December 8, 1999

Text-Independent
Speaker Identification

Til T. Phan and Thomas Soong

1.0

Introduction

11

1.2

Motivation

The problem of speaker identification is an area with many different
applications. The most practical use can be found in applications dealing
with security, surveillance, and automatic transcription in a multi-speaker
environment.

Speaker identification is a difficult task, and the task has several different
approaches. The state of the art for speaker identification techniques
include dynamic time warped(DTW) template matching, Hidden Markov
Modeling(HMM), and codebook schemes based on vector quantiza-
tion(VQ)[2]. In this project, the vector quantization approach will be
used, due to ease of implementation and high accuracy [7].

Background

In order to implement the text-independent speaker ID system, one must
go through several steps, including feature extraction, feature matching,
and finally, identification of the speaker. Feature extraction is a method
that takes a small amount of data from the voice signal which can later be
used to generate a representation of each speaker. Feature matching

1of 8

Feature Extraction

1.3

2.0

involves the actual procedure of using vector quantization to identify the
speaker according to the characteristics of the known speakers. We will
discuss each procedure in detail in later sections.

Goals

The goal of this project is to develop and implement an text-independent
speaker identification system. The system should be able to identify
speakers based on the different voice characteristics of each of the known
speakers. This identification should be accomplished regardless of the
sentence spoken.

Feature Extraction

2.1

2.2

Introduction

Feature Extractions the means by which speech data is reduced to much
smaller amounts of data which represent the important characteristics of
the speech. Many varieties of features can be used for speech processing,
such as LPC coefficients, Mel Cepstrum, spectrograph, and others. LPC
coefficients are perhaps the best known and most popular, and these will
be used in this project.

LPC Coefficients

Speech can be (and often is) modeled by a series of pulses from the lar-
ynx, passing through an all-pole transfer function representing the effect
of the vocal tract on the waveform [@]inear Prediction Coefficientor

LPC, represent the specific locations of the poles of the transfer function
(see EQ 1), and can be efficiently computed. Specifically, LP coefficients
are the result of attempting to predict each speech sample as a linear
combination of a certain number of previous samples. The weights used
in this combination are the coefficients.

H(2) = (EQ1)

_ G
p .

1-Y a2z
2

The LP coefficients are typically adaptively computed for short time
intervals over which time invariance is assumed [4]. These frames are
usually between 10ms and 30ms long, and usually windowed by a Ham-

20of 8

Text-Independent Speaker Identification

Feature Extraction

2.3

ming window or a similar windowing function. The two computation
methods, known as tleutocorrelationmethod and theovariance

method both attempt to minimize the mean-square value of the estima-
tion error, given by

p
e(n) = s(n)— Z a;s(n— i) (EQ2)
i=1

The autocorrelation method is the most common approach to determining
the LP coefficients. The autocorrelationsgh)is defined as¢(k) in Eq 3.

and the predictor coefficients can be found by solving the matrix in Eq 4.

[4]

N-1-k

rgk) = 5 s(ns(n+ K (EQ3)
n=0

ry(0) r{(1) ...rp-1)| | r(1)
rg(1) r{0) ... ry(p-2)||a, _ r«(2) (EQ 4)
r{p=1) ry(p=2) ... ry0) a, r«(p)

This matrix equation can be efficiently solved vialtkginson-Durbin
Recursion

Other Features

The LP coefficients can be further transformed to improve accuracy of
classification. One popular transformation produ€epstral Coeffi-

cients which are defined as the inverse FFT of the logarithm of the FFT
of the LP coefficients. These coefficients have been shown [1] to provide
the best results in a speaker identification application, as they are consid-
ered to be uncorrelated. The actual FFTs do not need to be explicitly
computed, as there exists a recursive formal for this computation, given
as [4]

n-1

Gpm = ay+ Y Hipan_, (EQ5)
i=1

The cepstral coefficients can further be weighted to emphasize certain
coefficients and de-emphasize others. This process is kndifteraisg

and also helps reduce the effects of noise. One approach uses simple lin-
ear weighting, also known &®quency liftering A more complex

Text-Independent Speaker Identification 30f 8

Speaker Classification

2.4

3.0

approach uses a raised sine window. This is cabedipass liftering
(BPL) and is defined as:

L _. (1
+ =Sin=— n=12..,L
27 0L0 (EQ6)
0

otherwise

w(n) =

DDDED

Implementation

The voice data is sampled at 16000 Hz, and is split up into frames of 240
samples, which corresponds to 15ms. The frames overlap by 80 samples,
meaning there is a frame every 10ms. Each frame is run through a simple
filter with transfer function

H(z) = — = — (EQ7)

1-0.937%

for the purpose of pre-emphasizing the high frequencies of the speech.
The frame is then multiplied by a Hamming window, and 12th order LPC
autocorrelation analysis is run on it.

Speaker Classification

3.1

3.2

Introduction

In a speaker identification system, each speaker must be uniquely repre-
sented in an efficient manner. The means to do this is cadtédr quan-
tization Vector quantization is a process of mapping vectors from a large
vector space to a finite number of regions in that space. The data is thus
significantly compressed, yet still accurately represented. Without quan-
tizing the feature vectors, the system would be too large and computa-
tionally complex. In a speaker recognition system, the vector space
contains a speaker’s characteristic vectors, which are obtained from the
feature extraction described above. After vector quantization takes place,
only a few representative vectors remain, collectively known as that
speaker'sodebookThe codebook then serves as a delineation for the
speaker, and is used when training a speaker in the system.

Vector Quantization

In our system, we are quantizing about 1200 feature vectors down to 128
codebook vectors. These vectors are individually knoweeasoid vec-

40f 8

Text-Independent Speaker Identification

Speaker Classification

3.3

3.3.1

3.3.2

tors. Ideally, a centroid vector should represent a cluster of feature vec-
tors. The goal is to obtain 128 vectors such that the overall distortion
(Euclidean distance) from each feature vector to its nearest centroid in
the vector space is minimized. With minimal distortion, an accurate rep-
resentation of the speaker can be obtained.

Codebooks

There are several different approaches to finding an optimal codebook for
a speaker. The idea is to begin with a vector quantizer and a codebook
and improve upon the initial codebook by iterating until the optimal one
is found. The major problem was generating the initial codebook of 128
vectors.

Binary Splitting

The first method we tried is call&thary splitting One begins with one
centroid vector, which is the centroid for the entire set of training vectors.
From there the centroid is split into two by multiplying the vector by cer-
tain factors. The new large codebook is optimized according to the
meansalgorithm described below. The process is repeated until the size
desired is obtained. We used the mean of each vector dimension to come
up with the first centroid. Then we multiplied that centroid by two fac-
tors, (14e) and(1-e), to get the two new centroidsis usually in the

range of 0.01 to 0.05. Then we used the k-means algorithm (see below) to
get the best set of centroids for the split codebook. These steps were
repeated until a 128-vector codebook was obtained. We found that this
method returned a very poor representation of the speaker’s feature vec-
tors, even after optimization [3].

Our next attempt was simply to choose 128 random vectors from the fea-
ture set and optimize those iteratively. This method is catidiom cod-
ing, and was found to be much more effective than binary splitting.

Optimization with K-means

We selected the iterative improvement algorithm knowk-ageangalso
known as the LBG or the generalized Lloyd algorithm). Given a det of
training feature vectorsg{, a,,...,a} characterizing the variability of a

speaker, we want to find a partitioning of the feature vector spage, {S
S,,..., Su} for that particular speaker where S, the whole feature space, is
representedsaS = § U S, U...U §,. Each partition, S forms a nonover-
lapping region and every vector insidasSepresented by the corre-

Text-Independent Speaker Identification 50f 8

Speaker Classification

3.4

3.5

sponding centroid vectdp;, of § [3]. Each iteration of k-means moves

the centroid vectors such that the accumulated distortion between the fea-
ture vectors is lessened. The more iterations you run, the less distortion
you should have.

The algorithm takes each feature vector and compares it to every code-
book vector which are closest to each. That distortion is then calculated
for each codebook vectpas:

[2
i=1

wherev are the vectors in the codebook amlthe training vector[11].
The minimum distortion value is found among all measurements. Then
the new centroid of each region is calculated.iff in the training set,
andx is closer toy; than to any other codebook vector, assida C;. The

new centroid is calculated as whetgs the set of vectors in the training
set that are closer tg than to any other codebook vector [8]. The next

iteration will recompute the regions according to the new centroids. The
total distortion will now be smaller. Iteration continues until a relatively
small percent change in distortion is achieved.

Training

Each speaker records several training sentences, which are concatenated
and from which features are extracted. The accumulated feature vectors
are used to generate a codebook according to the algorithm described
above. This codebook is used for identification.

Matching

The speaker identification system works by taking the feature vectors of
an arbitrary input from one of the trained speakers and comparing them
with all the codebooks in aexhaustive searclirirst, feature extraction is
applied to the unknown speaker’s input sample. Then, for each known
speaker, each vector from the test utterance is quantized to that speaker’s
codebook, and the distortion involved in doing so is saved. The entire test
utterance is evaluated this way, and the sum of the distortions of each
frame represent the quality of the match. This process is repeated for
each speaker, and the one with the least total distortion is chosen as the
speaker [3].

6 of 8

Text-Independent Speaker Identification

Testing

4.0

Testing

4.1

4.2

5.0

Testing

To test our system, we used MatLab. From our large dataset, we divided
it into two partitions. One partition is used to train the system and the
other partition is used to verify the system. The results of the can be seen
from the graphs in our presentation slides. In addition, we came to the
conclusion that feature extraction of the dataset was successful due to the
smaller number of data points on the graphs generated by MatLab.

Results

The overall implementation of the speaker identification system was very
interesting. The MatLab implementation of feature extraction was very
straight forward. This was due to our knowledge of the MatLab software.
The results can be found in our presentation slides.

After the MatLab implementation was done, we attempted to model the
speaker system with Ptolemy. We decided to model the feature extrac-
tion using a synchronous dataflow model. The overall system can be
found in our presentation slides. But in a nutshell, we used stars that
were available in the SDF domain and connected them together and
attempted to code the stars up for our application. Due to our lack of
experience with Ptolemy, we were not succesful to obtain any substain-
tial results.

Conclusions

The vector quantization approach to speaker identification is an efficient
and accurate approach to the problem. The accuracy rate could be
improved by some of more complex voice features mentioned above.
Overall, the system meets the original goals.

Text-Independent Speaker Identification 70of 8

References/Bibliography

6.0

References/Bibliography

1. B. Atal "Automatic Recognition of Speakers from Their Voices”. Pro-

ceedings of the IEEE, vol. 64, April 1976, pp. 460-475.

. Y. Bennani, “Multi-Modular and Hybrid Connetionist Approaches for

Pattern Recognition: Speaker Identification Task”. Carnegie Mellon
Unviversity Department of Electrical and Computer engineering.

. A. Gersho, R. Grayector Quantization and Signal Compression

Kluwer Academic Publishers, Boston, 1992.

. R. Mammone, X. Zhang, R. Ramachandran, “Robust Speaker Recog-

nition”, IEEE Signal Processing Magazine, September 1996.

. Linguistics Data Consortium Web Site, http://www.ldc.upenn.edu/Idc/
. J. Markel, A. GraylLinear Prediction of SpeecBpringer-Verlag,

New York: 1976.

. K. Shikano, “Text-Independent Speaker Recognition Experiments

using Codebooks in Vector Quantization”. CMU Dept. of Computer
Science, April 9, 1985.

. P. Silsbee, “ECE 696 Fall 1996 Homework 5", http://www.ee.odu.edu/

~silshee/ece696/hw5_f96/hw5_f96.html, Old Dominion University,
11 Nov, 1996.

. F. Soong, E. Rosenberg, B. Juang, and L. Rabiner, “A Vector Quanti-

zation Approach to Speaker Recognition”. AT&T Technical Journal,
vol. 66, March/April 1987, pp. 14-26.

10. Texas Instruments Web Site, http://www.ti.com/
11.J. Wiejaczka, et. al., “Word Recognition for the Puzzle Project”, http:/

/sig2.colorado.edu/~puzzle/wordrecog/wordrecog.html#VQ.

12.K. Shikano, “Evaluation of LPC Spectral Matching Measures for Pho-

netic Unit Recognition”. Carnegie Mellon Dept. of Computer Science,
Feb 3, 1986.

8of 8

Text-Independent Speaker Identification

	1.0 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Goals

	2.0 Feature Extraction
	2.1 Introduction
	2.2 LPC Coefficients
	2.3 Other Features
	2.4 Implementation

	3.0 Speaker Classification
	3.1 Introduction
	3.2 Vector Quantization
	3.3 Codebooks
	3.3.1 Binary Splitting
	3.3.2 Optimization with K-means

	3.4 Training
	3.5 Matching

	4.0 Testing
	4.1 Testing
	4.2 Results

	5.0 Conclusions
	6.0 References/Bibliography

