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The University of Texas at Austin 

Spring 2025    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

Solutions for Homework #1 on Sinusoids, Transforms and Transfer Functions 

   

1. Transfer Functions.  48 points. 

With x[n] denoting the input signal and y[n] denoting the output signal, give the difference equation 

relating the input signal to the output signal in the discrete-time domain, give the initial conditions and 

their values, and find the transfer function in the z-domain and the associated region of convergence for 

the z-transform function, for the following linear time-invariant discrete-time systems. 

Prolog:  Note that (a) and (b) are finite impulse response (FIR) filters, and (c) and (d) are infinite impulse 

response (IIR) filters. More on filters in lectures 5 & 6, and lab 3. A necessary condition for a system 

to be LTI is that it be “at rest” (i.e. all the initial conditions must be zero).  An LTI system is uniquely 

defined by its impulse response. The z-transform of the impulse response is a way to compute the 

transfer function H(z) in the z-domain for the LTI system.  In the z-domain, Y(z) = H(z) X(z) where 

Y(z) is the z-transform of the output signal and X(z) is z-transform of the input signal.  So, another 

way to compute the z-domain transfer function of the LTI system is H(z) = Y(z) / X(z).   

(a) Causal averaging filter with five coefficients.  See Designing Averaging Filter Handout. 

Output is the running average of the current and 4 previous input values.  The difference equation is 
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We find the initial conditions by first letting n=0:  y[0] = (1/5) (x[0] + x[-1] + x[-2] + x[-3] + x[-4]).  

Then, we let n = 1, 2, … until no initial conditions appear. Using this approach, initial conditions are 

x[-1], x[-2], x[-3] and x[-4].  They must be zero as a necessary condition for the system to be linear and 

time-invariant (LTI).  To find the transfer function in the z-domain, we take the z-transform of both 

sides of the difference equation with the initial conditions being zero and then isolate Y(z)/X(z): 
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Rewriting the above transfer function shows that there are 5 repeated poles at the origin.  The Region 

of Convergence (ROC) does not include the poles because at a pole location, the transfer function 

would be infinite.  The ROC is the entire complex z-plane excluding the origin, i.e. z ≠ 0. 

https://users.ece.utexas.edu/~bevans/courses/realtime/index.html
https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
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(b) Causal discrete-time approximation to first-order differentiator. See lecture slide 3-24. 

The first-order derivative operation with output y(t) and input x(t) can be defined in terms of a limit: 

𝑦(𝑡) = 𝑥′(𝑡) = lim
∆𝑡→0

𝑥(𝑡) − 𝑥(𝑡 − ∆𝑡)

∆𝑡
 

After sampling the input and output signals, the smallest separation between time-domain samples is the 

sampling time Ts so that t = Ts.  However, we cannot drive Ts to zero in practice: 

𝑦[𝑛] ≈
1

𝑇𝑠

(𝑥[𝑛] − 𝑥[𝑛 − 1]) 

Due to sampling, the approximation is only valid for continuous-time frequencies up to one-half of the 

sampling rate in value.  From the sampling theorem, fs  > 2 fmax, or equivalently fmax < ½ fs. 

In discrete time, we abstract away sampling rate/time when possible. The difference equation becomes 

 

The initial condition x[-1] = 0 for the system to be LTI.  That is, an LTI system must be at rest. 

Transfer function:  

Region of convergence (ROC): z ≠ 0.  More generally, the ROC for a finite impulse response filter is 

the entire complex z-plane except the origin.   

(c) Causal discrete-time approximation to first-order integrator.  See homework hints. 

In continuous time, the output of a causal first-order integrator is defined by 

𝑦(𝑡) = ∫ 𝑥(𝑢)𝑑𝑢
𝑡

0

 

for 𝑡 ≥ 0 where x(t) is the input.  The discrete-time version obtained from sampling is 

𝑦[𝑛] = ∑ 𝑥[𝑚]

𝑛

𝑚=0

 

This is inefficient because it requires an unbounded amount of memory to store the previous input values 

as 𝑛 → ∞.  Instead, we can use a recursive difference equation, a.k.a. a running summation, 

 

for 𝑛 ≥ 0 with initial condition y[-1] = 0 as a necessary condition for LTI to hold.  An LTI system must 

be “at rest”.  The transfer function:  

The above H(z) is a special case of the z-transform of the causal signal v[n] = an u[n] which follows: 
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We can rewrite the condition |
𝑎

𝑧
| < 1 as |z| > |a| provided that 𝑧 ≠ 0.  The condition |z| > |a| is the region 

of convergence, and represents the area of the complex z plane outside of disk of radius |a|. 

H(z) is the same as V(z) if a = 1.  The ROC  for H(z)  is |z| > 1.  The z-transform of a causal signal will 

be the area of the complex z plane outside of disk whose radius is equal to the largest radius among the 

poles.  H(z) has a zero at the origin (z = 0) and a pole at z = 1. 

(d) Causal bandpass filter with center frequency 0 given by the input-output relationship 

𝑦[n] = (2 cos ω0) 𝑟 𝑦[𝑛 − 1] − 𝑟2 𝑦[𝑛 − 2] + 𝑥[𝑛] − (cos ω0) 𝑥[𝑛 − l] 

where 0 < r < 1.  Here, r is the radius of the two pole locations.  (Note: r has a constant value.) 

The initial conditions y[-1], y[-2] and x[-1] must be set to zero as a necessary condition for LTI to hold. 

Taking the z-transform of both sides of the difference equation, we get 

Y (z) = (2 cos 0) r  z-1 Y (z) – r2 z-2 Y (z) + X (z)  - (cos 0) z-1 X (z) 

=>  =>  

We need to find the poles of this transfer function by finding the roots of the denominator as follows: 

1 - (2 cos 0) r z-1 + r2 z-2 = 0 

By multiplying each side by z2 (assuming that z ≠ 0): 

z2 - (2 cos 0) r z + r2 = 0 

Roots are located at ½ (-b  sqrt ()).  Here, 

 

Since  < 0, there are complex roots at r exp(j 0) and r exp(-j 0): 

 

 

Poles x1 and x2 have magnitude r. For a causal system, the region of convergence will be outside of a 

disk of radius equal to the magnitude of the pole with the greatest magnitude, i.e. |z| > r in this case. 

We can see this by considering the z-transform of the causal signal v[n] = an u[n]: 
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𝑉(𝑧) = ∑ 𝑣[𝑛] 𝑧−𝑛 = ∑ 𝑎𝑛 𝑢[𝑛] 𝑧−𝑛 = ∑ 𝑎𝑛 𝑧−𝑛 = ∑ (
𝑎

𝑧
)

𝑛

=

∞

𝑛=0

∞

𝑛=0

∞

𝑛=−∞

∞

𝑛=−∞

1

1 − 𝑎𝑧−1
 𝑖𝑓 |

𝑎

𝑧
| < 1 

We can rewrite the condition |
𝑎

𝑧
| < 1 as |z| > |a| provided that 𝑧 ≠ 0.  The condition |z| > |a| is the region 

of convergence, and represents the area of the complex z plane outside of disk of radius |a|. 

Consider the z-transform of y[n] = v[n] + w[n] which is Y(z) = V(z) + W(z).  The region of convergence 

for Y(z) is the set of all z values that are valid:  ROC{ Y(z) } = ROC{ V(z) }  ROC{ W(z) }.  For v[n] 

= an u[n] and w[n] = bn u[n], ROC{ Y(z) } = { |z| > |a| }  { |z| > |b| } = |z| > max{ |a|, |b| }. 

2. Chirp Signals. 20 points. 

Before starting this problem, please read slides 1-14 to 1-20 on chirp signals and spectrograms 

(which also contain a lot of examples of Matlab code) in the Common Signals in Matlab slide deck. 

A chirp signal is used in sonar and radar systems, indoor positioning, and test/measurement. A 

chirp signal is a sinusoid whose principal frequency increases (or decreases) over time:  

𝑐(𝑡)  =  cos( 𝜃(𝑡) ) where 𝜃(𝑡)  =  2 𝜋 ( 𝑓0  +  ½ 𝑓𝑠𝑡𝑒𝑝 𝑡 ) 𝑡 =  2 𝜋 𝑓0 𝑡 +  π 𝑓𝑠𝑡𝑒𝑝 𝑡2 

The principal frequency is f0 when t = 0 and then changes at a rate of fstep for each second that passes.  

The frequency of a sinusoid at a given point in time is called the instantaneous frequency, and it is 

defined as dθ(t) / dt in units of rad/s. Here, dθ(t) / dt = 2 π f0 + 2 π fstep t = 2 π (f0 + fstep t). 

(a) Generate a chirp signal for 10s with f0 = 20 Hz and fstep = 420 Hz/s. Pick a sampling rate fs of 

44100 Hz.   The chirp will sweep through the frequencies of the keys on an 88-key piano.  

(b) Plot chirp signal in time and frequency domains using plotspec from the JSK book. 

(c) Play the chirp signal as an audio signal. You might consider using headphones so as not to bother 

folks around you.  Provide the Matlab code. Describe what you hear. 

(d) Plot the chirp signal in the time-frequency domain using the spectrogram function in Matlab and 

describe the visual representation. 

Each part is worth 5 points. This problem is inspired by JSK, Exercise 3.8 on page 46 

Prolog: Pipestrelle bats use chirps that sweep down from 70 to 45 kHz for echolocation: 
https://www.wildlife-sound.org/resources/equipment?view=article&id=233:recordings-of-
ultrasonic-vocalisations-of-bats&catid=2  

Active sonar systems transmit a “ping” chirp sound, and the delay in receiving the chirp indicates 

the time for the chirp to bounce off an object and return, which can be converted to a distance. 

https://users.ece.utexas.edu/~bevans/courses/realtime/index.html
https://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
https://en.wikipedia.org/wiki/Piano_key_frequencies
https://www.wildlife-sound.org/resources/equipment?view=article&id=233:recordings-of-ultrasonic-vocalisations-of-bats&catid=2
https://www.wildlife-sound.org/resources/equipment?view=article&id=233:recordings-of-ultrasonic-vocalisations-of-bats&catid=2
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When measuring a system frequency response, one could input a sinusoid, measure the output, 

and repeat using many frequencies. Inputting a chirp allows the measurement in one take. 

Cellular LTE systems send a Zadoff-Chu chirp to measure distortion from transmitter to receiver. 

Solution:  a) MATLAB code: 

 

b) Plots: Zoomed in (0s to 0.9s)    Zoomed in (9.98s to 10.0s) 

Center frequency is about 2110 Hz and bandwidth is approximated at 4200 Hz by zooming in.  

The instantaneous frequency is 2 π f0 + 2 π fstep t = 2 π (f0 + fstep t).  As t goes from 0s to 10s, the 

instantaneous frequency increases from 20 Hz to 4220 Hz, with an average value of 2110 Hz. 

c) The chirp signal can be played as an audio signal by using the following MATLAB code: 

 

This chirp linearly sweeps frequencies 20 to 4220 Hz. On the Western music scale, ‘A’ notes are at 

27.5, 55, 110, 220, 440, 880, 1760 and 3520 Hz. https://en.wikipedia.org/wiki/Piano_key_frequencies. 

When you play the chirp signal on a laptop or tablet, whether it is over their speakers or through 

headphones, you might not hear frequencies below 200 Hz. To hear those frequencies, the playback 

system would need to be able to convert low frequencies in the electrical signal into large wavelength 

pressure waves via piezoelectric devices. The corresponding size of these devices does not fit in 

laptops and tables. In a conventional audio system, a sub-woofer would handle these low frequencies. 

time = 10;                % length of time in seconds 

fs = 44100;               % sampling rate 
Ts = 1/fs;                % sampling time: time interval between samples 
t = Ts : Ts : time ;      % create a time vector 
f0 = 20;                  % specify starting principal frequency 
fstep = 420;              % specify frequency slope 
phi = pi*fstep*t.^2;      % specify phase 
x=cos(2*pi*f0*t + phi);   % create chirp waveform 
plotspec(x, Ts)           % plot waveform in time domain and its spectrum 

 

sound(x, fs);         % play back chirp signal 

 

https://users.ece.utexas.edu/~bevans/courses/realtime/index.html
https://en.wikipedia.org/wiki/Piano_key_frequencies
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d) A spectrogram displays frequency content as it 

evolves over time. The color at any point shows the 

magnitude of the frequency component at that point in 

time.  Contrast that with a Fourier transform that shows 

average frequency content in a signal without knowing 

when frequencies occurred.  A spectrogram is an aerial 

view of a 3-D time-frequency-magnitude plot. 

The spectrogram for the chirp signal shows that the 

principal frequency is changing over time with a linear slope. At the beginning, the principal 

frequency is at 20 Hz and increases linearly to 4220 Hz. The principal frequency has the highest 

magnitude at every instant of time throughout the entire duration of the chirp signal. Since we are 

observing over a finite length of time, the chirp has a wider bandwidth than a two-sided chirp (recall 

homework problem 0.1).  This bandwidth is visible as the width of the yellow line and the reddish area 

that falls on either side of the principal frequency line. 

A spectrogram takes the first Nwin samples of the signal, weights the values (by a rectangular pulse by 

default), applies the fast Fourier transform, and plots the magnitude of the FFT output. The 

spectrogram then shifts the time signal to the right and repeats the previous steps using a block of the 

Nwin samples. The frequency resolution of the spectrogram is fs / Nwin. On homework problem 0.1, the 

frequency resolution of observing a signal for T seconds is proportional to 1/T. There is a tradeoff 

between frequency resolution fs / Nwin and time resolution Nwin Ts. To obtain 20 Hz of frequency 

resolution, one would have to observe the signal for 0.05s. At a sampling rate of 44100 samples/s, 

0.05s would mean (44100 samples/s)(0.05s) = 2205 samples.  Using 10240 samples would give a 

frequency resolution of 4.3 Hz.  The amount of samples in one block that overlap with the previous 

block is given by Noverlap, so the shift is by Nwin - Noverlap samples.  Weighting by the Hamming pulse is 

a common alternative to the rectangular pulse: replace nwin with hamming(nwin). 

 

nwin = 10240;          % divide chirp signal into block of nwin samples  
noverlap = 3/4*10240;  % number of samples in each block of chirp signal  
                       % that overlaps with the previous block 
nfft = [];             % specifies the number of frequency points used to 
                       % calculate the discrete Fourier transforms. 
figure; spectrogram(x, nwin, noverlap, nfft, fs, 'yaxis'); 
h = colorbar;          % set the colorbar(dB) in y axis 
ylabel(h, 'Magnitude, dB'); ylabel('Frequency, kHz');  

ylim([0,5]); xlabel('Time, s'); title('Spectrogram of the signal');  

https://users.ece.utexas.edu/~bevans/courses/realtime/index.html
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Epilog:  [By Dan Jacobellis]  In this problem, a spectrogram was used to visualize a chirp signal by 

displaying the signal as a function of both time and frequency. The spectrogram is constructed by 

taking the DFT of a sliding time window, resulting in a uniform resolution in both time and frequency. 

In many applications, especially audio and music processing, a logarithmic resolution in frequency is 

preferred, either to match the human auditory response or the match a musical scale 

As we increase the window size of the spectrogram, we will increase our frequency resolution at the 

expense of time resolution. In other words, the ‘Area’ of a pixel in the spectrogram can only be so 

small. However, we can change the ‘shape’ of each pixel, so that the frequency resolution increases at 

low frequencies and the time resolution increases at high frequencies, so that the important details of 

audio signals become clear. 

 

STFT means the short-time Fourier transform.  The spectrogram is an implementation of it. 

An efficient transform that achieves logarithmic frequency resolution is called the Constant Q 

Transform. The ‘Q’ refers to quality factor, which is the ratio of the bandwidth to the center frequency 

of a filter. The transform can be thought of as a bank of filters whose bandwidths increase linearly 

with frequency. Implementations in MATLAB[1] and Python [2] are available. 

[1] https://www.mathworks.com/help/wavelet/ref/cqt.html  

[2] https://librosa.github.io/librosa/generated/librosa.core.cqt.html 

 

  

https://users.ece.utexas.edu/~bevans/courses/realtime/index.html
https://www.mathworks.com/help/wavelet/ref/cqt.html
https://librosa.github.io/librosa/generated/librosa.core.cqt.html


Course Web site 

3. Spectral Analysis for a Squaring Block.  30 points. 

 

A squaring block can be used for downconversion of an upconverted signal to a baseband signal. In that 

case, the squaring block would be followed by a lowpass filter, as mentioned on lecture slide 3-7. 

JSK Section 3.5 on page 52 analyzes a squaring block for an input of a two-sided sinusoid at constant 

frequency. At the output, half of the input power appears at DC (zero frequency) and the other half 

appears at twice the input frequency. The output has a DC offset. If the input had two frequencies f1 and 

f2, the output will have frequencies 0, |f1 - f2|, 2 f1, f1 + f2, and 2 f2. Again, there is a DC offset.  The DC 

offset can be an issue when the output is an integer, or when floating-point values are converted to an 

integer, because the DC offset would take up many of the bits in the integer representation, thereby 

leaving very few bits to represent the rest of the signal. The DC offset can also be an issue during 

playback. For example, the Matlab sound command clips amplitudes outside the range [-1, 1]. 

This problem uses the gong waveform that accompanies the JSK book as the message signal, and uses 

the upconvertGong.m file for upconversion and downconversion: 

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/00_Introduction/upconvertGong.m 
 

In order for the squaring approach to work for downconversion, a DC offset has to be added to the 

message signal in the transmitter. (This is how AM radio works.)  In upconvertGong.m, please replace  

modulated = basebandInput .* carrier;  

with  

modulated = (1 + basebandInput) .* carrier;  

 

(a) In the upconvertGong.m file, please add code in the receiver to remove the DC offset that was 

inserted in the transmitter.  The Matlab function mean will compute the DC component (average 

value) of a vector. 8 points 

i. Compute the mean squared error between the original gong waveform and the 

downconverted gong waveform with the DC offset removed in upconvertGong.m. 

ii. Describe any differences that you hear between the two versions of the gong waveform. 

(b) In the upconvertGong.m file, replace the downconversion code with a squaring device followed by 

a lowpass filter.  You will need to change the design of the lowpass filter. 12 points. 

i. Compute the mean squared error between the original gong waveform and the 

downconverted gong waveform for upconvertGong.m that you had modified. 

ii. Describe any differences that you hear between the two versions of the gong waveform. 

iii. What happened to the principal frequencies in the gong signal after squaring the 

upconverted signal? You might try using the plotspec command from the JSK book. 

(c) The squaring block distorts the amplitude of the input signal.  To your solution in part (b), add a 

square root operation after the lowpass filter. 8 points. 

https://users.ece.utexas.edu/~bevans/courses/realtime/index.html
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/00_Introduction/upconvertGong.m
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i. Compute the mean squared error between the original gong waveform and the 

downconverted gong waveform for upconvertGong.m that you had modified. 

ii. Describe any differences that you hear between the two versions of the gong waveform. 

(d) After the square root block, remove the DC (average) value. 3 points. 

i. Compute the mean squared error between the original gong waveform and the 

downconverted gong waveform for upconvertGong.m that you had modified. 

The transmitter and alternate receiver for (b), (c) and (d) are described in the block diagram 
below: 

 
 
 
 
 

(e)  

 

This problem is inspired by JSK, Exercise 3.19 on page 52. 
 

Solution:  (a) Mean squared error (MSE) is a measure of signal quality computed on two signals of 

interest, i.e. the original gong signal x[n] and the gong signal obtained from upconversion and then 

downconversion y[n] in this problem. MSE between x[n] and y[n] is defined as  ∑ (𝑥[𝑛] − 𝑦[𝑛])2𝑀−1
𝑛=0  

where M is the number of samples in both signals.  There is a related normalized mean-squared error 

(NMSE):  
1

𝑀
∑ (𝑥[𝑛] − 𝑦[𝑛])2𝑀−1

𝑛=0 . For example, the NMSE for discrete-time signals x1[n] and y1[n] 

of length M1 samples and x2[n] and y2[n] of length M2 samples can be directly compared. MSE is 

related to the signal-to-noise ratio:  𝑆𝑁𝑅 =
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
=

∑ 𝑥2[𝑛]𝑀−1
𝑛=0

∑ (𝑥[𝑛]−𝑦[𝑛])2𝑀−1
𝑛=0

=
1

𝑀
∑ 𝑥2[𝑛]𝑀−1

𝑛=0
1

𝑀
∑ (𝑥[𝑛]−𝑦[𝑛])2𝑀−1

𝑛=0

 

In part (a), one should account for the delay in the transmitter and receiver to compute the mean squared 

error between the message signal before upconversion at the transmitter (basebandInput) and the 

message signal downconverted at the receiver (basebandOutput). The only delay is in the filter. 

Group delay through a finite impulse response (FIR) filter whose N coefficients are even symmetric 

about its midpoint is (N-1)/2.  That is, the FIR filter would take (N-1)/2 samples to fully respond to the 

input signal.  The first (N-1)/2 samples of the downconverted gong waveform are discarded. To keep 

the gong signals the same length, the last (N-1)/2 samples of the original gong waveform are also 

discarded.  (We will derive the group delay for FIR filters in lecture 5.)  Changes in code are in bold: 
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The Matlab command sum adds up the elements of a vector.  The mean squared error is about 1075 

and the normalized mean squared error is 0.00886. 

The original gong signal has principal frequencies at 520, 630, and 660 Hz.  The carrier frequency is 

2640 Hz.  The downconverted gong waveform has a principal frequency at 520 Hz. Due to the lowpass 

filter, the downconverted gong waveform has small peaks at 630 and 660 Hz, a very strong peak at 5280 

Hz (twice the carrier frequency) and small peaks at 4760 Hz and 5800 Hz (twice the carrier frequency 

plus/minus 520 Hz). The 520 Hz frequency component is about one-fourth of that of the original gong 

waveform. 

[basebandInput, fs] = audioread('gong.wav'); 
basebandInput = basebandInput'; 
f1 = 660; 

  
Ts = 1/fs;                           %%% Sampling time 
numSamples = length(basebandInput); 
n = 1 : numSamples; 
t = n * Ts; 
tmax = Ts * numSamples; 

  
fc = 4*f1;     %%% Upconvert 
carrier = cos(2*pi*fc*t);  %%% to be centered at frequency fc 
modulated = (1 + basebandInput) .* carrier; 

  
carrier = cos(2*pi*fc*t); 
modulateAgain = modulated .* carrier; 

  
FIRlength = floor(fs/f1);  %%% Use an odd-length FIR filter 
if 2*floor(FIRlength/2) == FIRlength 
  FIRlength = FIRlength - 1; 
end 

  
lowpassCoeffs = ones(1, FIRlength) / FIRlength; 
basebandOutput = 2*filter(lowpassCoeffs, 1, modulateAgain); 

basebandOutput = basebandOutput - mean(basebandOutput); 

 

delay = (FIRlength-1)/2; 

diff = basebandInput(1:numSamples-delay) - basebandOutput(delay+1:numSamples); 

meanSquaredError = sum(diff .^ 2) 

 

figure; plotspec(basebandInput, 1/fs); 
sound(basebandInput, fs); 
pause(tmax+1); 
figure; plotspec(modulated, 1/fs); 

% sound(modulated, fs); 
% pause(tmax+1); 

figure; plotspec(basebandOutput, 1/fs); 
sound(basebandOutput, fs); 

pause(tmax+1); 
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Original gong waveform   Downconverted gong waveform 

 

In the downconversion stage, the lowpass finite 

impulse response (FIR) filter is an averaging filter 

of N coefficients. Its impulse response is a 

rectangular pulse, which is periodic sinc function in 

the Fourier domain. Per the handout on Designing 

Averaging Filters, the null bandwidth is 0 = 2  / N 

in rad/sample. We can convert the discrete-time 

frequency 0 to a continuous-time frequency f0 via 

0 = 2  f0 / fs = 2  / N and solve for N = fs / f0 = 66 

and f0 = fs / N  = 668.18 Hz. This filter also zeros out multiples of 668.18 Hz.  The amount of attenuation 

in the magnitude response increases with frequency as shown by  freqz(lowpassCoeffs). 

b) A squaring block followed by a lowpass filter can realize downconversion. An advantage is the 

receiver would not need to know the exact carrier frequency to perform downconversion.   

In the squaring approach, the baseband bandwidth of the demodulating filter is doubled. The doubling 

is due to the fact that squaring the modulated signal in the time domain becomes convolution of the 

modulated signal’s frequency content with itself.  The FIR filter length is half that in part (a) since the 

null bandwith is inversely proportional to the length. See the handout on Designing Averaging Filters. 

A gain of 2 is used for sinusoidal demodulation. In trying out different gain values, one gets an MSE 

of 133 for a gain of 2 and 39.3 for a gain of 3 and 43.1 for a gain of 4. In terms of MSE, a filter gain of 

3 is a better choice than a filter gain of 2 or 4. Keeping the filter gain at 2 is also fine.  
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The mean squared error is about 125660 and the normalized mean squared error is 1.0361.  

The original gong signal has principal frequencies at 520, 630 and 660 Hz. We added a DC component 

at baseband. The carrier frequency is 2640 Hz. So the upconverted signal has principal frequencies of 

2640 Hz +/- 0, 520, 630, and 660 Hz, which gives 1980, 2010, 2120, 2640, 3160, 3270, and 3300 Hz. 

The following two plots are the modulateAgain signal which results from squaring the upconverted 

signal and its filtered version.  We only show the one-sided frequency spectrum for modulateAgain 

signal.  We compare the filtered version of modulateAgain signal side by side.  There is a noticeable 

DC component in the filtered modulateAgain signal. 

modulateAgain waveform  Lowpass Filtered modulateAgain waveform 

 

Here are the principal non-negative frequency components in the modulateAgain signal: 

• 0 and 5280 Hz, which are the largest components by far 

% part (b) Squaring Operation and Low-Pass Filtering 
modulateAgain = modulated .^ 2; 
figure; plotspec(modulateAgain, 1/fs); 

 
FIRlength = floor(fs/(2*f1));       %%% Use an odd-length FIR filter 
if 2*floor(FIRlength/2) == FIRlength 
  FIRlength = FIRlength - 1; 
end 

  
lowpassCoeffs = ones(1, FIRlength) / FIRlength; 
basebandOutput = 2*filter(lowpassCoeffs, 1, modulateAgain); 

 
% plotting 
figure; plotspec(basebandOutput, 1/fs); 
sound(basebandOutput, fs); 

pause(tmax+1); 
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• 520, 630 and 660 Hz 

• 4620, 4650 and 4760 Hz, which are 5280 Hz - 520, 630, and 660 Hz 

• 5800, 5910, and 5940 Hz, which are 5280 Hz + 520, 630, and 660 Hz  

With sampling rate 44100 Hz, we can represent frequency component up to 22050 Hz. 

c) The square root operation is performed after the lowpass filtering operation but before the plotting.. 

 

The mean square error is 122,194 and the 

normalized mean squared error is 1.0075.  The 

square root operation increases the energy of the zero 

frequency component. 

The DC offset of approximately 1 is visible in the time 

domain plot at the top.  The frequency plot has a very 

large DC component at 0 Hz.  When zoomed in, we will 

see other principal positive frequencies of 520, 630 and 

660 Hz (not shown). 

 

d) Here is the block diagram for the transmitted and the alternate receiver using the squaring block.  

 

 

 

 

 

 

 

 

 

 

The DC component is removed after the square root operation but before plotting.  

 

 The mean square error is about 133 and the normalized mean squared error is 0.001099.  The 

MSE has greatly improved with the sequential processing taken in the previous steps. 

% part (c) Square-root Operation 
basebandOutput = basebandOutput.^(0.5); 

 

% part (d) DC Removal 
basebandOutput = basebandOutput - mean(basebandOutput); 

𝑆𝑞𝑟𝑡(∙) 
𝑅𝑒𝑚𝑜𝑣𝑒 

𝐷𝐶 
𝐴𝑑𝑑  
𝐷𝐶 

(∙)2 

cos(2𝜋𝑓𝑐𝑡) 

𝐵𝑎𝑠𝑒𝑏𝑎𝑛𝑑  
𝐼𝑛𝑝𝑢𝑡 

𝐵𝑎𝑠𝑒𝑏𝑎𝑛𝑑  
𝑂𝑢𝑡𝑝𝑢𝑡 

𝐿𝑜𝑤 𝑃𝑎𝑠𝑠 𝐹𝑖𝑙𝑡𝑒𝑟 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 
 𝐵 

2𝐵 < 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 < 2𝑓𝑐 − 2𝐵 
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basebandOutput DC Removal  DC Removal (Zoomed in One-sided Spectrum) 

 

The principal non-negative frequencies are 520, 630, 660, 1040, 4760, 5280, and 5800 Hz.  By 

subtracting out the mean, the DC component has been removed.  Other major frequency components 

could be easily measured with cursors in the figure.  The higher frequency components above 660 Hz 

that are not originally in the gong signal are significantly attenuated but not completely removed.  This 

is due to the quality of digital lowpass filter we use.  We will explore the design and analysis of digital 

filters in upcoming lecture and homework. 

Note: The sound command in Matlab will clip amplitude values that fall outside of the range from -1 

to 1.  It is important to check to make sure that any vector of signal values sent to the sound are in 

range, e.g. 

>> max(abs(basebandInput)) 

0.6723 

Epilog:  Why did we need to add a DC offset to the baseband signal? 

Upconverted signal is s(t) = (1 + m(t)) cos(2  fc t) where m(t) is on the interval [-1, 1]. 

Apply a squaring device to s(t) to yield y(t) = s2(t) = (1 + m(t))2 cos2(2  fc t) = (1 + m(t))2 (½ + ½ 

cos(4  fc t)) 

Apply a lowpass filter with double bandwidth of m(t) and a gain of 2 to y(t) to yield v(t) = (1 + m(t))2 

Apply a square root operation to yield 1 + m(t) provided that 1 + m(t)  0 

Remove the DC component of 1 + m(t) to obtain m(t). 

If we hadn’t added the DC offset, then baseband output signal would have been | m(t) | and not m(t). 
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Adding the DC offset also greatly simplifies the receiver when using a squaring block but doubles the 

transmission power. The squaring block represents the voltage effect of a nonlinear circuit such as a 

transistor or vacuum tube (before transistors). The receiver can be implemented with a single transistor 

and a handful of resistors and capacitors. Here's an example AM radio receiver circuit.  

AM radio stations started widespread broadcasting in the 1920s using this style of double sideband 

large carrier (DSB-LC) amplitude modulation (i.e. adding a DC offset to the baseband speech/audio 

signal). They made the broadcasting transmitter more expensive so that receiver would be inexpensive 

and more people would be able to buy one for their homes. The invention of the transistor in 1947 

enabled the invention of the transistor radio. The first transistor radio reached the market in 1954.  

The DC component is at baseband and will be modulated to be centered at the carrier frequency. This 

places a lot signal power at the carrier frequency, which gives rise to the name Double Sideband - 

Large Carrier Amplitude Modulation. Adding a DC component at baseband is wasteful in the sense 

that it is not being used to make the message signal (basebandInput) more powerful. In AM radio 

transmissions, the DC component has as much power in it as the message signal. After modulation, the 

extra power in the DC component shifts to the carrier frequency, which greatly simplifies the receiver. 

A receiver can be constructed out of a single transistor. For more information, see the Web page for 

lecture 19 on sinusoidal modulation (optional content). 
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