A Multi Rate ModelA Multi Rate Model
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Timing Constraints and Constraint AnalysisTiming Constraints and Constraint Analysis

l Timing Constraints
l Scheduling
l Constraint Satisfiability
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Timing Constraints Timing Constraints 

l Operation delay constraints
◆ unary: bounds on the delay of an operation
◆ binary: bounds on the delay between the 

starting time of two operations
l Execution rate constraints
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Binary Delay ConstraintsBinary Delay Constraints

l Minimum timing constraint, lij ≥ 0 from operation 
vertex vi to vj is defined as

◆ by default, any sequencing dependency 
between two operations induces a minimum 
timing constraint

l Maximum timing constraint, uij ≥ 0 from operation 
vertex vi to vj is defined as

tk(vj) ≥  tk(vi) +lij 

tk(vj) ≤  tk(vi) +uij 

vj

vi
tk(vi) 

tk(vj) 

t

t

vb

vc
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ExampleExample
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Operation Delay ConstraintsOperation Delay Constraints
Can capture durational and deadline constraints in 
specifying real time systems

a b

δa

a before b

a b

δa

a meets b
-δa

a ba overlaps b
-δa

a b

δa-δb

a finishes by b δb-δa

a ba during b 0

δa-δb

a b a after b
δb

etc...
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Timing Constraints Timing Constraints 

l Operation delay constraints
l Execution rate constraints

◆ refer to constraints on the interval of time 
between successive executions of an 
operation

» rate constraints on input (output) operations refer to 
the rates at which the data is required to be produced 
(consumed) 

t
vb



Page 15

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

Data Rate ConstraintsData Rate Constraints

ρvi(k) ≤ Ri              ∀  k > 0                 [max rate]

⇒   tk(vi)- tk-1(vi)  ≥  τ . Ri
-1       ∀  k > 0   

ρvi(k) ≥  ri            ∀  k > 0                 [min rate]

⇒   tk(vi)- tk-1(vi)  ≤  τ . ri
-1      ∀  k > 0   

l Minimum data rate constraint, ri (cycles-1),  on an input/
output operation vi defines a lower bound on the 
execution rate of the operation 

l Maximum data rate constraint, Ri (cycles-1),  on an I/O 
operation vi defines an upper bound on the execution rate 
of the operation 
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Ex.: Specification of Data Rate ConstraintsEx.: Specification of Data Rate Constraints
process example (a,b,c)

in port a[8],b[8];
out port c[8];

{

boolean x[8],y[8],z[8],w[8];
tag A;
x = read(a);
y = read(b);
z = x * y;
w = x + y;
while(z >= 0) {

while(w >= 0)  { 
write c = y; 
w = w - 1; }

z = z - w;
write c = z;   }

}

A:

attribute “constraint minrate of A = 100 cycles/sample”
attribute “constraint minrate 0 of A = 1 cycles/sample”
attribute “constraint minrate 1 of A = 10 cycles/sample”

1

0

r = 0.01 per cycler = 0.01 per cycle

relativerelative min  min 
constraints --constraints --
indexed by theindexed by the
 corresponding  corresponding 
 loops loops

G

G1

vi



Page 16

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

Timing Constraints and Constraint AnalysisTiming Constraints and Constraint Analysis

l Timing Constraints
l Scheduling
l Constraint Satisfiability
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SchedulingScheduling
l For each invocation of a flow graph model, 

an operation is invoked zero, one, or many 
times depending upon its position on the 
hierarchy of the flow model

The execution times  tk(v) of an operation v are determined
by two separate mechanisms  

The runtime scheduler, γ

The operation scheduler, Ω

determines the invocation time of flow graphs
    

G

G1

vl

x
vi
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Timing Constraints and SchedulingTiming Constraints and Scheduling

l Given a scheduling function, a timing constraint is 
considered satisfied if 

◆ the operation starting times determined by the 
scheduling  function satisfy the inequalities

tk(vj) ≥  tk(vi) +lij       [min delay]

tk(vj) ≤  tk(vi) +uij      [max delay]

ρvi(k) ≤ Ri                 [max rate]

ρvi(k) ≥  ri                  [min rate]

vi

vj
tk(vj) 

tk(vi) 
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Relative SchedulerRelative Scheduler

A (vi) = {vj ∈  V :  vj >* vi ,  vj  is ND or CD}  

tk(vi) ≥     max    [ tk(a)  +   δ (a) + θa(vi)]
a  ∈   A(vi)

For a given vertex vi a set A (vi)  of anchor vertices is defined as the set of 
conditional (CD) and loop, wait (ND) vertices that have a path to vi 

A relative schedule function  Ωr is defined as a set of offsets for each 
operation such that the operation start time satisfies
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Constraint Constraint 
GraphGraph

NOP

cond
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4

rd
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rcv

join
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loop

NOP13
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10wr 11sub
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Modified Relative ScheduleModified Relative Schedule

NOP
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NOP13
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10wr 11

NOP 9
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1 drcv
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Vertex

Relative Offset
                       v1                  v3                 v8    

v1                     --                  --                  --
v2                      0                  --                  --
v3                      0                  --                  --
v4                      1                  0                   --
v5                      1                  0                   --
v6                      1                  0                   --
v7                   (2,4)          (1,3)              --
v8                   (2,4)          (1,3)              --
v9                   (2,4)          (1,3)              --
v10                    --                  --                  --  
v11                    --                  --                  --
v12                    --                  --                  --
v13                    --                  --                   0

0

1

sub

v9

0
0
1
--
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Modified Relative ScheduleModified Relative Schedule

NOP

cond

1

2

4

rd
3

rcv

join

5

7

mpy
6

sub

loop

NOP13

8 10wr 11

NOP 9

NOP 12

0 0

1 drcv

0 0

3 1
0

1

0

0

Vertex

Relative Offset
                       v1                  v3                 v8    

v1                     --                  --                  --
v2                      0                  --                  --
v3                      0                  --                  --
v4                      1                  0                   --
v5                      1                  0                   --
v6                      1                  0                   --
v7                       4                3                  --
v8                    4 5                3                 --
v9                    4  5                  3                  --
v10                    --                  --                  --  
v11                    --                  --                  --
v12                    --                  --                  --
v13                    --                  --                   0

0

1

sub

v9

0
0
1
--

5
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Constraint SatisfiabilityConstraint Satisfiability
l For constraint analysis purposes, it is not necessary to 

determine a schedule of the operations, but only to 
verify the existence  of a schedule

Constraint satisfiabilityConstraint satisfiabilityConstraint satisfiability identifying conditions under which
no solution (i.e., schedule) exists
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ND operationsND operations
l In the presence of ND operations

◆ satisfiability analysis attempts to determine the existence  
of a schedule of operations for all possible (and 
conceivable) values of the delay of the  ND operations

Modified relative scheduling - Min/Max Delay ConstraintsMin/Max Delay ConstraintsMin/Max Delay Constraints

A minimum delay constraint is always satisfiable

tk(vi) ≥     max    [ ta  +   δ (a) + |θa(vi)|∞ ]
a  ∈   Ab(vi)

For each constraint lij solution can be constructed such that

θvj(vi)   ≥   max (l(vj,vj), lij) 

A maximum delay constraint may not always be satisfiable
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Satisfiability - Delay ConstraintsSatisfiability - Delay Constraints

A constraint graph is considered feasible if it contains 
no positive cycle when the delay of the ND operations  
is assigned to zero.

Condition Condition Condition necessary and sufficientnecessary and sufficientnecessary and sufficient to determine the  to determine the  to determine the satisfiabilitysatisfiabilitysatisfiability   
of constraints in the presence of of constraints in the presence of of constraints in the presence of NDNDND operations: operations: operations:

Feasibility:Feasibility:Feasibility:

Operation delay constraints are satisfiable if and only if

the constraint graph is feasible

there exists no cycles with ND operations
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ExamplesExamples

a

vi

vj

δa

-uij

a1 a2

vi vj

-uij

δa1 δa2

a1 a2

vi vj

-uij

δa2δa2

Constraints are not satisfiable
(maybe feasible)

δa1

Constraints are satisfiablecan be modified
such that...

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

Max Rate ConstraintsMax Rate Constraints

lm(G) ≥ Ri
-1 

A max-rate constraint, Ri, in G is satisfied if 

As with minimum delay constraints, maximum rateAs with minimum delay constraints, maximum rateAs with minimum delay constraints, maximum rate
constraints  are always satisfiableconstraints  are always satisfiableconstraints  are always satisfiable

when the lower bound lm(G) ≤ Ri
-1  the max-rate constraint 

can still be satisfied by an appropriate choice of overhead 
delay that is applicable to every execution of G

G

γ lm

vn

v0min
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Min Rate ConstraintMin Rate Constraint

G

viγ(G)

rrriii

A minimum rate constraint ri on an operation vi ∈  V(G),  where
G contains no ND operations is satisfiable if

γ(G) + lM(G) ≤  (τ/ri)

overhead delay

bound on 
latency

 lM(G) 

l A minimum rate constraint places an upper bound on 
the interval of successive executions of an operation

max
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Min Rate ConstraintsMin Rate Constraints
General case: involves two bounds 

G

Gv

v
xv

viγ(G)

rrriii

λ(G)

γ(G) +λ(G) ≤  (τ/ri)

xk
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Min Rate ConstraintsMin Rate Constraints
General case: involves two bounds 

G

Gv

v
xv

viγ(G)

rrriii

λ(G)

γ(G) +λ(G) ≤  (τ/ri)

xk
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Upper Bound on Overhead DelayUpper Bound on Overhead Delay
γ(G):= [lM(G+)+ γ(G+)] - lm(G) 

1

+

+

0

1 0

0

0

2

+

+

0

1 6

0

0

2

3

A

v2

G+ G

min rate
constraint

1

+

+

0

1 0

0

0

2

+

+

0

1 6

0

0

2

3

A
v2

G+

G

γk(G+)

lm(G) lM(G+)

upper bound

subtracting from 
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Min Rate: satisfiability Min Rate: satisfiability 

G+

Ga

G0

c

γavail

feasible by
the runtime
scheduler

Max delay (min rate) between two executions of vi occurs  
when the entire hierarchy is traversed with just one execution 
of the link operations that lead to vi.

vi
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Min Rate ConstraintsMin Rate Constraints
General case: involves two bounds 

G

Gv

v
xv

viγ(G)

rrriii

λ(G)

γ(G) +λ(G) ≤  (τ/ri)

xk
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Min Rate Constraints (with ND operations)Min Rate Constraints (with ND operations)

The latency λ(G) needs to be bounded
In the presence of In the presence of In the presence of NDNDND operations in G: operations in G: operations in G:

relative rate constraints -- represented as a backward edge (i.e., max delay 
constraint) from G’s sink to source vertices => ND cycle in the constraint graph

vN

v0
G

γk(G)λ(G)
link

vi

vN

v0
G

-(1/rvi)

vi
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ND Operations: Data-dependent LoopsND Operations: Data-dependent Loops
The loop index determines the number of times the loop body is
invoked for each invocation of the loop link operation  

=> delay of the loop operation is its loop index times the latency 
      of the loop body 

G

Gvv

If the constrained graph (G) contains at most  one 
loop operation, v, on a path from source to sink

 The minimum  rate constraint can be seen 
as a bound on the number of times the loop
 body (G) is invoked.

x

bound on loop index, xbound on loop index, xbound on loop index, x
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Satisfiability of Min Rate ConstraintsSatisfiability of Min Rate Constraints

xv :=
τ . ri-1   -  γ(G) - lM(G) + µ(v)  

lM(Gv)

Consider a flow graph G with an ND operation v representing 
a loop in the flow graph

A minimum rate constraint ri on operation vi ∈ V(G) andvi  ≠ v is
satisfiable if the loop index, xv indicating the number of times
Gv is invoked for each execution of v is  less than the bound 

G

Gv

v

xv
vi

µ(v)  mobility of operation v

defined as the difference between the longest path that goes through v and lM 

+ 1
3

Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98Margarida Jacome - UT Austin -  Spring 98

Relative Min Rate ConstraintsRelative Min Rate Constraints

G

Gv

v

xv
viγ(G)

bound on 
overhead
delay

rrriii

xv :=
τ . ri-1   -  γ(G) - lM(G) + µ(v)  

lM(Gv)
+ 1

zero

Relative min rate constraint relative to G ==> applied when 
G is enabled and executing 

zero
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Constraint Satisfiability in VulcanConstraint Satisfiability in Vulcan

1. Construct the Constraint Graph
◆ add forward edges for minimum delay and 

maximum rate constraints
◆ add backward edges for maximum delay 

and (relative) minimum rate constraints
2. Identify cycles by path enumeration for each 

of the backward edges in the constraint graph
⇒  check for constraint satisfiability, bound    

delays, etc.
3. Propagate minimum rate constraints up the 

graph hierarchy


