Multidimensional Synchronous Dataflow

Praveen Murthy
Dept. of EECS
UC Berkeley
Joint work with Edward A. Lee

Synchronous Dataflow

Properties

- Flow of control is predictable at compile time
- Schedule can be constructed once and repeatedly executed
- Suitable for synchronous multirate signal processing

Consistency

Balance equations:

$$
\begin{aligned}
& r_{1} O_{1}=r_{2} I_{2} \\
& r_{2} O_{2}=r_{3} I_{3}
\end{aligned}
$$

Solve for the smallest integers r_{i}.
Then schedule according to data dependencies until repetitions r_{i} have been met for all actors.
The balance equations have no solution if the graph is inconsistent. For example:

Multidimensional Dataflow Extension

Balance equations:

$$
\begin{aligned}
& r_{A, 1} O_{A, 1}=r_{B, 1} I_{B, 1} \\
& r_{A, 2} O_{A, 2}=r_{B, 2} I_{B, 2}
\end{aligned}
$$

Solve for the smallest integers $r_{X, i}$, which then give the number of repetitions of actor X in dimension i.
Higher dimensionality follows similarly.

Example of Multidimensional Dataflow

$$
\begin{gathered}
r_{A, 1}=r_{A, 2}=1 \\
r_{D C T, 1}=5, \quad r_{D C T, 2}=6
\end{gathered}
$$

Awkwardness of Using SDF for MD Systems

One limitation of 1-D SDF

Suppose we want data exchanged in the following order:

1-D SDF has no compact, scalable representation of this. Multidimensional dataflow solves this problem.

More Flexible Data Exchange in MDSDF

Example: Multilayer Perceptron

Dataflow graph
Precedence graph

MDSDF Example in Ptolemy

Generalization to Arbitrary Lattices

- MDSDF handles only rectanglularly sampled signals.
- GMDSDF handles signals on arbitrary lattices, without sacrificing compile-time schedulability.

Uses of Non-rectangular Systems

Non-rectangular systems are used in a variety of contexts:

- 2:1 interlaced TV (NTSC) [Dub85][ManCorMia93].
- Directional decompositional filterbanks [Bam90].
- Digital TV with FCO and quincunx sampling [KovVet93].
- Filterbanks for interlaced to progressive conversion [VetKovLeG90].
- Array signal processing with hexagonal geometries [DudMer84].
- Filter design techniques for non-rectangular lattices [AnsLee91][EvaMcc94].

Non-rectangular Sampling

Rectangular sampling

Non-rectangular sampling

$$
V=\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]
$$

Definition: The set of all sample points given by $\hat{t}=V \hat{n}, \hat{n} \in \mathbb{N}$ called the lattice generated by V. It is denoted $\operatorname{LAT}(V)$.

The Fundamental Parallelpiped

The fundamental parallelpiped, denoted by $\operatorname{FPD}(V)$, is the set of points given by $V x$ where $x=\left[x_{1}, x_{2}\right]^{T}$ with $0 \leq x_{1}, x_{2}<1$.

Definition: The set of integer points in $F P D(V)$ is denoted as $N(V)$.

Lemma: $J(V)=|N(V)|=|\operatorname{det}(V)|$ for an integer matrix V.

Multidimensional Decimators

M-D decimation is given by the relationship:

$$
y(\hat{n})=x(\hat{n}), \hat{n} \in \operatorname{LAT}\left(V_{I} M\right)
$$

where x is defined on the points $V_{I} k, V_{I}$ being the sampling matrix.

- Samples kept
$V_{I}=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$
$M=\left[\begin{array}{cc}1 & 1 \\ 2 & -2\end{array}\right]$

Decimation ratio:
$|\operatorname{det}(M)|$

Multidimensional Expanders

M-D expander:

$$
y(n)=\left(\begin{array}{cc}
x(n) & n \in \operatorname{LAT}\left(V_{I}\right) \\
0 & \text { otherwise }
\end{array}\right) \forall n \in \operatorname{LAT}\left(V_{I} L^{-1}\right)
$$

where x is defined at the points $V_{I} k, V_{I}$ being the sampling matrix.

Rectangular expansion Non-rectangular expansion

$$
L=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

	- Samples kept - Samples added
$\cdots \cdot$	
- \cdot -	
$\cdots \cdot$	
- : !	

$$
L=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]
$$

Renumbered samples from the expanders ouput

Expansion ratio:
$|\operatorname{det}(L)|$

Genarlized MDSDF (GMDSDF): Sources

Definition: The containability condition: let X be a set of integer points in \mathfrak{R}^{m}. We say that X satisfies the containability condition if there exists an $m \times m$ matrix W such that $N(W)=X$.

Definition: We will assume that any source actor in the system produces data in the following manner. A source S will produce a set of samples ζ on each firing such that each sample in ζ will lie on the lattice $\operatorname{LAT}\left(V_{S}\right)$. We assume that the renumbered set $\bar{\zeta}$ satisfies the containability condition.

$$
\begin{gathered}
V_{S}=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right] \\
\bar{\zeta}=\left\{V_{\bar{s}}^{-1} x: x \in \zeta\right\}, \bar{\zeta}=N(Q)
\end{gathered}
$$

Concise Problem Statement

MDSDF

- Rectangular lattice

- Regions of data produced $=$ rectangular arrays
 consumed.
- Coordinate axes for dataflow along arcs orthogonal to each other (x and y axes).

GMDSDF

- Arbitrary lattice
- Regions of data produced $=$ parallelograms
- Parallelograms specified concisely as the set of integer points inside a support matrix.
- Coordinate axes for dataflow along arcs not necessarily othogonal.

Support Matrices

Want to describe regions where the data is contained.

- In MDSDF, these are ordinary arrays
- In the extension, these are support matrices.

Theorem:

For the decimator,

$$
V_{f}=V_{e} M \text { and } W_{f}=M^{-1} W_{e} .
$$

For the expander,

$$
V_{f}=V_{e} L^{-1}, \text { and } W_{f}=L W_{e}
$$

Semantics of GMDSDF

$$
V_{S A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A=\left[\begin{array}{cc}
2 & -2 \\
3 & 2
\end{array}\right],|L|=5 \times 2 \quad M=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right],|M|=2 \times 2
$$

GMDSDF - Balance Equations

- We don't know yet exactly how many samples on each firing the decimator will produce.
- Idea: Assume that it produces $(1,1)$ and solve balance equations:

$$
\begin{aligned}
& 3 r_{S, 1}=1 r_{A, 1} \quad 5 r_{A, 1}=2 r_{B, 1} \quad r_{B, 1}=r_{T, 1} \\
& 3 r_{S, 2}=1 r_{A, 2}{ }^{2} 2 r_{A, 2}=2 r_{B, 2} r_{B, 2}=r_{T, 2}
\end{aligned}
$$

- Solution:

$$
\begin{aligned}
& r_{S, 1}=2, r_{S, 2}=1 \\
& r_{A, 1}=6, r_{A, 2}=3 \\
& r_{B, 1}=15, r_{B, 2}=3 \\
& r_{T, 1}=15, r_{T, 2}=3
\end{aligned}
$$

Dataspace on arc AB

Balance equations cont'd

Question: Have we really "balanced"?

No: by counting the number of samples that have been kept in the previous slide.

More systematically:

$$
\begin{gathered}
W_{S A}=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
r_{S, 1} & 0 \\
0 & r_{S, 2}
\end{array}\right]=\left[\begin{array}{cc}
3 r_{S, 1} & 0 \\
0 & 3 r_{S, 2}
\end{array}\right] \\
W_{A B}=L W_{S A}=\left[\begin{array}{ll}
2 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{cc}
3 r_{S, 1} & 0 \\
0 & 3 r_{S, 2}
\end{array}\right]=\left[\begin{array}{cc}
6 r_{S, 1} & -6 r_{S, 2} \\
9 r_{S, 1} & 6 r_{S, 2}
\end{array}\right] \\
W_{B T}=M^{-1} W_{A B}=\frac{1}{4}\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{cc}
6 r_{S, 1} & -6 r_{S, 2} \\
9 r_{S, 1} & 6 r_{S, 2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
21 r_{S, 1} & -6 r_{S, 2} \\
3 r_{S, 1} & -18 r_{S, 2}
\end{array}\right]
\end{gathered}
$$

Balance equations cont'd

Want to know if

$$
\left|N\left(W_{B T}\right)\right|=\frac{\left|N\left(W_{A B}\right)\right|}{|M|}
$$

We have

$$
\left|N\left(W_{A B}\right)\right|=\left|\operatorname{det}\left(W_{A B}\right)\right|=90 r_{S, 1} r_{S, 2}
$$

The right hand side becomes

$$
\frac{90 r_{S, 1} r_{S, 2}}{4}=\frac{45 r_{S, 1} r_{S, 2}}{2}
$$

Therefore, we need

$$
r_{S, 1} r_{S, 2}=2 k \quad k=0,1,2, \ldots
$$

The balance equations gave us $r_{S, 1}=2, r_{S, 2}=1$.
With these values, we get

$$
W_{B T}=\left[\begin{array}{cc}
21 / 2 & -3 / 2 \\
3 / 2 & -9 / 2
\end{array}\right] .
$$

This matrix has 47 points inside its FPD (determined by drawing it out).
==> Balance equation solution is not quite right.

Augmented Balance Equations

To get the correct balance, take into account the constraint given by

$$
\left|N\left(W_{B T}\right)\right|=\frac{\left|N\left(W_{A B}\right)\right|}{|M|}
$$

Sufficiency: force $W_{B T}$ to be an integer matrix.

$$
\begin{aligned}
& =\Rightarrow r_{S, 1}=4 k, k=1,2, \ldots \\
& =\Rightarrow r_{S, 2}=2 k, k=1,2, \ldots
\end{aligned}
$$

Therefore,

$$
r_{S, 1}=4, r_{S, 2}=2
$$

- So decimator produces $(1,1)$ on average but has cyclostatic behavior.

Production sequence: $2,1,1,2,1,0,1,1,0,1,2,1,1,2,1, \ldots$

Theorem:

Always possible to solve these augmented balance equations.

Effect of Different Factorizations

Suppose we let $|\operatorname{det}(M)|=1 \times 4$ instead. Balance equations give:

$$
\begin{aligned}
r_{S, 1} & =1, r_{S, 2}=2 \\
r_{A, 1} & =3, r_{A, 2}=6 \\
r_{B, 1} & =15, r_{B, 2}=3 \\
r_{T, 1} & =15, r_{T, 2}=3
\end{aligned}
$$

Also,

$$
W_{B T}=\left[\begin{array}{rr}
21 / 4 & -3 \\
3 / 4 & -9
\end{array}\right]
$$

It turns out that

$$
\left|N\left(W_{B T}\right)\right|=45
$$

as required.
$==>$ Lower number of overall repetitions with this factoring choice.

Dataspace on Arc AB

1×4 rectangle consumed by decimator

- Original samples produced by source
- samples retained by
- \int decimator

Samples added by

- expander, discarded by
decimator

Summary of Extended Model

- Each arc has associated with it a lattice-generating matrix, and a support matrix.
- The source actor for an arc establishes the ordering of the data on that arc.
- Expander: consumes (1,1) and produces $F P D(L)$, ordered as an $\left(L_{1}, L_{2}\right)$ rectangle where $L_{1} L_{2}=|\operatorname{det}(L)|$.
- Decimator: consumes an $\left(M_{1}, M_{2}\right)$ rectangle, where $M_{1} M_{2}=|\operatorname{det}(M)|$ and produces $(1,1)$ on average.
- Write down balance equations.
- Additional equations for support matrices on decimator outputs.
- The above two sets are simultaneously solved to determine the smallest nonzero number of times each node is to be invoked in a periodic schedule.
- Actors are then scheduled as in SDF or MDSDF.

Aspect Ratio Conversion

Format conversion of 2:1 interlaced video from $4 / 3$ aspect ratio to $16 / 9$ aspect ratio.

Future Work in GMDSDF

Concrete Data Structures (Semantics)

$(\mathrm{c} 0,0)(\mathrm{c} 1,0) \longmapsto \mathrm{c} 2$ $(\mathrm{c} 0,1) \longmapsto \mathrm{c} 2$

Cells Enabling Rules

$$
\square
$$

GMDSDF (Scheduling)

Array-oriented language (graphical syntax for enabling rules ?)

Concrete Data Structures

- "Cells" can have specific "Values"
- Enabling relationship says when a cell can be filled.
- "Cell" dependency partial order can be arbitrary
- Formalizes most forms of "real-world" data structures: lists, trees, arrays etc.
- Kahn-Plotkin sequential functions on CDS provide an elegant model of computation with many formal properties, like full abstraction.
- CDS approach has been mostly semantic; need to sort out operational issues (like scheduling).

$\vdash \mathrm{c} 0$
$\vdash \mathrm{c} 1$
$(\mathrm{c} 0,0)(\mathrm{c} 1,0) \vdash \mathrm{c} 2$
$(\mathrm{c} 0,1) \vdash \mathrm{c} 2$
\quad Enabling Rules

$$
\begin{aligned}
& \{(\mathrm{c} 0,0),(\mathrm{c} 1,0),(\mathrm{c} 2,0)\}\{(\mathrm{c} 0,0),(\mathrm{c} 0,1),(\mathrm{c} 2,0)\} \\
& \{(\mathrm{c} 0,0),(\mathrm{c} 1,0)\} \quad\{(\mathrm{c} 1,0),(\mathrm{c} 0,1)\} \quad\{(\mathrm{c} 0,1),(\mathrm{c} 2,0)\} \\
& \{(\mathrm{c} 0,0)\} \quad\{(\mathrm{c} 1,0)\} \quad\{(\mathrm{c} 0,1)\} \\
& \text { CDS }
\end{aligned}
$$

Array-OL

- Array-oriented language developed at Thomson
- Graphical syntax for specifying "array access patterns"
- In many multidimensional programs, manipulating data aligned in various dimensions is a challenge. For example: Transpose.
- Patterns specified by "fitting" and "paving" relationships.
- Combine with MDSDF...

Conclusion

- MDSDF extension allows modeling of MD DSP systems using rectangular sampling schemes.
- GMDSDF allows modeling of MD DSP systems using arbitrary sampling schemes.
- Both models can be scheduled statically-thus ideally suited for prototyping.
- Integration of AOL concepts, along with CDS generalization might result in a very powerful MoC for multidimensional programming.

