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EXECUTIVE SUMMARY 
 

The purpose of this final report is to give a comprehensive account of the results of the Sound 
Shield Senior Design Project. This report details the design problem, solution, implementation, 
and test results for creating a dynamic, real-time noise-masking software package. Sound shield 
achieves this by performing frequency analysis on the noise outside of a room and generating a 
custom mask to cover that noise to the perception of the user inside of that room. Sound Shield is 
capable of running on multiple platforms and contains a user interface that enables the user to 
access the software via a web browser on any other device connected to the same wifi network. 
Sound Shield is designed to run in the background on the user’s personal computer or a 
dedicated embedded system such as the Raspberry Pi. The limiting factor placed on Sound 
Shield’s design specifications is that the output mask must create a soothing sonic environment 
for the user at all times. That is to say, the algorithm must track the changing frequency content 
of the noise in order to adapt its mask to cover that noise before the user becomes distracted by 
it. However, the mask must never become as jarring to the user as the noise itself. This means 
that if a loud, transient noise suddenly occurs, the software must be smart enough to let that noise 
go unmasked, so as not to disturb the user even more. 
 
Our team was able to devise a solution that is robust enough to detect and adapt to most real-
world noise situations that one would want to mask, but which is also delicate enough to let 
extreme noise cases go unmasked so as to prioritize a peaceful sonic environment for the user at 
all times. We developed this solution using the c programming language, which is capable of 
performing the necessary real-time DSP calculations in the background on a user’s personal 
computer. We designed the program to interface with the user’s pre-existing audio setup, so that 
the software could run on anything from consumer-grade audio hardware to professional audio 
equipment. We also used Python, Matlab, JavaScript, CSS, cmake, Websockets, and NGINX to 
meet all of our project’s problem specifications and create a noise-masking prototype that is 
smart, user-friendly, and capable of being expanded into a marketable solution. 
 
The testing data, which we present in this report, confirms that our prototype performs according 
to the specifications defined in our problem statement. Our masking algorithm begins to react 44 
ms after the noise is detected (during the next callback function), but only adapts its 
characteristics slowly so as to not startle the user. Similarly, our mask reacts to adjust its volume 
to at least 4dB over that of the noise within all audible frequency bands, so that the noise is 
masked to the perception of the user, unless the noise occurs too suddenly or reaches a volume 
that we deem too loud to mask. In this way, the software always prioritizes the comfort of the 
user. 
 
Sound Shield is a simple software solution capable of solving a real-life problem that millions of 
people encounter everyday: unwanted noise. In our busy and crowded modern world, unwanted 
noise interrupts our privacy, comfort, and productivity. Oftentimes, when we want to sleep, 
neighbors, traffic, trains, barking dogs, and many other elements from the surrounding 
environment awaken us. By creating a smart noise-masking system that knows both when and 
how to change its mask to cover intrusive noise, we are offering millions of people a new way to 
enhance their everyday lives by improving the environments in which they sleep, work, and live. 
 



 

 

1.0  INTRODUCTION   

This document reports the Sound Shield Team’s design solution for a dynamic noise-masking 

software system and evaluates the prototype’s success based on its ability to meet the project 

requirements. We will demonstrate how the Sound Shield prototype meets the design goals 

outlined in our Design Implementation Plan, as well as the performance specifications described 

in our Testing and Evaluation Plan. 
 

Sound Shield is a cross-platform software solution capable of dynamically covering unwanted 

noise by introducing the soothing sounds of nature as sound masks into the environment. By 

analyzing the frequency content of the input noise in real time, Sound Shield is able to generate 

custom sound masks that effectively render aggressive noise imperceptible to the user.  
 

This report culminates the Sound Shield Team’s efforts to research, design, and implement such 

a dynamic noise-masking software prototype. In the first section we will detail the problem’s 

design specifications, parameters, and constraints as proposed by Faculty Mentors Dr. Brian 

Evans and Dr. Greg Allen. Next, we will present our unique solution to the problem and 

demonstrate how we fulfill the specifications outlined in our team’s Design Implementation 

Plan, including meeting real-time performance and generating masks that effectively render 

noise imperceptible. Subsequently, in the Design Implementation section we will enumerate the 

decisions, obstacles and tradeoffs that we encountered while implementing this solution. For 

example, we made modifications to the original filter bank design, as well as our method for 

reading the mask files in order to improve our design solution. Next, we will demonstrate how 

the tests proposed in our Testing and Evaluation Plan produced results that verified our design 

solution, proving that Sound Shield indeed generates a dynamic noise mask capable of tracking 

the frequency spectrum of the noise in real time. Following the test results, we will evaluate our 

team’s time and cost considerations, showing how we completed our project on-schedule 

according to our Gantt Chart. Since we did not have an allocated budget for the project, we did 

not encounter any cost constraints and were able to implement the project on our personal 

computers and audio hardware. Next, we will present the safety and ethical considerations 

relevant to our project, including how Sound Shield can benefit those suffering from insomnia or 

tinnitus. Finally, we will present our recommendations on how future teams could improve our 
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Sound Shield prototype, based on the extensive research that we have conducted over the past 

nine months. These recommendations mainly focus on how improvements to the software could 

provide the user with a richer, more customizable noise-masking experience. 

 

2.0  DESIGN PROBLEM  

The Sound Shield project was founded by faculty mentors Dr. Brian Evans and Dr. Greg Allen in 

order to improve upon the shortcomings of traditional noise-masking devices by developing a 

more robust dynamic noise-masking solution. Unwanted noise interrupts concentration, disturbs 

rest, and inhibits productivity. Daily traffic from large highways prematurely wakes up 

individuals living in cities. Lawn mowers and weed whackers disturbs the peace of suburban 

families in their homes. Loud music propagates through walls of apartments, disturbing 

neighbors. Office chatter travels across the workplace, distracting employees. Counselor and 

doctor conversations can be overheard by passing individuals, eliminating patient privacy. 

Unlike active noise-cancellation, which introduces secondary sounds into the environment to 

cancel out noise, sound-masking attempts to solve these problems by introducing sound masks 

into the environment that reduce the perceptibility of these noises. Traditional sound-masking 

devices, such as white noise machines, limit their functionality to manual user controls: these 

systems are typically on-or-off state devices that require the user to physically control the mask’s 

volume. Because of these limitations, traditional noise-masking devices often end up producing 

masks that are just as distracting as noise itself, since they cannot automatically respond to 

changing environmental noise conditions. A dynamic solution such as Sound Shield actively 

responds to changing noise, generating sound masks that are only as loud as necessary to cover 

up the noise present without requiring any user input. This insures that the system is as 

minimally intrusive as possible, while still effectively masking intrusive noise. 
 

With the help of our faculty mentors, we defined clear design parameters and constraints to guide 

our development of a dynamic noise-masking solution:  
 

Non-Offensive: Sound masks produced by Sound Shield must not be as distracting or annoying 

as the noise being masked.  
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Real-Time Performance: The system must perform frequency analysis on the noise without 

incurring a noticeable delay in response time. We have determined that 185ms is an acceptable 

upper bound to the system’s latency [1]. 

Runtime Memory: The masking algorithm and user interface software may utilize a maximum of 

20 MB during runtime to minimize the software’s RAM footprint. 

Cross-Platform: In order to be a multiplatform solution, Sound Shield must run on UNIX and 

UNIX-based operating systems, not limited to OS X, Ubuntu, and Raspbian. 

Plug & Play: Sound Shield must be capable of interfacing with any user microphone and 

speaker setup. 

Customizable: Sound Shield must include a real-time user interface that provides the user access 

to configure various functionalities of the software, including volume adjustment, type of mask 

to play, and remote system power control. 

Masking Level: The intensity of the sound mask in each frequency band must exceed the 

intensity of the noise by at least 4dB in order to mask the sound [2]. 
 

Using the above criteria, the sound shield team made design decisions, delineated and explained 

later in this report that enabled the team to achieve the ultimate goal of developing a fully 

functional dynamic noise-masking software prototype. 

 

3.0  DESIGN SOLUTION 

Sound Shield’s design is simple, yet the software that achieves the desired functionality is 

refined and optimized. Sound Shield receives noise signals via a microphone, analyzes the 

frequency content of those signals over a short window of time, and synthesizes a sound mask to 

cover up those intruding noise signals when played out through speakers. For physical system 

setup, the microphone is placed in the presence of the noise which the user desires to mask, and 

the computer running Sound Shield is placed inside of the room where the user is present, 

connected to the speakers. The peripherals are placed in separate environments in order to avoid 

feedback loops and to prevent Sound Shield from attempting to mask its own sound masks. This 

example setup is illustrated in the figure below. 
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Figure 1. User Setup Diagram 

Sound Shield is able to generate sound masks that more comprehensively conceal noise than 

traditional noise-masking devices because of the analysis and processing it executes in order to 

generate its sound masks. Specifically, the software accomplishes this by tailoring the frequency 

content of the generated sound mask to the frequency content present in the input noise signal. 

By sampling a microphone, Sound Shield can identify how much power is present in each 

frequency band of the noise, and can then calculate the proper amount of gain to apply to those 

same bands of the sound mask’s frequency spectrum. This method enables Sound Shield to 

lower its volume when noise is absent, raise its volume when there are increased amounts of 

noise, and in both cases boost only the necessary mask frequencies required to effectively cover 

the noise.  
 

3.1 Software Design 

Sound Shield’s software is organized into several subsystems that work together in a modular 

fashion. As the Modular System Diagram below illustrates, the main program is divided into 

three subsystems: the noise-analysis subsystem, the mask-level computation subsystem, and the 

mask-synthesis subsystem.  
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Figure 2. Modular System Diagram 

 

3.1.1  The Noise-Analysis Subsystem 

The first module of Sound Shield, the noise-analysis subsystem, is responsible for receiving the 

input noise audio stream from the microphone and analyzing that signal’s frequency content.  

Specifically, this subsystem is responsible for finding the power present throughout the 

frequency spectrum of the noise signal. Our design solution groups the noise and output sound 

mask frequency spectrums into ten octave-spaced frequency bands. Therefore, while this 

subsystem’s Fast Fourier Transform (FFT) algorithm yields 2048 frequency bins containing the 

magnitude and phase of the noise signal throughout its entire frequency spectrum, it groups those 

bins into ten separate octave-spaced frequency bands for analysis. Since half of the generated 

2048 frequency bins is a reflection of the other half, Noise-Analysis Subsystem discards the first 

1024 bins of the FFT calculation. Then the system takes the remaining 1024 bins, groups those 

bins into ten octave-spaced bands and performs a Power Spectral Density (PSD) calculation on 

each band. This method generates scalar values for the noise power present in each frequency 

bin, which can be used in future mask-gain algorithms. These values are specifically passed as 

inputs to the Mask-Level Computation Subsystem. The figure below illustrates how this 

FFT/PSD method works within the entire scheme of Sound Shield. 
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Figure 3. The FFT/PSD Method 

 

The following table analyzes Sound Shield's FFT/PSD algorithm, broken down from the number 

of additions, multiplications and other arithmetic operations. 

 

Table 1. Complexity of our FFT/PSD Function 

 Real Multiplications Real Additions Comparisons 

FFT calculation (buffer size N = 1024) 4*(N/2)*log2(N)= 
20480 

[(N/2) + 2N]*log2(N)= 
25600 

 

Calculating |FFT magnitude|^2 2N = 
2048 

N = 
1024 

 

Normalization (Dividing by buffer size) 2N = 
2048 

  

Peak picking gains for the 8 lower frequency 
bands 

  (1/4)N = 
256 

Averaging gains for the 2 higher frequency 
bands 

2 (3/4)N = 
768 

 

Averaging filter over 10 bands (B = 10) B = 
10 

2B = 
20 

 

TOTAL 4N + 2N*log2(N) + B 
= 

2N + 2.5*log2(N) + 2B 
= 

(1/4)N = 

24588 27412 256 
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The number of clock cycles that it takes to run each call of this function depends on the 

platform’s architecture and the optimization process of the compiler. 

 

3.1.2  The Mask-Level Computation Subsystem 

Once the power present in each frequency bin has been computed, the noise-level measurement 

subsystem passes that information to the mask-level computation subsystem, which is 

responsible for assigning a weight to each subband of the output mask. Furthermore, this 

subsystem is responsible for governing how the mask’s spectrum and intensity are allowed to 

change over time. The design decisions involved in implementing this module were determined 

through empirical process. In our first implementation, we utilized the power spectral 

coefficients from each frequency band in the noise-analysis module and directly applied it to the 

corresponding bands of the mask. This resulted in a solution that was just as distracting to the 

user as the noise itself, since the mask was allowed to change instantaneously along with the 

changing noise signal. However, once we applied certain constraints to how the frequency bands 

of the sound mask were allowed to change, it drastically improved the quality of the resultant 

mask. 
 

The first change we implemented was to apply a 15-frame averaging filter to the output signal, 

where the amplitude of the next output sample depends on the previous 15 input frames. This 

causes the mask to change at a slightly slower rate than the noise itself. Since the output masks 

we are using are meant to emulate the sounds of ocean waves as the rise and fall, or a bubbling 

creek as it rushes through the woods, this time-averaging effect greatly improves the quality of 

the sound mask. 
 

The second change we implemented in this mask-level computation module was to gang together 

the neighboring bands of the mask. Under this approach, when one band changes in response to a 

change in the noise level within that band, the neighboring bands will also change, although by a 

smaller amount. We determined that the most convincing results occurred when we allowed the 

neighboring bands to change by 25% the amount as the primary band of interest. By loosely 

ganging together the frequency bands of our output masks, we were able to produce more 

realistic sound masks. 
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3.1.3  The Mask-Synthesis Subsystem 

In the third module of our software, the mask-synthesis subsystem, the normalized weights for 

the individual frequency bands of the sound mask are received in a vector and applied as gains to 

each subband of the mask. These mask subbands have already been pre-filtered offline from the 

original mask audio file and stored on the system, using the naming convention b0.wav - b9.wav. 

The mask-synthesis subsystem adds these weighted subbands together sample-by-sample, 

normalizes the result to prevent clipping, and plays out the resulting stereo signal via the 

speakers interfaced with the system. 
 

In order to be able to separate the original mask sound file into its constituent subbands, we first 

had to design a filter bank. We began by designing a linear-spaced filterbank in MATLAB. 

However, when Dr. Evans informed us that the human ear more closely resembles an octave-

spaced filterbank, we redesigned it to more closely match the natural sensitivity of the human 

ear. Using MATLAB, we created a Butterworth IIR filter bank whose phase response 

approximates linear phase within the passband of each filter, so as to avoid phase distortion. The 

figure below shows the magnitude response of this initial filterbank, which we used to filter the 

original mask files. 

 
Figure 4. Octave Filterbank 

As one can see, the bands are separated by octaves. In other words, the second band spans twice 

as many frequencies as the first, and the third band spans twice as many frequencies as the 
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second, and so forth. When the filtered files are reconstructed, they recreate the original sound 

file perfectly enough so the ear cannot discern the difference between them. 
 

Although we already had a functional filterbank in MATLAB, near the end of the project we 

proceeded to design an implementation of the same filterbank in Python. In this way, the user 

can filter their own mask files without having to purchase MATLAB. We experienced many 

setbacks while designing the filter bank in Python, because the Python DSP packages were all 

written for mono files. Since we are using stereo files for higher-quality masks, we had to modify 

all of the Python packages to correctly manipulate the mask files in stereo, using an interleaved 

data format. Once we had verified the quality of audio files produced by this new filter bank, we 

proceeded to package this Python script into a standalone executable, which we also include in 

our code so that users can pre-process their own mask files. Once these filtered mask files are 

placed in the currently_playing mask directory, Sound Shield will begin to read them and use 

them in the mask-synthesis subsystem. 

 

3.2  Graphical User Interface 

The user can communicate with the main software via a standalone web application that we 

designed using JavaScript and CSS. This user interface is hosted through a web application and 

can therefore be accessed via any device that is connected to the same wifi network as the 

computer running the main Sound Shield software. It interacts with the main program using 

client-server communication through the Websockets library and NGINX. This powerful 

combination of Websockets and NGINX allows the UI to achieve full-duplex communication 

with the main software in real time, thus allowing the user to remotely start and stop the system 

and adjust the volume of the overall system, as well as the maximum volume of each of the 

individual frequency bands. Moreover, this UI allows the user to monitor the mask’s efficiency 

via overlaid magnitude plots that show the difference in dB between the noise input and Sound 

Shield’s mask output. In this way, the user can see if they need to turn the volume of the mask up 

or down in order to cover the noise by at least 4dB, as specified in our design specifications. 
 

The figures below show the home page of our graphical user interface. 
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Figure 5. Graphical User Interface 

 

Figure 6. Input Noise & Mask Response in Time Domain 

 

3.3  System Overview 

By carrying out the design solution detailed above, we were able to meet all of the problem 

specifications enumerated by our faculty mentors. We created a non-offensive mask that 

achieves real-time performance and stays within the memory constraints that we specified. We 

also implemented a graphical user interface that communicates with the main software through a 

web application where the user can customize the mask and monitor the masking status as it runs 

in real time. The only feature in the UI that we did not implement is the ability to let the user 

change masks through the web interface. Instead of giving the user access to specify which mask 

they will play through the web application, he or she must instead copy and paste the filtered 

bands of the mask file into the system’s currently_playing mask directory. Since we use a simple 

naming convention for the filtered band files, the new mask will automatically start playing on 
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the next startup. While this solution would not be acceptable for a marketable software package, 

we decided to implement mask selection in this way for our prototype so that the user can filter 

their own mask files using our standalone python executable. In summary, the following table 

gives a synopsis of the tools and methods that we used to fulfill each of our project’s design 

specifications: 

 
Table 2. Design Tools & Methods 

Design 

Specification 

Tools & Methods used to achieve the Specification 

Non-offensive 15-frame averaging to smooth the mask’s response 

 Gang neighboring bands together to maintain natural character of sound 

masks 

 Impose mask ceiling 

Real-time 

performance 

Port Audio performs callback function every 44 ms. (minimum delay for 

our system to begin responding to noise) 

Runtime Memory Main program written in C for efficiency and ability to run in the 

background on any OS 

Cross-platform Cmake manages compiling/linking of all code 

 Port Audio manages I/O audio interface 

Plug and Play Port Audio reads and writes through standard I/O ports of computer 

Customizable GUI features written in JavaScript, CSS, NGINX, Websockets, Python 

Masking Level Calibration of gains applied to mask bands 
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4.0  DESIGN IMPLEMENTATION 

Throughout the design process, our team was faced with implementation choices, and forced to 

make educated and well-founded decisions in order to manage development time and optimize 

system performance. Our main focus was to find solutions that optimized real-time performance. 
 

We faced our first implementation choice when designing the mask filterbank. Initially, our 

solution was based on splitting the noise and mask signals into linearly-spaced bands. However, 

after conducting more research into audio filters and studying audio systems and equalizers, we 

found that the human ear automatically divides audio signals into octave-spaced frequency 

bands. As we saw in Figure 4, the octave filterbank, this frequency spectrum division results in 

filters with finer resolution in the lower frequencies, and wider filters in the higher frequencies. 

Since human ears are more sensitive to frequencies from 1kHz to 5kHz, dividing the frequency 

spectrum into octave-spaced bands enabled us to generate masks with increased resolution in the 

frequency ranges where the human ear is more sensitive. As we will describe in the 

Recommendations section below, our design could be further improved by providing even more 

resolution in the middle frequencies where the human ear is most sensitive. However, given the 

time constraints of our problem, we decided that the octave-spaced filterbank constituted a 

significant improvement over the linearly-spaced filterbank and that we should therefore leave 

the further fine-tuning to the human ear’s response to a later implementation of the project. 
 

Another important decision that we made was to provide users with the opportunity use their 

own audio files as the mask sound. Initially, we had a few pre-processed sound masks stored in 

the mask directory. These masks recreated the soothing sounds of nature such as ocean waves, 

light rain, rushing water, and a meadow breeze. In order to give users the possibility of uploading 

their own masks, Sound Shield had to be able to process the chosen audio file upon user 

command. Our initial preprocessing script was written in MATLAB. However, the Raspberry 

Pi’s operating system, Raspbian, does not support MATLAB. In order to remain platform 

independent, we decided to rewrite the script using Python, which is compatible with many 

modern operating systems, including the Raspbian. Since very few Python 3 packages exist for 

manipulating stereo audio signals, this process required us to do more research on the structure 

of WAV audio files. Similarly, we were forced to modify the packages we decided to use 
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(ThinkDSP, PyFIlterbank) so that they could run on Raspbian and operate on stereo, instead of 

mono, audio files. 
 

Moreover, we faced another implementation choice on whether we wanted to incorporate the 

preprocessed mask as a data structure to be compiled along with Sound Shield or a completely 

decoupled mask from the Sound Shield’s core engine. During our earliest stages of development, 

given the limited amount of data structures available in C, our most logical solution for 

producing an audio output was to traverse through an array. So, with the help from MATLAB, 

we generated our preprocessed mask by cascading the floating point values from the WAV file 

into ten different arrays with each array corresponding to each of our ten octave-spaced 

frequency bands. Each array contained data for audio signals about 10 seconds long, with a 

sampling frequency of 44100 Hz. With this implementation, we successfully created our first 

prototype on Linux and OS X. When we migrated our development to the Raspberry Pi, we 

found that Sound Shield would crash after a certain number of callbacks. We found a trend that 

at each consecutive execution, Sound Shield was able to make approximately twice as many 

callback before crashing, compared to the previous execution. By analyzing the number of 

callbacks at each execution, we were able to identify this problem as a page fault. We verified 

the page fault by profiling Sound Shield during execution, which would dump the page fault 

count before crashing. We resolved the page fault by traversing through all of the arrays at 

initialization in order to page the needed real-time data into the system’s RAM.  
 

Furthermore, the fact that we were storing all of our mask data as raw floating-point values in 

arrays became a concern when we compiled Sound Shield on the Raspberry Pi. The files 

containing these arrays were large and the time required to compile the mask on the Raspberry Pi 

was excessive. We found that the long compilation time limited us in our implementation 

process, and hence we decided to change the format of the preprocessed audio samples to WAV 

files. We found a powerful C library for reading and writing audio samples in real-time called 

libsndfile, which is compatible with Linux and Unix systems. The use of this library enabled us 

to compile our program in a much shorter time (less than 1 minute). 

Although decoupling the mask from Sound Shield drastically reduced the compilation time, we 

ran into another page fault that could not be resolved by the previous solution. To address this 
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problem, we created an additional buffer and interleaved the output patterns of the two buffers. 

As one buffer read the mask data needed in the next callback, the other buffer would send its 

data to the audio output for the current callback. At the end of each callback, the roles of the two 

buffers would be interchanged. 
 

The last major implementation decision we made was to incorporate libwebsocket and NGINX 

into the user interface. We needed a server that could support data transmission and reception. 

Initially, we found that libwebsocket was our best option in terms of hardware resource 

consumption. However, upon implementation we found that Libwebsocket was not able to 

properly serve all the files needed to the web client, so we included NGINX to act as the web 

server. While NGINX served the files needed to the web client, libwebsocket created the 

necessary websockets for the web client to communicate with Sound Shield in a full-duplex 

manner. 
 

5.0  TEST AND EVALUATION 

In our Testing and Evaluation Plan we listed the National Instruments myDAQ as the core-

testing device that would fulfill the needs of handling the audio interface for data acquisition. 

Throughout the testing process, the testing team learned that the Data Acquisition Toolbox 

present in the MATLAB environment provided similar functionality to acquire and playback 

audio data in real time [3]. This switch ultimately saved the testing team from having to learn the 

nuances of Labview and allowed for the integration of data acquisition and data analysis in the 

same environment. The decision to change to MATLAB data acquisition toolbox also allowed us 

a broader selection of testing devices. Instead of being limited to the myDAQ with NI, we could 

now run the testing scripts using any personal computing device capable of running MATLAB 

and equipped with an audio I/O interface. 
 

In this section, we will present our system’s test results to showcase the success of our current 

implementation in meeting our design specifications as outlined above [4]. Quantitative tests 

included system latency test and system performance test, and qualitative tests included 

subjective feedback gauged at the Senior Design Open House. 
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5.1  System Latency Test 

We have indicated in the Design and Implementation Plan as well as in the Testing and 

Evaluation Plan that humans could tolerate audio lag of up to 185 ms in our system without 

noticing the noise too distinctly. As we increased the length of averaging filter, the delay until 

first noticeable mask response also increased. 
 

Our subject for testing is the Raspberry Pi 3 (Model B) running the most recent version of Sound 

Shield. The testing platform is a personal laptop running Windows 8.1 and the most recent 

release of MATLAB (R2016a) with the data acquisition toolbox (version 16.1.0) dedicated to 

acquiring and analyzing data from the DirectSound Audio driver. 
 

The system latency test consists of two parts: first in identifying a known delay through the 

MATLAB software interfaced with the audio driver, and second in the overall delay upon 

addition of the Sound Shield system. The difference between the two measurements is the 

ultimate result of interest that we will document as the Sound Shield system delay. The system 

latency test also uses a test signal of known frequency content. Our testing team has selected a 

chirp signal that sweeps through the frequencies from 0 Hz to 5 kHz over ten seconds and 

another chirp signal that sweeps through the frequencies from 0 Hz to 22 kHz in ten seconds. 

Both frequency chirp signals are zero-padded to simulate one second long of silence at the 

beginning and end of the test signals to ensure test system reliability. 
 

The first part of the system latency test was performed by feeding the output of test system 

directly back to the input of the test system, also known as the talk-through step of the system 

test. The second part of the system latency test includes the Sound Shield system to be tested. 

Both steps of the system latency test employed data logging of audio signals for post processing 

purposes. We took advantage of using the Short-Time Fourier Transform (STFT) to break audio 

signals into Kaiser Windows of 5120 samples, each with overlapping of 3840 samples [5]. The 

principal frequency component is then identified from every window on both audio input and 

output signals, which are then marked with red markers in figures 7 and 8. A cross-correlation 

method is then used on the principal frequency component to identify the temporal delay 

between the audio signals. The method is made useful by the assumption that both audio signals 
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carry very similar frequency contents but they are separated by certain delay. Two sample 

scenarios of our system’s delay are shown in the test results below: 

 

 

 

 

 

 

 
 

    

(a) Talk-through test of 785.58ms   (b) Overall test of 901.97ms 

Figure 7. Minimum Sound Shield Delay 

 

 

 

 

 

 

 

 

  

(a) Talk-through test of 611.01ms   (b) Overall test of 901.97ms 

Figure 8. Maximum Sound Shield Delay 
 

After observing the results of 10 test runs, the talk-through tests generally give a rather unreliable 

latency result, but the overall tests with the Sound Shield system delay yield a more consistent 

test result. It is inferred that the talk-through tests mainly cover the scheduling of the PC’s I/O 

ports and are heavily influenced by the scheduling process, which is beyond the capability of 

testing team. The overall testing result on Sound Shield delay varied in the range of [116.93, 

290.96] ms and averages about 227 ms which is close to the original goal of 185ms. 
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This average result of 227 ms constitutes the amount of time the user must wait to hear the 

mask’s full response, given that the mask-level computation subsystem is limiting how fast the 

mask is allowed to respond to changes in the noise. On the other hand, we know that our system 

actually begins to respond to changes in the noise level within 46.44 ms because that is the 

scheduled callback rate within our software. 
 

5.2  System Performance Test 

Our system performance test closely followed our proposal in the testing and evaluation plan [4]. 

At any given time when the system is running, it is important to ensure that the synthesized 

output mask follows a similar frequency pattern to that in the input noise. The system 

performance test is designed to quietly listen to both microphone input and speaker output of the 

hardware system running Sound Shield. The presence of system-performance testing suite is 

hidden from Sound Shield’s perspective. 

 

Similarly, the system performance test was coded to handle data logging of both audio input and 

output streams for post processing. A short time window of 50 ms, which corresponds to 2205 

digital audio samples without overlapping, is used for computation of frequency analysis. Figure 

9 below showcases several scenarios of the generated mask in response to the received intrusive 

noise. The order of the frames is from left to right and top to bottom: upon meeting the presence 

of intrusive noise, Sound Shield starts responding to the noise, in which the frame capture only 

shows about 45 percent success rate per frequency coefficients on mask performance, and 

gradually the percentage of success rate increases to about 80 percent upon fully covering the 

frequency coefficients across the spectrum. Also note that due to the limitation of our 

microphone hardware, whose dynamic range only reaches down to 50Hz, there is no input 

information for our system to tailor its mask response down to 20Hz.  
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(a) Mask response at time instant, t0   (b) Mask response at time instant, t0 + ∆t 

 

 

 

 

 

 
 

    

(c) Mask response at time instant, t0 + 2*∆t  (d) Mask response at time instant, t0 + 3*∆t 

Figure 9. Various Noise & Frequency Response  
 

The difference between each time window, ∆t is 50ms. As we have mentioned, our Sound Shield 

system creates an artificial delay by averaging its input of intrusive noise. Therefore, the system 

waited several packets of input audio noise before it responded to the intrusive noise. The 

impulses seen in the time-domain plot of input noise in Figure 10 below correctly shows that 

Sound Shield does not immediately respond to transient impulses that could potentially irritate 

the end user. The performance of Sound Shield is judged by differencing each frequency 

coefficient of the intrusive noise and that of the synthesized mask from the frequency analysis. 

Whether or not the difference in intensity is greater than 4 dB for the effectiveness in every 

frequency component depends on this grouping. In every frame of frequency analysis, it shows 
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the success rate, by percentage of successful coverage of synthesized mask on the intrusive 

noise. Out of the 20 test runs, the range of success rate falls between [66.6, 86.38] percent. 

 

Figure 10. Time Domain Audio Signal Waveform  
 

To summarize our test results, our system begins to respond to input noise after 46.44ms, which 

is the rate of the callback function that processes input and output buffers. However, due to our 

constraints on the mask-level computation subsystem that tells the software not to make the mask 

change abruptly, the user will notice the mask adapting to the noise within an average of 227 ms. 

While 227 ms is above our initial goal of reaching 185 ms, we believe that it is still an acceptable 

result because we arrived at this conclusion through calibration with our 15-frame averaging 

operation, which makes the mask retain a much more natural, soothing characteristic. Similarly, 

our test results show that the mask indeed adjusts its frequency spectrum to cover that of the 

noise by at least 4dB in every subband, except those which are out of reach of the microphone’s 

frequency response. This result also demonstrates that the quality of the mask in its ability to 

adapt and cover the entire range of human hearing (20 Hz - 20 kHz) is limited by the quality of 

the microphone responding to the noise. 
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6.0  TIME AND COST CONSIDERATIONS 

Our team has proposed a Gantt chart in the first semester, highlighting the main objectives to be 

accomplished over the 2015 - 2016 academic year. As we approach the end of the Spring 2016 

semester, looking back, we have successfully accomplished our objectives within the proposed 

time frame. The main driving factors that allowed our group to achieve the deadlines were the 

willingness of our members to work as a group and dedication to the project, which allowed our 

group to meet during weekends, spring break, and winter break.  
  

Since we designed Sound Shield as a purely software solution, this alleviated us from having to 

create a budget aside from the tools we bought for testing the software’s accuracy and the 

Raspberry Pi. We want the end user to be able integrate Sound Shield on any audio setup that 

includes a pair of speakers and a microphone. Our team’s job is to provide the best user-

experience possible, only limited by the hardware of the end user’s audio setup. Ultimately, the 

cost of Sound Shield is determined by the end user’s choice of how much they want to spend on 

their audio setup.  
 

Within our given time frame, we faced many different unexpected challenges and we effectively 

mitigated these problems by working in an agile fashion. As we immersed ourselves deeper into 

the problem, the number of bugs and issues we encountered grew. However, as an agile team, we 

practiced constant communication in order to properly discuss and resolve the problems as they 

arose. We thoroughly documented each issue in our lab notebook on Google Drive and used 

tables and backlogs to assign individuals to assess carry out each task.  

 

7.0  SAFETY AND ETHICAL ASPECTS OF DESIGN 

As with any engineering application destined for public use, it is important to weigh the potential 

benefits and risks associated with using the Sound Shield product. We believe that Sound Shield 

provides the great benefit of enhancing the quality of everyday life for those who use it. As 

demonstrated in this report, Sound Shield is able to transform unwanted noise into the soothing 

sounds of nature, enabling the user to remain focused on their work or keep resting, even in the 

presence of distracting noise outside their room. Such technology plays an important role for the 

good of our society: in an increasingly crowded and noisy world, Sound Shield helps safeguard 
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the user’s privacy, personal space and productivity. This is especially important in cities where 

people’s lives overlap in many ways. For example, a nurse working night shifts needs to rest 

during the day, while his or her family and neighbors are busy going about their lives and 

making noise. In such a situation, Sound Shield would greatly enhance the quality of life for the 

Nurse, enabling him or her to rest during the day and perform well at work. 
 

Another benefit of Sound Shield is its potential to enhance the everyday lives of those who suffer 

from insomnia or tinnitus. Consumer Reports states that 43% of insomniacs surveyed achieved 

deeper sleep with the help of a white noise machine. Similarly, mynoise.net, a popular noise-

generation website, features testimonials from users suffering from tinnitus who say that white 

noise masks help them achieve better sleep because it blocks their awareness of their tinnitus, 

which is perceived as a constant “ringing or buzzing” in the ears. Sound Shield could help those 

who suffer from these conditions in a similar way by preparing at atmosphere conducive to 

sleeping. 
 

As with any marketable audio device, we must warn users not to turn up the volume to loud on 

their speakers. Although Sound Shield calibrates the mask intensity to that of the incoming noise 

signal, the user still has the ultimate control over the volume of the mask, through their speaker 

volume control. In order to avoid the risk of hearing damage, one should never turn up the 

speakers too loudly. In other words, if some noises in the environment are simply too loud to 

mask, one should not risk the health of their hearing in order to turn their speakers up so loud so 

as to mask the noise.  

 

8.0  RECOMMENDATIONS 

Throughout the process of designing Sound Shield, we researched and became familiar with the 

many concepts that constitute the Sound Shield prototype, including real-time digital signal 

processing, the psychoacoustics of the human ear, and user interface design. This research 

yielded many ideas that would greatly improve the quality of our software solution. However, 

due to time constraints and the limited scope of our design problem, we were not able to 

incorporate all of the features that we would have liked to include in our prototype. Therefore, in 
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this section of the report we will present these ideas and their underlying research as 

recommendations for the future improvement of the Sound Shield project. 
 

The first feature that we would like to recommend is improved mask-spectrum controls in the 

user interface. Since our software dynamically alters the spectrum of the noise mask, it would be 

ideal to provide the user with some input to customize the overall tone of the output to their 

liking. For instance, one could design a knob to control the tone of the device in an intuitive way, 

so that the user could tell the software to output masks that are warmer or brighter in tone. Then, 

the software could still dynamically alter the mask spectrum, but keep it within the parameters 

specified by the user in the web interface. 
 

We also recommend that a future iteration of Sound Shield redesign the filter bank and FFT bin-

grouping algorithm to more closely match the psychoacoustic curve of the human ear’s 

sensitivity. Our solution utilizes octave-spaced bands, and therefore gives greater precision to the 

lowest bands of the noise and output mask. However, in reality, the human ear has less resolution 

in the lowest and highest bands, instead containing its greatest resolution in the 800-4000 Hz 

range. For this reason, redesigning the filterbank and FFT bin-grouping algorithm to give greater 

precision in this range would increase the precision and accuracy with which the software could 

mask noises that fall within this middle range of the human ear and increase the effectiveness of 

the mask, given that these noises are most likely to disturb the user. 
 

Another idea that was simply outside the scope of our problem was to design a feature that 

would allow the user to calibrate the software to room’s frequency response. If such a 

customization feature were added, the masking algorithm would take into account the frequency 

response of the room and synthesize a mask creates the most soothing, natural sound possible for 

the user. In this way, the user could feel as if he or she is truly outside enjoying the sounds of 

nature because the room’s frequency response has been removed from the mask. 
 

A similarly difficult yet interesting problem to solve would be to allow the user to scale the 

software for multiple microphones and speakers in different locations around the room. This 

would require the software to know the location of each microphone and speaker, so that it 

knows the direction from which the noise is being emitted, and how loud it needs to play the 
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mask out of each speaker. Such a scalable implementation would allow Sound Shield to be used 

in office settings or larger rooms of a house, and would give the user a much more immersed 

experience in the mask. 
 

Our final recommendation is to make is to package the software for distribution. Cmake, the tool 

with which we decided to compile and run Sound Shield, is capable of packaging the software 

for streamlined installation on another computer. However, this could be a very time-consuming 

project because one would need to either figure out how to include all of the necessary libraries 

utilized by our software or tell Cmake to automatically download them onto the user’s computer 

while Sound Shield is being installed. Either way, the difficulty in this task would lie in 

maintaining the cross-compatibility between different operating systems. 
 

The recommendations for improvements on our Sound Shield prototype can be grouped into two 

categories: enriching the user experience and creating a software package that is ready for 

distribution and easy installation. Since Negin, one of our team members, has decided to 

continue development on Sound Shield as her Digital Arts and Media capstone project, she will 

attempt to implement those ideas which have to do with improving the user interface. In our 

opinion, the rest of the recommendations would constitute good opportunities for future senior 

design teams to build on our prototype and create a more robust and effective noise-masking 

experience for the user. 

 

9.0  CONCLUSION 

In conclusion, this report details how Team 17 was able to successfully deliver a functional 

dynamic noise-masking software prototype. While this prototype still lacks the enhancements 

and packaging that would allow it to compete in the consumer noise-masking market, it fulfills 

all of the specifications given in our design problem, as well as some of our stretch goals. 

 

The Sound Shield noise-masking solution is robust enough to accurately detect and adapt to 

changing noise frequencies in real time, yet delicate enough to avoid generating masks that are 

just as disruptive to the user as the noise itself. In other words, Sound Shield does not react so 

quickly to sudden noises so as to startle the user, but instead it gradually ramps its response 
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within the time requirements specified in our Design and Implementation Plan in order to cover 

the noise across all audible frequencies by at least 4dB in the most soothing manner possible. 

Moreover, when noise is not present in the environment, Sound Shield’s mask returns to a low 

volume level which is barely noticeable, only ramping up its response again when noise intrudes 

upon the user’s privacy. 

 

The stretch goals which our team accomplished include a user interface that can access the 

software via a web page on any device sharing the same wifi connection as the software, as well 

as the ability to filter one’s own custom masks and integrate them for use in Sound Shield. These 

features greatly enhance the user’s experience of Sound Shield, enabling them to have more 

control over their noise-masking experience and enhance their rest, relaxation and productivity. 

 

Finally, Team 17 has released Sound Shield’s source code for free download online, making it 

available for personal use, as well as for continued community development. Any enhancements, 

added features and customizations that the public comes up with are welcome, with the hope that 

together we will create a truly unique noise-masking experience that can run in the background 

on anyone’s personal computer. The final Sound Shield code repository is located at 

https://github.com/shjpark92/SoundShield and may be accessed for free by anyone. Moreover, 

comments, suggestions and questions may be sent to soundshieldUT@gmail.com and will be 

answered in as timely a manner as possible. 
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Table A1. Minimum Hardware Specification

Hardware Tech Specification 
Minimum 

Requirement Description 

Microphone Sensitivity -60dB +/-2dB 
Electrical response at its output to a given standard acoustic input (1kHz 
at 94dB-SPL) 

 
Direction Omni direction 

Describes the pattern in which the microphone's sensitivity changes when 
the sound source changes position in space 

 
Signal-to-Noise Ratio >60dB 

Specifies the ratio of a reference signal to the noise level of the 
microphone output 

 
Dynamic Range >60dB 

Measure of the difference between the loudest and quietest SPL to which 
the microphone responds linearly 

 
Frequency Response 50Hz - 20kHz Describes its output level across the frequency spectrum 

 

Total Harmonic 
Distortion >90dB 

Measurement of the level of distortion on the output signal for a given 
pure tone input signal 

 

Power Supply 
Rejection >90dB 

Indicate a microphone's ability to reject noise present on the power 
supply pins from the signal output 

 

Acoustic Overload 
Point >90dB 

Sound pressure level at which the THD of the microphone's output equals 
10% 

Speaker Sensitivity -80dB +/12dB 
Electrical response at its output to a given standard acoustic input (1kHz 
at 94dB-SPL) 

 
Frequency Response 50Hz - 20kHz Describes its output level across the frequency spectrum 

 
Signal-to-Noise Ratio >60dB 

Specifies the ratio of a reference signal to the noise level of the 
microphone output 

 
Dynamic Range >60dB 

Measure of the difference between the loudest and quietest SPL to which 
the microphone responds linearly 

 
THD+N >40dB Measurement of the amount of unwanted impurities in a given signal 

 
IMD+N >40dB 

Measurement of all impurities in an amplified audio signal that are not 
harmonically related to the source signal 

 
Stereo Crosstalk >40dB 

Measurement of how much an output signal on one channel crosses into 
separate output channel 

 
Impedance 8 ohms AC resistance of the loudspeaker to the audio signal from the speaker 

 
Power Rating 

10W 
subwoofer, 5W 
speaker 

RMS or peak value a loudspeaker can handle before destroying the 
speaker 

Processor CPU Clock speed 700Mhz Amount of instructions that could be completed in one second 

 
CPU # of Core 1 Number of instructions that could run together in one instance 

 
RAM 512MB Read Access memory or runtime memory (including OS) 

 

extra free storage 
space 4GB  Storage Space (including OS) 

 
Connectivity 

802.11b or 
Ethernet Internet Connectivity 

 
DAC 12 bits Digital to Analog Conversion 

 
ADC 12 bits Analog to Digital Conversion 

 
Operating System Linux, OS X Unix based 


