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Spring 2024    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

 Homework #0 Solutions for Review of Signals and Systems Material. 

Prolog for the homework set.  A tale of two transforms. 

In engineering, the two common versions of the continuous-time Fourier transform either use  

in rad/s or f in Hz as the frequency variable, where  = 2  f. 

Applications.  Many applications use frequencies in Hz instead of rad/s. In audio, notes are 

assigned frequencies in Hz.  We would specify ranges of sub-woofer, woofer and tweeter 

frequencies in Hz, e.g. 20-200 Hz, 200-2,000 Hz, and 2,000-20,000 Hz, respectively.  We talk 

about Bluetooth and Wi-Fi operating over the 2.4 GHz band, which is 100 MHz wide.  (Wi-Fi 

works over other bands as well.)  Frequency in units of rad/s happens at times in circuit design 

and signal processing theory. Also, rad/s can also be used as an angular frequency. 

Visual transform tables.  Here is a visual continuous-time Fourier transform table for both 

transforms from Roberts Fundamentals of Signals & Systems Appendix D.pdf.  

Forward transforms.  Here is the forward continuous-time Fourier transform in rad/s: 

 

Let  = 2  f : 

   

Note that both forward continuous-time Fourier transforms look similar. 

Inverse transforms.  Here is the inverse continuous-time Fourier transform in rad/s: 

 

Let  = 2  f :  As  goes to infinity, so does f.  Same for negative infinity.  Also d = 2  df : 

 

Note that the inverse continuous-time Fourier transform in Hz does not have a scaling factor. 

Example #1.  Let X() = ( – c) which is a Dirac delta shifted to the right in the frequency 

domain in rad/s by c : 

 

Example #2.  Let's convert ( – c) into frequencies in Hz.  Let  = 2  f and c = 2  fc : 

https://utexas.instructure.com/courses/1381977/files/folder/realtime/handouts?preview=75969304
https://utexas.instructure.com/courses/1290228/files/55152351/download?wrap=1
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The last step is valid under integration as explained in the handout SamplingUnitStep.pdf. The 

expression in Hz is a Dirac delta shifted to the right in the frequency domain in Hz by fc . 

Let's check the inverse transform in Hz of                           to make sure: 

 

Problem 0.1.  Continuous-Time Sinusoidal Generation. 

In practice, we cannot generate a two-sided sinusoid sin(2  fc t), nor can we wait until the end of time 

to observe a one-sided sinusoid sin(2  fc t) u(t) where u(t) is the unit step function. 

In the lab, we can turn on a signal generator for a short time and observe the output in the time domain 

on an oscilloscope or in the frequency domain using a spectrum analyzer.  In simulation, we can only 

observe a signal for finite amount of time. 

Consider a finite-duration sine that is on from 0 sec to 1 sec given by the equation 

c(t) = sin(2  fc t) rect(t – ½) 

where fc is the carrier frequency (in Hz). 

Part (a).  Using MATLAB or Python, plot c(t) for -0.5 < t < 1.5 for fc = 10 Hz. Turn in your code 

and plot. You may find the rectpuls command useful. Give a formula for the Fourier transform of c(t) 

for a general value of fc. 

Solution: Use MATLAB to plot the signal c(t) = sin(2  fc  t) rect(t - ½) for -0.5 < t < 1.5.  We’ll 

need to pick a sampling rate fs so that fs > 2 fmax to obey the sampling theorem.  The value of fmax 

could be computed using the answer in part (d) but we know from the modulation property of the 

Fourier transform that fmax is fc plus the bandwidth of rect(t - ½) .  Let’s oversample by using 

fs = 100 Hz. 

  

MATLAB code 
fs = 100; 

Ts = 1/fs; 

t= -0.5 : Ts : 1.5; 

fc = 10; 

x = sin(2*pi*fc*t); 

h = rectpuls(t-0.5); 

c = x .* h; 

figure 

plot(t,c,'k','LineWidth',2) 

grid 

title('Truncated Sine') 

xlabel('t') 

ylabel('c(t)') 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/SamplingUnitStep.pdf
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Note that the time-domain plot has 10 cycles of the sinusoid over 1sec (since fc = 10 cycles/s). 

Also note that the maximum is less than + 1 and minimum value is larger than – 1 due to 

insufficient sampling.  With c = 2  fc, we take the Fourier transform of c(t) and obtain 
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property that Multiplication in the Time Domain <=> Convolution in the Frequency Domain. 

We can lookup or derive the Fourier transforms of cosine and rectangular pulse 
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where sinc(x) = sin( x) / ( x).   Note that sinc has two different definitions.  Then, 
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The sifting property for the Dirac delta applied to convolution gives (x + x0) * g(x) = g(x + x0): 
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The first term is centered at  fc = – c/2, and the second is centered at  fc = c/2. 

Part (b). Sketch by hand the magnitude of the Fourier transform of c(t) for a general value of fc. 

Using MATLAB or Python, plot the magnitude of the Fourier transform of c(t) for fc = 5 Hz. Turn in 

your code and plot. 

Solution:  We take the absolute value of C() to calculate the magnitude response: 
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When plotting by hand, we can use the identity | f(x) + g(x) | ≤ | f(x) | + | g(x) |: 
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In Matlab, we plot the magnitude of the full formula for the Fourier transform C() directly. 

Center frequencies of the main lobes are at fc = 10 Hz and fc = -10 Hz. 

A spectrum analyzer would display the above magnitude spectrum plus noise. 

Part (c). Describe the differences between the magnitude of the Fourier transforms of c(t) 

and a two-sided sine of the same frequency. What is the bandwidth of each signal? 

Solution: Bandwidth is the non-zero extent in positive frequencies of the signal's spectrum.  

Fourier transform of the two-sided sine y(t) = sin(2  f0 t) is Y() = j  ( (+0)- (-0) ): 

 

Each Dirac delta has width of zero and area of .   Bandwidth is zero.  Same holds for a two-

sided cosine x(t) = cos(2  f0 t), which has Fourier transform X() =  ((+0)+ (-0)). 

From the plot in part (b), the bandwidth of C() is not zero.  This is because of the multiplication 

of the two-sided sine by rect(t - ½) in the time domain. 

Here are some of the valid methods to estimate the bandwidth of bandpass signal C(): 

• Set amplitude threshold of magnitude spectrum at an arbitrary point below which amplitudes 

are treated as if zero.  If we use 0.15 as the threshold for the plot in part (b), then we can eyeball 

the estimated bandwidth of C() to be 1.5 Hz. 

• Measure the width of the main lobe in the magnitude spectrum between the two zero crossings 

on either side of the carrier frequency.  We eyeball the bandwidth to be 2 Hz. 

• Compute the power bandwidth that captures 90% of the total energy.  

MATLAB code 
fc=10; 

f=[-30:0.1:30]; 

C = 0.5*j*exp(-j*pi*(f+fc)).*sinc(f+fc) 

- 0.5*j*exp(-j*pi*(f-fc)).*sinc(f-fc); 

plot(f,abs(C),'k','LineWidth',2) 

grid 

title('Plot of Magnitude of Fourier 

Transform of c(t)') 

xlabel('f (Hz)') 

ylabel('|C(f)|') 
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For power bandwidth, we define a function called myfun in file myfun.m to compute |C(f)|2: 

function Cpower = myfun(f) 

fc = 10;  

C = 0.5*j*exp(-j*pi*(f+fc)).*sinc(f+fc) - 0.5*j*exp(-j*pi*(f-fc)).*sinc(f-fc); 

Cpower = abs(C) .^ 2; 

end 

To estimate total energy, we numerically integrate |C(f)|2 by replacing ∞ with 1000 Hz: 

totalEnergy = integral(@myfun,0,1000);    %%% Gives 0.25 for fc = 10 Hz 

A bandwidth of 1.6 Hz (i.e. from 9.2 to 10.8 Hz for  fc = 10 Hz) gives 90% of total energy: 

area1 = integral(@myfun,9.2,10.8);        %%% Gives 0.2242 for fc = 5 Hz 

Matlab R2021a was used to execute the above code. 

Epilog.  Observing a signal in practice for a finite amount of time alters the signal’s spectrum.  

Estimating bandwidth via visual inspection can be very accurate. 

 

Problem 0.2.  Downconversion. 

A signal x(t) is input to a mixer to produce the output y(t) where y(t) = x(t) cos(0 t) where 0 = 2 

 f0 and f0 = 5 kHz.  A block diagram of the mixer is shown below on the right.  The Fourier 

transform of x(t) is shown below on the left. 

 

 

 

 

 

 

 

 

Part (a). Using Fourier transform properties, derive an expression for Y(f) in terms of X(f). 

Solution:  Fourier transform of y(t) = x(t) cos(0 t) is Y(ω) = 
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Part (b). Sketch Y(f) vs. f.  Label all important points on the horizontal and vertical axes. 

 
Part (c). What operation would you apply to the signal y(t) in part (b) to obtain a baseband 

signal? The process of extracting the baseband signal from a bandpass signal is known as 

downconversion. 

Solution: Baseband signal may be obtained by applying a lowpass filter to y(t) that passes 

frequencies in [-1,1] kHz and attenuates frequencies at and above 9 kHz in absolute value.  

Epilog: In analog continuous-time circuits, downconversion is often implemented by sampling at 

f0 and lowpass filtering.  The lowpass filter would pass [-1,1] kHz and attenuate frequencies at and 

above 4 kHz in absolute value.  See lecture slides 4-3 and 4-12. 

Problem 0.3.  Sampling in Continuous Time. 

Sampling the amplitude of an analog, continuous-time signal f(t) every Ts seconds can be modeled 

in continuous time as y(t) = f(t) p(t) where p(t) is the impulse train defined by 
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Ts is known as the sampling duration.  The Fourier series expansion of the impulse train is 

where s = 2  / Ts is the sampling rate in units of radians per second.  (See the Addendum at the 

end of the solution to this problem for the derivation of the Fourier series expansion.) 

Part (a). Plot the impulse train p(t). 

Solution: Shown on the right is the plot of the impulse 

train ( )
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Part (b).  Note that in part (a), p(t) is periodic. What is the period? 

Solution: A signal x(t) is periodic with period T if x(t) = x(t − T) for all t.  Fundamental period 

refers to the smallest positive value of T for which x(t) is periodic. The impulse train )(tp is 

periodic with fundamental period sT . The fundamental period is used in the Fourier series 

expansion of the impulse train where the sampling rate in rad/s is ωs = 2  / Ts . 

Part (c).  Using the Fourier series representation of p(t) given above, please give a formula 

for P(ω), which is the Fourier transform of p(t). Express your answer for P(ω) as an impulse 

train in the Fourier domain. 

Solution: We apply the Fourier transform to p(t) given immediately above to compute  

...))2()2()()()((
2

)( +++−+++−+= ssss

sT
P 


  

by using the transform pairs cos(ωs t) [(ω - ωs) + (ω + ωs)] and 1 2(ω) 

Thus  


−=

−=
n

ss nP )()(   

Part (d). What is the spacing of adjacent impulses in the impulse train in P(ω) with respect 

to frequency ω in rad/s?  

Solution:  Spacing is the distance between adjacent impulses in the Fourier domain, s.  

Addendum: Derivation for the Fourier series of an impulse train in the time domain is given 

by solution to Problem 2 on the EE 313 Fall 2021 Final Exam as well as below: 
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http://users.ece.utexas.edu/~bevans/courses/signals/lectures/final/Appendix%20M%20M-85%20Final%20Exam%20Fall%202021.pdf
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Problem 0.4. Discrete-Time Sinusoidal Generation. 

Consider a causal discrete-time linear time-invariant system with input x[n] and output y[n] being 

governed by the following difference equation: 

y[n] = (2 cos 0) y[n-1] - y[n-2] + x[n] - (cos 0) x[n-1] 

The impulse response of the above system is a causal sinusoidal signal with discrete-time 

frequency 0 in units of rad/sample. Normally, 0 would be in the interval [-, ).  In lab #2, you’ll 

implement the difference equation. 

Part (a). Draw the block diagram for this system using add (or summation), multiplication 

(or gain), and delay blocks. Please label delay blocks with the text z-M to denote a delay of M 

samples. Use arrowheads to indicate direction of the flow of signals. 

Solution:  Block diagram of the given filter with input x[n] and output y[n] and with coefficients 

b1 = -cos 0 and a1 = 2 cos 0 : 

 

Part (b). Please state all initial conditions. Please give values for the initial conditions to satisfy 

the stated system properties. 

Solution:  Initial conditions can be found by calculating the first few output values: 

y[0] = (2 cos 0) y[-1] - y[-2] + x[0] - (cos 0) x[-1] 

y[1] = (2 cos 0) y[0] - y[-1] + x[1] - (cos 0) x[0] 

Hence, the initial conditions are given by y[-1], x[-1] and y[-2].  These values correspond to the 

initial values in the delay-by-one-sample blocks, which are denoted by z -1.  

For a system to satisfy the linearity property, the system must be at rest; i.e., the initial conditions 

must be zero.  Same goes for the system property of time-invariance.  We will show this on lecture 

slides 3-12 and 3-13 and Handout U “Time-Invariance Property for a System Under Observation”.   

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/03_Signals_Systems/lecture3.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/03_Signals_Systems/lecture3.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/TimeInvarianceUnderObservation.pdf
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Note about Causality.  We're concerned here observing a system starting at a particular time-- 

we don't know the input or output prior to the starting time.  As a system property, causality 

would mean that the output of the system would depend on previous outputs and current and 

previous inputs, and not on future inputs, current output or future outputs.  A signal is causal if 

all amplitude values are zero left of the origin. A causal LTI system must have an impulse 

response that is a causal signal and being LTI would already mean that the initial conditions are 

zero.  An LTI system could be causal or anti-causal.  (Anti-causal would mean processing an 

input signal from the starting time in a negative time direction towards negative infinity.) It is 

uncertain to whether a system property of causality by itself would mean that a system under 

observation would have as a necessary condition that the system be at rest.  When the system 

property of causality is coupled with LTI properties, the LTI would already require that the 

system under observation be at rest. 

Part (c). Find the equation for the transfer function in the z-domain, including the region of 

convergence. 

Solution:  y[n] = (2 cos 0) y[n-1] - y[n-2] + x[n] - (cos 0) x[n-1] 

Taking z-transform of both sides, we get 

Y(z) = (2 cos 0)  z-1 Y(z) - z-2 Y(z) + X(z) - (cos 0) z-1 X(z) 

=> 
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To find the region of convergence, we need to find the poles of this transfer function: 

1 - (2 cos 0) z-1 + z-2 = 0 

By multiplying each side by z2 (assuming that z ≠ 0): 

z2 - (2 cos 0) z + 1 = 0 

Roots are located at ½ (-b  sqrt()).  Here, 

b = -2 cos 0 
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Both poles have a magnitude of 1.  As a result, they lie on the unit circle in the z-plane. The largest 

pole magnitude is equal to 1, i.e. max{|xi|} = 1.  With a causal system, the region of convergence 
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refers to a region outside of a circle that has the radius of the largest pole magnitude, i.e. the ROC 

is |z| > max{|xi|} = 1.  

The system is not bounded-input bounded-output (BIBO) stable because the region of convergence 

does not include the unit circle.  A BIBO stable, causal system, must have all its poles inside the 

unit circle.  We’ll see this in lecture slides 6-13 and 6-14. 

Part (d). Compute the inverse z-transform of the transfer function in part (c) to find the 

impulse response of the system. 

Solution:  By using inverse z-transform tables, the above H(z) with the given region of 

convergence will have an impulse response of h[n] = cos(0  n) u[n]. 

Part (e). Using MATLAB or Python, plot the impulse response obtained in part (d) for 0 equal 

to 0, π, and a value in the interval (0, π) of your choosing. Turn in your code and plots. 

Solution:  0 is 0 rad/sample (left), π rad/sample (center) and π/2 rad/sample (right): 

   

  The sample MATLAB code for 0 = π/2:  

 

 

w0 = pi/2; 

n = [0:25]; 

u = n >= 0; % implements stepfun 

x = cos(w0*n); 

h = x.*u; 

figure, stem(n,h,'k','LineWidth',3); 

https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/06_IIR_Filters/lecture6.pptx

