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Synchronous Dataflow
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Properties

•  Flow of control is predictable
at compile time

•  Schedule can be constructed
once and repeatedly executed

•  Suitable for synchronous
multirate signal processing



UNIVERSITY OF CALIFORNIA AT BERKELEY

Consistency

1 2 3
O1 O2 O3I3I2I1

Balance equations:

Solve for the smallest integers .

Then schedule according to data dependencies until repeti-
tions  have been met for all actors.

The balance equations have no solution if the graph is
inconsistent. For example:

r1O1 r2I 2=

r2O2 r3I 3=

r i

r i

1 2 3
1 1 1 1
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Multidimensional Dataflow Extension

Balance equations:

Solve for the smallest integers , which then give the num-
ber of repetitions of actor  in dimension .

Higher dimensionality follows similarly.

OA 1, OA 2,,( )
A B

I B 1, I B 2,,( )

r A 1, OA 1, r B 1, I B 1,=

r A 2, OA 2, r B 2, I B 2,=

r X i,
X i
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Example of Multidimensional Dataflow
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Awkwardness of Using SDF for MD Systems

Image
Viewer

2D FFT by row-column decomposition
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Image
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Image to
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Vectors
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Vectors
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Transpose

a 256x256 matrix 1x256 1x256 256x256 256x256

1x2561x256256x256256x256

No data parallelism

Too many extraneous
actors

2-D FFT in MDSDF
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One limitation of 1-D SDF

Suppose we want data exchanged in the following order:

1-D SDF has no compact, scalable representation of this.

Multidimensional dataflow solves this problem.

Desired graph

A1
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More Flexible Data Exchange in MDSDF
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Example: Multilayer Perceptron
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MDSDF Example in Ptolemy

Generalize streams to multidimensional
partial orderings for representing

multidimensional operations.
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Generalization to Arbitrary Lattices

Source

1 1

1– 1

1 1

1– 1

time

time

•  MDSDF handles only rectanglularly sampled signals.

•  GMDSDF handles signals on arbitrary lattices,
without sacrificing compile-time schedulability.
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Uses of Non-rectangular Systems

Non-rectangular systems are used in a variety of contexts:
•  2:1 interlaced TV (NTSC) [Dub85][ManCorMia93].

•  Directional decompositional filterbanks [Bam90].

•  Digital TV with FCO and quincunx sampling [KovVet93].

•  Filterbanks for interlaced to progressive conversion [VetKovLeG90].

•  Array signal processing with hexagonal geometries [DudMer84].

•  Filter design techniques for non-rectangular lattices [AnsLee91][EvaMcc94].

S L1 L2 M T

A B C
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Non-rectangular Sampling

t0

t1

2

1

V 1 1–

1 2
=

1

2

t0

t1

V 2 0

0 1
=

Rectangular sampling

Non-rectangular sampling

Definition:The set of all sample points given by ,  is called the
lattice generated by . It is denoted .

t̂ V n̂= n̂ ℵ∈
V LAT V( )
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The Fundamental Parallelpiped

Thefundamental parallelpiped, denoted by , is the set of points given by
where  with .

FPD V( ) Vx
x x1 x2,[ ]T= 0 x1 x2 1<,≤

Definition:The set of integer points in
 is denoted as .

Lemma:  for an
integer matrix .

FPD V( ) N V( )

J V( ) N V( ) det V( )= =
V

0 1 2-1-2

1

2

3

4

,L 2 2–

3 2
=
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Multidimensional Decimators

M-D decimation is given by the relationship:

where  is defined on the points ,  being the sampling matrix.

y n̂( ) x n̂( ) n̂ LAT VI M( )∈,=

x VI k VI

M 2 0

0 3
= M 1 1

2 2–
=

Samples kept

Samples dropped

VI
2 1

0 1
=

M 1 1

2 2–
=

2

2

4

Decimation ratio:

det M( )
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Multidimensional Expanders

M-D expander:

where x is defined at the points ,  being the sampling matrix.

y n( )
x n( ) n LAT VI( )∈

0 otherwise



 n LAT VI L

1–( )∈∀=

VI k VI
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0 1
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L 1 1
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=
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L 2 0

0 2
=

L 1 1

2 2–
=

Expansion ratio:

det L( )
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Genarlized MDSDF (GMDSDF): Sources

Definition:Thecontainability condition: let  be a set of integer points in . We say
that  satisfies thecontainability condition if there exists an  matrix  such that

.

Definition:We will assume that any source actor in the system produces data in the fol-
lowing manner. A source  will produce a set of samples  on each firing such that each

sample in  will lie on the lattice . We assume that the renumbered set  satis-

fies the containability condition.

X ℜm

X m m× W

N W( ) X=

S ζ

ζ LAT VS( ) ζ

S

a b c

d e f

g h i
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c f
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g

d h

Q 3 1.5

3 1.5
=VS

1 1

2 2–
=

Renumbering

ζ
,ζ VS

1– x : x ζ∈{ }= ζ N Q( )=
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Concise Problem Statement

MDSDF
•  Rectangular lattice

•  Regions of data
produced =
rectangular arrays

•  Rectangular arrays
specified concisely
by tuples of
produced/
consumed.

•  Coordinate axes for
dataflow along arcs
orthogonal to each
other (x and y axes).

GMDSDF
•  Arbitrary lattice

•  Regions of data
produced =
parallelograms

•  Parallelograms
specified concisely
as the set of integer
points inside a
support matrix.

•  Coordinate axes
for dataflow along
arcs not
necessarily
othogonal.
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Support Matrices

M
e f

Le f

Theorem:

For the decimator,

 and .

For the expander,

, and .

V f VeM= Wf M
1–
We=

V f VeL
1–

= Wf LWe=

Want to describe regions where the data is contained.

•  In MDSDF, these are ordinary arrays

•  In the extension, these aresupport matrices.

Ve We, V f Wf, V f Wf,Ve We,
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Semantics of GMDSDF

MS

,M 1 1

2 2–
= M 2 2×=

LSA AB

A B

T

,L 2 2–

3 2
= L 5 2×=

0 1 2-1-2

1

2

3

4

VSA
1 0

0 1
=

WSA
3 0

0 3
=

 consumes (1,1) and produces (5,2).

 consumes (2,2) and produces (1,1)on average.

 consumes (1,1)

A

B

T
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GMDSDF — Balance Equations

•  We don’t know yet exactly how many samples on each firing the decimator
will produce.

•  Idea: Assume that it produces (1,1) and solve balance equations:

, ,

•  Solution:

3rS 1, 1r A 1,=

3rS 2, 1r A 2,=

5r A 1, 2rB 1,=

2r A 2, 2rB 2,=

r B 1, rT 1,=

r B 2, rT 2,=

rS 1, 2 rS 2,, 1= =

r A 1, 6 r A 2,, 3= =

rB 1, 15 rB 2,, 3= =

rT 1, 15 rT 2,, 3= =
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Dataspace on arc AB

0 1 2-1-2

1
2
3
4 } samples retained by

decimator

Samples added by
expander, discarded by
decimator

Original samples
produced by source

2x2 rectangle
consumed by
decimator
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Balance equations cont’d

Question: Have we really “balanced”?

No: by counting the number of samples that have been kept in the previous slide.

More systematically:

WSA
3 0

0 3

rS 1, 0

0 rS 2,

3rS 1, 0

0 3rS 2,
= =

WAB LWSA
2 2–

3 2

3rS 1, 0

0 3rS 2,

6rS 1, 6– rS 2,

9rS 1, 6rS 2,
= = =

WBT M
1–
WAB

1
4
--- 2 1

2 1–

6rS 1, 6– rS 2,

9rS 1, 6rS 2,

1
4
---

21rS 1, 6rS 2,–

3rS 1, 18rS 2,–
= = =
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Balance equations cont’d

Want to know if

We have

The right hand side becomes

Therefore, we need

The balance equations gave us .

With these values, we get

.

This matrix has47 points inside its FPD (determined by drawing it out).

==> Balance equation solution is not quite right.

N WBT( )
N WAB( )

M
------------------------=

N WAB( ) det WAB( ) 90rS 1, rS 2,= =

90rS 1, rS 2,
4

--------------------------
45rS 1, rS 2,

2
--------------------------=

rS 1, rS 2, 2k= k 0 1 2 …, , ,=

rS 1, 2 rS 2,, 1= =

WBT
21 2⁄ 3 2⁄–

3 2⁄ 9 2⁄–
=
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Augmented Balance Equations
To get the correct balance, take into account the constraint given by

Sufficiency: force  to be an integer matrix.

==>

==>

Therefore,

.

•  So decimator produces (1,1) on average but has cyclostatic behavior.

Production sequence:2,1,1,2,1,0,1,1,0,1,2,1,1,2,1,...

Theorem:
Always possible to solve these augmented balance equations.

N WBT( )
N WAB( )

M
------------------------=

WBT

rS 1, 4k k 1 2 …, ,=,=

rS 2, 2k k 1 2 …, ,=,=

rS 1, 4 rS 2,, 2= =
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Effect of Different Factorizations

Suppose we let  instead. Balance equations give:

Also,

It turns out that

as required.

==> Lower number of overall repetitions with this factoring choice.

det M( ) 1 4×=

rS 1, 1 rS 2,, 2= =

r A 1, 3 r A 2,, 6= =

rB 1, 15 rB 2,, 3= =

rT 1, 15 rT 2,, 3= =

WBT
21 4⁄ 3–

3 4⁄ 9–
=

N WBT( ) 45=
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Dataspace on Arc AB

1x4 rectangle
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decimator
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produced by source
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Summary of Extended Model

•  Each arc has associated with it a lattice-generating matrix, and a support
matrix.

•  The source actor for an arc establishes the ordering of the data on that arc.

•  Expander: consumes (1,1) and produces , ordered as an
rectangle where .

•  Decimator: consumes an  rectangle, where  and
produces (1,1) on average.

•  Write down balance equations.

•  Additional equations for support matrices on decimator outputs.

•  The above two sets are simultaneously solved to determine the smallest non-
zero number of times each node is to be invoked in a periodic schedule.

•  Actors are then scheduled as in SDF or MDSDF.

FPD L( ) L1 L2,( )
L1L2 det L( )=

M1 M2,( ) M1M2 det M( )=
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S L1 L2 M T

A B C

Aspect Ratio Conversion

Format conversion of 2:1 interlaced video from 4/3 aspect ratio to 16/9 aspect ratio.
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Future Work in GMDSDF
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GMDSDF (Scheduling)

Array-oriented language (graphical syntax for enabling rules ?)
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Concrete Data Structures

•  “Cells” can have specific “Values”

•  Enabling relationship says when a cell can be filled.

•  “Cell” dependency partial order can be arbitrary

•  Formalizes most forms of “real-world” data structures:
lists, trees, arrays etc.

•  Kahn-Plotkin sequential functions on CDS provide an
elegant model of computation with many formal
properties, like full abstraction.

•  CDS approach has been mostly semantic; need to sort
out operational issues (like scheduling).

0

0 1 0

c2

c0 c1

c0

c1

(c0,0)(c1,0) c2

(c0,1) c2
{(c0,0)} {(c1,0)} {(c0,1)}

{(c0,0), (c1,0)} {(c1,0), (c0,1)} {(c0,1), (c2,0)}

{(c0,0), (c1,0), (c2,0)} {(c0,0), (c0,1), (c2,0)}

Cells Enabling Rules CDS
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Array-OL

•  Array-oriented language developed at Thomson

•  Graphical syntax for specifying “array access patterns”
•  In many multidimensional programs, manipulating data aligned in various

dimensions is a challenge. For example:Transpose.

•  Patterns specified by “fitting” and “paving” relationships.

•  Combine with MDSDF...
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Conclusion

•  MDSDF extension allows modeling of MD DSP
systems using rectangular sampling schemes.

•  GMDSDF allows modeling of MD DSP systems using
arbitrary sampling schemes.

•  Both models can be scheduled statically—thus ideally
suited for prototyping.

•  Integration of AOL concepts, along with CDS
generalization might result in a very powerful MoC for
multidimensional programming.


