
The University of Texas at Austin 

Spring 2025         EE 445S Real-Time Digital Signal Processing Laboratory            Prof. Evans 

Homework #3 Solutions 

3.1. Using Filtering to Improve Signal Quality. 27 points. 

Johnson, Sethares & Klein, exercise 4.21, on page 78. 9 points for each of the two parts. 

For the simulation of the narrowband interferers in parts (a) and (b) please use a chirp signal. 

In addition, please complete the following part:  (c) for the narrowband interference occurring 

inside the transmission band that you simulated in part (b), design a notch filter to use after the 

bandpass filter. For the notch filter, please use a second-order infinite impulse response (IIR) filter. 

Write the Matlab code to apply the notch filter to the output of the bandpass filter used to reduce 

out-of-band interference, and compute the change in SNR due to your notch filter. 9 points. 

 

Prologue: This problem explores limitations in improving quality of a signal that has been 

corrupted by narrowband interference. The interference can be at the fundamental frequency or its 

harmonics emitted by an oscillator. Here are several examples: 

• In a laptop, electromagnetic interference from the LCD pixel clock circuitry and its first 100 

harmonics are significant sources of interference; a 65 MHz LCD pixel clock’s harmonic 

clobbers one of the IEEE 802.11g wireless LAN channels.  

• On power lines, power electronics for electronically-ballasted compact fluorescent lights 

generate narrowband interferers (harmonics) in the 20-80 kHz powerline communication band. 

• WWVB timing signal is broadcast from a single transmitter in Ft. Collins, Colorado, at a carrier 

frequency of 60 kHz. From this signal, which is available in North America, the Caribbean, 

and West Africa, watches and clocks can automatically adjust and reset time. However, this 

narrowband signal can be an interferer, e.g. in the 20-80 kHz powerline communication band. 

• “Impact of power line telecommunication systems on radiocommunication systems operating 

below 80 MHz”, June 2013 

• A 50/60 Hz power signal, and its odd harmonics, can couple into other lines in a system. 

• In cellular communications, reflections of transmitted signal by reflectors in the environment 

(e.g. nearby metal fences) fall in the transmission band as well as in adjacent bands (due to 

passive intermodulation)  

 

Solutions for (a) and (b): In part (a), the chirp signal occupies different frequencies from those 

of the signal of interest, whereas chirp signal falls within the range of frequencies of the signal of 

interest in part (b). The signal of interest occupies 3000-4000 Hz.  We will model the chirp signal 

using a cosine that increases in frequency over time, starts with frequency of 1000 Hz and ends 

with 1100 Hz for part (a) and starts with 3500 Hz and ends with 3600 Hz for part (b). 

We design a bandpass finite impulse response (FIR) filter with passband 3000-4000 Hz using 

the Parks-McClellan algorithm.  Hence, the FIR filter will have ripples in the passband and 

stopband of the magnitude response.  In the stopband, the magnitude response will vary with 

frequency. When narrowband interference occurs in the stopband, it will be attenuated, and some 

of it will likely get through.  For this problem, we use interference and noise interchangeably. 

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2158-3-2014-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2158-3-2014-PDF-E.pdf
https://www.analog.com/en/analog-dialogue/articles/passive-intermodulation-effects-in-base-stations-understanding-the-challenges-and-solutions.html
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This problem uses signal-to-noise ratio (SNR) to measure signal quality.  SNR assumes that 

signal and noise are in theory statistically independent and in practice uncorrelated.  We will 

discuss more about these assumptions after midterm #1. 

For part (a), the signal and interference occupy different frequency bands.  The bandpass filter 

removes most of the energy of the out-of-band interference and output SNR increases as a result. 

For part (b), the in-band interference passes through the bandpass filter.  However, some of the 

energy in the signal and interference resides outside the 3000-4000 Hz band.  The bandpass filter 

passes a higher percentage of interference energy than signal energy, and the SNR decreases. 
 

%% #3.1(a), (b) 
% improvesnr.m: using linear filters to improve SNR 
clear all; close all; clc; 
time=3;                                   % length of time for the simulation 
Ts=1/20000;                               % sampling interval for fs = 20000 Hz 
b=remez(100, [0 0.29 0.3 0.4 0.41 1], [0 0 1 1 0 0]); % Bandpass filter passing 3000-4000 Hz 
t=0: Ts: time-Ts; 
% % % chirp noise outside passband for part (a) 
% f0 = 1000; 
% chirpBW = 100; 
% n = cos(2*pi*f0*t + pi*(chirpBW/time)*(t.^2)); 
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % chirp noise inside passband for parts (b) and (c) 
f0 = 3500; 
chirpBW = 100; 
n = cos(2*pi*f0*t + pi*(chirpBW/time)*(t.^2)); 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x=filter(b, 1, 2*randn (1, time/Ts));     % bandlimited signal between 3K and 4K 
y=filter(b, 1, x+n);                      % filter the received signal+noise 
yx=filter(b, 1, x); yn=filter(b, 1, n);   % filter signal and noise separately 
z=yx+yn;                                  % add them 
diffzy=max(abs(z-y))                      % and make sure y and z are equal 
snrinp=pow(x)/pow(n)                      % SNR at input 
snrout=pow(yx)/pow(yn)                    % SNR at output 

  
% check spectra 
figure (1), plotspec(n, Ts) 

(a) Spectrum of signal plus interference 

outside of transmission band (above) and 

bandpass filter response (below). 

SNRinp = 0.9776    SNRout = 67.0338 
 

(b) Spectrum of signal plus interference 

inside of transmission band (above) and 

bandpass filter response (below). 

SNRinp = 0.9675    SNRout = 0.7430 
 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 
 

3 

figure (2), plotspec(x, Ts) 
figure (3), plotspec(x+n, Ts) 
figure (4), plotspec(y, Ts) 

  
% Here's how the figure was actually drawn 
N=length(x);                               % length of the signal x 
t=Ts*(1:N);                                % define time vector  
ssf=(-N/2 : N/2-1) / (Ts*N);               % frequency vector 
fx=fftshift(fft(x(1:N)+n(1:N)));                 
figure(5), subplot(2, 1, 1), plot(ssf, abs(fx)); 
xlabel('magnitude spectrum of signal + noise'); 
ylim( [0, 4000] ); 
fy=fftshift(fft(y(1: N)));                 
subplot(2, 1, 2), plot(ssf, abs(fy)) 
xlabel('magnitude spectrum after filtering'); 
ylim( [0, 4000] ); 

Solution for (c):  We apply an IIR notch filter with two poles and two zeros, shown below.  (See 

Lecture Slides 6-11 and 6-22). 

fs = 1 / Ts; 
f0 = 3500+chirpBW/2;                       % chirp is at 3500-3600 Hz, with center at 3550 Hz 
% Design IIR biquad notch filter 
w0 = 2*pi*f0/fs;                           % notch out chirp noise 
r = 0.99;                                  % pole radius 
snrnotch_min = snrout;                     % initialize snrnotch_min to conservatively low value 

r_min = r;                                 % initialize r_min 
N=length(x);                               % length of the signal x 
while r>0.85                               % try different notch filters to pick best one 
    p0 = r*exp(j*w0);                      % also to prevent removing signal frequency components 
    p1 = r*exp(-j*w0); 
    z0 = exp(j*w0); 
    z1 = exp(-j*w0); 
    num = [ 1  (-(z0+z1))  (z0*z1) ]; 
    den = [ 1  (-(p0+p1))  (p0*p1) ]; 
    zvec = [ 1  1  1 ];                    % vector of [1 z^(-1) z^(-2)] for z = 1 
    gain = (den * zvec') / (num * zvec');  % set gain at w=0 (z=1) to be 1 
    num = gain * num;                      % normalize gain, but does not affect SNR result 

  
    % Apply IIR biquad 
    wx = filter(num, den, yx);             % filter the output of bandpass filter from (b) 
    wn = filter(num, den, yn); 
    w = wx + wn; 
    snrnotch = pow(wx)/pow(wn); 
    if (snrnotch_min<snrnotch) 
        snrnotch_min=snrnotch; 
        r_min=r; 
        t=Ts*(1:N);                              % define time vector  
        ssf=(-N/2 : N/2-1) / (Ts*N);             % frequency vector 
        fx=fftshift(fft(yx(1:N)+yn(1:N)));                 
        figure(6), subplot(2, 1, 1), plot(ssf, abs(fx)); 
        xlabel('magnitude spectrum of signal + noise'); 
        ylim( [0, 4000] ); 
        fy=fftshift(fft(w(1: N)));                 
        subplot(2, 1, 2), plot(ssf, abs(fy)) 
        xlabel('magnitude spectrum after filtering'); 
        ylim( [0, 4000] ); 
    end 
    r=r-0.001;                                   % step size of notch by 0.001 
end 

 
snrnotch_min 
r_min 

http://www.ece.utexas.edu/~bevans/courses/realtime
http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
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SNRinp = 0.9837  SNRnotch_min = 54.4634 rmin = 0.8510 
 

The above code finds the best notch filter in terms of 

SNRnotch by changing the radius of the poles in the 

filter, r = [0.85 to 0.99] with Δr = 0.001.  The chirp 

interference has been removed.  The frequency 

response of the notch filter is shown on the right. 

 

Here’s an alternate solution to part (c) using the 

iirnotch command in Matlab: 

 

fs = 1 / Ts; 
w0 = (3500+chirpBW/2)*2*Ts;             % notch out noise at 3600 Hz 
bw = w0*1;                              % bandwidth, preferable 100 Hz 
[Num, Den] = iirnotch(w0, bw); 
wx = filter(Num, Den, yx);              % filter the output of bandpass filter from (b) 
wn = filter(Num, Den, yn); 
w = wx + wn; 
snrnotch = pow(wx)/pow(wn) 
figure(8), freqz(Num, Den,fs); 

  

Zoom into 3000 to 4000 Hz 

http://www.ece.utexas.edu/~bevans/courses/realtime
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3.2. Quadrature Amplitude Modulation. 27 points. 

Johnson, Sethares & Klein, exercise 5.14 on page 92, parts (a) and (b). 

_________________________________________________________________________________________________ 

 

 

Prologue: An analog QAM receiver must perfectly track the carrier frequency and carrier phase 

to recover the transmitted messages perfectly (same goes for a digital QAM receiver) assuming an 

ideal channel. This problem asks you to explore degradation in the received messages if the carrier 

frequency has been perfectly tracked but the carrier phase tracking has a slight error in it.  

The block diagrams for the QAM transmitter and receiver are given at the top of this page.  Note 

the negative sign on the sine carrier signal in the receiver to match the negated path for the sine 

carrier signal in the transmitter.  Delay t0 matches the delay through the lowpass filter (LPF). 

Solution for (a): Because of the phase error , energy in transmitted message signal #1 will leak 

into received message signal #2, and vice-versa, which is known as cross-interference: 

s1(t) = LPF{ m1(t) cos(2 π fc t) cos(2 π fc t + ) - m2(t) sin(2 π fc t) cos(2 π fc t + ) } 

s1(t) = LPF{ 1/2 m1(t) ( cos() + cos(4 π fc t + ) ) - 1/2 m2(t) ( sin(-) + sin(4 π fc t + ) ) } 

s1(t) = 1/2 cos() m1(t) + 1/2 sin() m2(t) 

When  = 0, i.e. when there is no phase error,  

s1(t) = 1/2 m1(t) 

which recovers the in-phase component up to a scalar gain. 
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Dashed lines indicate the steps for additional calculations of signal quality in the epilogue. 
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When  = π/2, i.e. when there is severe phase error, 

s1(t) = 1/2 m2(t) 

which recovers the wrong message signal. 

In the above equations, the lowpass filter is assumed to be ideal with no delay. In practice, the 

input signal experiences delay through the filter, which is called the group delay.  The group delay 

is equal to the negative of the slope of the phase response vs. frequency.  For a linear phase FIR 

filter with N coefficients, the group delay n0 is a constant equal to (N-1)/2 samples.  Please use an 

odd-length FIR filter so that the group delay through the FIR filter is an integer.  

For the Matlab code, please use two different signals for the baseband message signals m1(t) and 

m2(t).   Also, it is easier to use the same lowpass filter in each branch. 

 
% QAM.m which is a modified version of 

% AM.m suppressed carrier AM with freq and phase offset 

% from Johnson, Sethares and Klein, Software Receiver Design 

 

% Define sampling rate, sampling time, and time duration 

fs=10000;                           % sampling rate 

time=0.3; Ts=1/fs;                  % sampling interval & time 

t=Ts:Ts:time; lent=length(t);       % define a time vector 

 

% Transmitter 

upramp=(5/lent)*(1:lent); 

fm=20; 

m1=upramp+cos(2*pi*fm*t);           % create message m1(t) 

 

downramp=(5/lent)*(lent:-1:1); 

fm=20; 

m2=downramp+cos(2*pi*fm*t);         % create message m2(t) 

 

fc=1000; 

c=cos(2*pi*fc*t);                   % cosine carrier at freq fc 

s=sin(2*pi*fc*t);                   % sine carrier at freq fc 

v=m1.*c - m2.*s;                    % modulate 

 

% Receiver 

fbe=[0 0.1 0.2 1]; damps=[1 1 0 0]; % fpass=500 Hz and fstop=1000 Hz 

fl=100; b=firpm(fl,fbe,damps);      % LPF with (f1+1) coefficients 

n0=fl/2;                            % group delay through LPF 

 

gam=0; phi=0;                       % freq & phase offset 

cr=cos(2*pi*(fc+gam)*t+phi);        % create cosine for demod 

x1=v.*cr;                           % demod received signal 

s1=2*conv(b,x1);                    % LPF the demodulated signal 

s1short=s1(n0+1:n0+lent);           % remove first and last n0 samples 

sr=-sin(2*pi*(fc+gam)*t+phi);       % create negated sine for demod 

x2=v.*sr;                           % demod received signal 

s2=2*conv(b,x2);                    % LPF the demodulated signal 

s2short=s2(n0+1:n0+lent);           % remove first and last n0 samples 

 

% used to plot figure 

subplot(4,1,1), plot(t,m1) 

axis([0,0.1, -1,3]) 

http://www.ece.utexas.edu/~bevans/courses/realtime
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ylabel('amplitude'); title('(a) message #1 signal'); 

subplot(4,1,2), plot(t,v) 

axis([0,0.1, -2.5,2.5]) 

ylabel('amplitude'); title('(b) transmitted signal'); 

subplot(4,1,3), plot(t,x1) 

axis([0,0.1, -1,3]) 

ylabel('amplitude'); 

title('(c) demodulated signal prior to filtering'); 

subplot(4,1,4), plot(t,s1short) 

axis([0,0.1, -1,3]) 

ylabel('amplitude'); 

title('(d) recovered message #1 signal by applying LPF to (c)'); 

Connections to lecture.  We had discussed cosine modulation and demodulation on lecture slides 

1-6 through 1-7 for the two-sided case. Consider a two-sided baseband signal x1(t) with 

bandwidth 1 modulated by cos(c t) which gives y(t) = x1(t) cos(c t) as a two-sided signal. The 

spectrum Y() is bandpass over  in [c - 1, c + 1] and [-c - 1, -c + 1] with bandwidth 

21 as shown on both slides. For demodulation back to baseband, we'll multiply y(t) by cos(c t) 

and apply a lowpass filter. In modulating y(t) by cos(c t), we’ll get a combination of a baseband 

component for  in [-1, 1] and a bandpass component for  in [2c - 1, 2c + 1] and [-2c - 

1, -2c + 1] as shown on lecture slide 1-7. Applying a lowpass filter with passband frequency 

of 1 will extract the baseband component and attentuate/reduce the bandpass component.  Here 

are several lowpass filtering approaches.  Lecture slides 1-6 and 1-7 apply an ideal IIR filter 

whose frequency response is a rectangular pulse for  in [-1, 1] and whose impulse response 

is a two-sided sinc.  Not implementable, but useful as a starting point.  A practical demodulating 

filter could be an FIR or IIR filter with a stopband frequency between 1.11 and 2c - 1. 

 

Message bandwidth. The message bandwidth is not explicitly given. By using plotspec(m1, Ts),  

the magnitude of the frequency content of message #1 contains one large DC component plus a 

smaller peak at 20 Hz plus slowly decaying magnitude values that follow a 1/f shape. The carrier 

frequency is 1000 Hz. The demodulating filter is a linear phase FIR filter designed using the 

Parks-McCellan algorithm (firpm command) using a passband frequency of 500 Hz and 

stopband frequency of 1000 Hz.  From the demodulating filter specifications, one can infer the 

message bandwidth to be 500 Hz, and the stopband frequency is twice the message bandwidth. 

http://www.ece.utexas.edu/~bevans/courses/realtime
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/lecture1.ppt
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/lecture1.ppt
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Solution for (b): A frequency error γ can also cause cross-interference: 

s1(t) = LPF{ m1(t) cos(2 π fc t) cos(2 π (fc + γ) t) - m2(t) sin(2 π fc t) cos(2 π( fc + γ)t) } 

s1(t) = LPF{ 1/2 m1(t) ( cos(-2πγt) + cos(2π (2fc + γ)t) - 1/2 m2(t) (sin(2 π (2fc + γ)t) - sin(-2 π γt))} 

s1(t) = 1/2 cos(2 π γ t) m1(t) - 1/2 sin(2 π γ t) m2(t) 

When γ = 0,  

s1(t) = 1/2 m1(t), which recovers the in-phase component up to a scalar gain. 

When γ = 1/4 ,  

s1(t) = 1/2 cos( (π/2) t) m1(t) - 1/2 sin( (π/2) t) m2(t), which recovers the wrong message signal. 

As in part (a), the lowpass filter is assumed to be ideal with no delay. 

The same code used in part (a) can be used in part (b). To investigate the effect of a frequency 

offset, set phi=0; and change gam=0; to values other than 0 (e.g. gam=pi/2). 

For example, setting gamma = 10 and (1/10), respectively, results in the figures below:   

 

Epilogue: Compare the signal-to-noise ratio (SNR) for phase offset and frequency offset.  The 

signal of interest is the message signal m1(t).  The noise in s1(t) is computed as s1(t) - m1(t). 

Note that this part is not required to complete the homework.   

SNR = SignalPower / NoisePower = Power of m1(t) / Power of (s1(t) - m1(t)) 

A gain of 2 should be applied to s1(t) before calculating the 

SNR. The total power of a discrete-time signal v[n] is the 

sum of v2[n] for all n being observed. To calculate SNR, 

the following line of MATLAB code is appended to the 

code used in parts (a) and (b): 

snr = sum(m1.^2) / sum((s1short-m1).^2) 

As can be seen from these calculations, SNR decreases 

when there is phase error and/or frequency error.  Also, 

note that even without phase error or frequency error, 

s1(t) does not exactly equal m1(t). 

γ  SNR 

0 0 2803 

0 π/2 1.062 

0.25 0 53.79 

0.25 π/2 0.6580 

10π 0 0.5360 

 

http://www.ece.utexas.edu/~bevans/courses/realtime
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3.3. Infinite Impulse Response (IIR) Filter Design for Treatment of Tinnitus Loudness. 

This problem asks you to design a discrete-time digital IIR filter for the treatment of tinnitus 

loudness.  This problem is a sequel to homework problem 2.3. 

Tinnitus, a.k.a. “ringing of the ears”, is a symptom due to an underlying condition in the auditory 

system. It could have resulted from injury, infection, or other causes. People with tinnitus hear a 

tone, clicking, hiss, roaring or buzzing when no external sound is present [1][2]. The tinnitus sound 

could be at low, medium or high audible frequencies, and may occur in one ear or both ears. The 

tinnitus sound might be temporary or chronic. Those suffering from chronic tinnitus would hear 

the same sound in the same frequency range each time. The tinnitus sound has a principal 

frequency that can be determined through auditory testing. Hearing sound that contains the 

principal frequency and frequencies close to the principal frequency is particularly painful.  

This problem asks you to design a discrete-time filter to alleviate the loudness of tinnitus: 

"Maladaptive auditory cortex reorganization may contribute to the generation and maintenance 

of tinnitus. Because cortical organization can be modified by behavioral training, we attempted 

to reduce tinnitus loudness by exposing chronic tinnitus patients to self-chosen, enjoyable 

music, which was modified (“notched”) to contain no energy in the frequency range 

surrounding the individual tinnitus frequency. After 12 months of regular listening, the target 

patient group (n = 8) showed significantly reduced subjective tinnitus loudness and 

concomitantly exhibited reduced evoked activity in auditory cortex areas corresponding to the 

tinnitus frequency compared to patients who had received an analogous placebo notched music 

treatment (n = 8). These findings indicate that tinnitus loudness can be significantly diminished 

by an enjoyable, low-cost, custom-tailored notched music treatment, potentially via reversing 

maladaptive auditory cortex reorganization.” [3] 

The proposed treatment for tinnitus [3] alters participants' favorite music to remove an octave of 

frequencies around the tinnitus frequency fc.  An octave means a range of frequencies from f1 to 2 

f1. Since fc would be in the middle of the octave, f1 = (2/3) fc . After 12 months of listening to the 

filtered music, patients reported lessening of tinnitus loudness. 

A good rule of thumb in filter design is that the transition region is about 10% of the passband 

width.  In this case, the passband width is (2/3) fc. 

Here are the bandstop filter specifications for your design: 

• For frequencies 0 Hz to 0.6 fc, the passband ripple should be no greater than 1 dB. 

• For frequencies (2/3) fc to (4/3) fc, the stopband attenuation should be at least 80 dB. 

• For frequencies above 1.4 fc, the passband ripple should be no greater than 1 dB 

Please use a tinnitus frequency fc of 3000 Hz and a sampling rate fs of 44100 Hz. 

(a) Design IIR filters using the Butterworth, Chebyshev type I, Chebyshev type II, and Elliptic 

design methods. For each design method, find the filter of smallest order to meet the 

specifications. The filter order is the number of poles. Turn in plots of the magnitude and phase 

responses for each IIR filter you have designed to meet the specifications. Describe the 

passband and stopband response for each filter design as either monotonic or rippling. 

24 points. 

  

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 
 

10 

Hint:  Please check the filter design and implementation to ensure that it meets specifications: 

• Increase the plotting resolution for magnitude plots vs. frequency for the filter by going to the 

Analysis menu ... Analysis Parameters ... and setting the number of points to 65536. 

• Display the magnitude response in filterDesigner by choosing "Magnitude Response" under 

the "Analysis" menu or the appropriate icon shortcut. 

• Zoom into the passbands and stopband by using the zoom tool, which is available as the icon 

of the magnifying glass with a plus sign in the middle of it. 

• Hit CONTROL-Z to undo the most recent zoom. 

 

Solution for part (a) : 

Butterworth filter of the following 

specifications meets the filter 

requirement: 

 
Filter order = 150  
Fs = 44100 Hz 
Fpass1 = 1800 Hz 
Fstop1 = 2000 Hz 
Fstop2 = 4000 Hz 
Fpass2 = 4200 Hz 
Apass1 = 1 dB 
Astop = 80 dB 
Apass2 = 1 dB  
Match Option: Stopband 

 

 

http://www.ece.utexas.edu/~bevans/courses/realtime
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Chebyshev Type 1 filter of the 

following specifications meets the 

filter requirement: 

 
Filter order = 42  
Fs = 44100 Hz 
Fpass1 = 1800 Hz 
Fstop1 = 2000 Hz 
Fstop2 = 4000 Hz 
Fpass2 = 4200 Hz 
Apass1 = 1 dB 
Astop = 80 dB 
Apass2 = 1 dB  
Match Option: Passband 
 

 

 

 

http://www.ece.utexas.edu/~bevans/courses/realtime
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Chebyshev Type 2 filter of the 

following specifications meets the 

filter requirement: 

Filter order = 42  
Fs = 44100 Hz 
Fpass1 = 1800 Hz 
Fstop1 = 2000 Hz 
Fstop2 = 4000 Hz 
Fpass2 = 4200 Hz 
Apass1 = 1 dB 
Astop = 80 dB 
Apass2 = 1 dB  

Match Option: Stopband 

 

 

 

http://www.ece.utexas.edu/~bevans/courses/realtime
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Elliptic filter of the following 

specifications meets the filter 

requirement: 

 

Filter order = 20  
Fs = 44100 Hz 
Fpass1 = 1800 Hz 
Fstop1 = 2000 Hz 
Fstop2 = 4000 Hz 
Fpass2 = 4200 Hz 
Apass1 = 1 dB 
Astop = 80 dB 
Apass2 = 1 dB  

Match Option: Both 

 

 
Design Method Passband Stopband 

Butterworth Monotonic Monotonic 

Chebyshev Type I Rippling Monotonic 

Chebyshev Type II Monotonic Rippling 

Elliptic Rippling Rippling 

 

(b) List the filter orders required for filters to meet the specification.  Which IIR filter family gives 

the lowest filter order?  Plot the pole-zero diagram for the IIR filter with shortest filter order you 

designed in (a).  Because the poles and zeros are close to the unit circle and separated in angle, 

poles indicate the passband and zeros indicate the stopband. Submit the feedforward and feedback 

coefficients for the filter with minimum order. 

Solution for part (b) 

Elliptic design produces the lowest-order IIR filter. Its pole-zero plot is below. Filter has 10 pairs 

of conjugate symmetric poles and 10 pairs of conjugate symmetric zeros. 

http://www.ece.utexas.edu/~bevans/courses/realtime
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Filter Type Order 

Butterworth 150 

Chebyshev Type I   42 

Chebyshev Type II   42 

Elliptic   20 

Here are the filter coefficients (expressed as biquads).  All numerator coefficients (b0, b1, b2) are 

feedforward coefficients and all denominator coefficients (a0, a1, a2) are feedback coefficients.  

There are k+1 Gain values for k biquads. 

  b0 b1 b2 a0 a1 a2 

1st  Biquad 1 -1.687551 1 1 -1.627987 0.983799 
2nd Biquad 1 -1.926695 1 1 -1.929910 0.992896 
3rd Biquad 1 -1.711770 1 1 -1.568735 0.952980 
4th Biquad 1 -1.920147 1 1 -1.924376 0.980993 
5th Biquad 1 -1.756662 1 1 -1.375467 0.844027 
6th Biquad 1 -1.904650 1 1 -1.907066 0.948963 
7th Biquad 1 -1.817489 1 1 -1.844643 0.860928 
8th Biquad 1 -1.871898 1 1 -0.627776 0.333779 

9th Biquad 1 -1.677853 1 1 -1.648977 0.995936 
10th Biquad 1 -1.929047 1 1 -1.932847 0.998169 

 

 Gain 

1st  1.018323 
2nd 1.018323 
3th 1.241994 
4th 1.241994 
5th 1.704523 
6th 1.704523 
7th 3.852219 
8th 3.852219 
9th 0.070229 
10th 0.070229 
11th  1.000000 

 

Each biquad consists of a conjugate zero pair and a conjugate pole pair.  Because all zeros are on 

the unit circle, each b2 coefficient is one. The transfer function for each biquad has the form 

𝐻(𝑧) = 𝐶
1 + 𝑏1𝑧−1 + 𝑧−2

1 − 𝑎1𝑧−1 − 𝑎2𝑧−2
 

This would correspond to the difference equation that takes four multiplications and four additions: 

𝑦[𝑛] = 𝑎1 𝑦[𝑛 − 1] + 𝑎2 𝑦[𝑛 − 2] + 𝐶 (𝑥[𝑛] + 𝑏1 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]) 

After the cascade of the 10 biquads, the multiplication by C11 = 1 can be removed. 

(c) Use the Elliptic filter you designed in (a) for this part.  Assuming that the input data samples 

and the IIR filter coefficients are stored in single precision IEEE floating point format,  
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1. How many instruction cycles on the TMS320C6700 DSP family would it take to compute 

one output value for each input value if the IIR filter routine were handcoded in assembly 

for optimal performance? 

2. How much storage in bytes would it take to store the IIR coefficients and the circular buffer 

for the current and past inputs and the circular buffer for past outputs? 

Solution for (c):  

IIR filters of orders 12th – 24th would generally need to be implemented as a cascade of biquads 

and even then, the implementation might be very difficult to keep BIBO stable.  IIR filters above 

24th order are extraordinarily difficult to maintain BIBO stability after implementation.  

We’ll assume the IIR filter is implemented as a cascade of biquads to match the design procedure 

used in part (a). Using a cascade of biquads limits the loss of precision that results from converting 

from factored form in poles and zeros to unfactored form because the polynomial expansion only 

occurs for each biquad. A filter of order M would have M/2 biquads for even M, and (M-1)/2 

biquads and a first-order section for odd M. In this case, we have 20th order filter arranged as a 

cascade of 10 biquads. Each biquad, as mentioned in part (b), requires four multiplication and four 

addition operations to compute each outputs sample. 

Run-time computational complexity in multiplication-addition operations. There are 10 

biquads and each biquad requires four multiplication-addition operations, as explained next, for a 

total of 40 multiplication-addition operations.  This is twice the filter order. 

Run-time complexity in terms of TMS320C6700 DSP instructional cycles. In the course reader, 

Appendix N entitled “Tapped Delay Line on C6700 DSP” outlines an assembly language 

implementation for an FIR filter with 32-bit IEEE floating-point coefficients, input data and output 

data. For a tapped delay line with N coefficients, the code takes N + 28 instruction cycles to 

compute one output sample, not including updating the circular buffer of current and previous 

input values. For the DSP core, we need to load data from local on-chip memory into registers tto 

perform computations. The two data buses are each 32 bits wide. The C6700 DSP core has two 

data units, one per data bus, and each load or store operation has a throughput of one instruction 

cycle for each 32-value. Hence, we can read only one filter coefficient and one data value per 

instruction cycle. The 32-bit multiplication instruction (MPYSP) has a throughput of one cycle.  

An FIR filter computes the difference equation 

𝑏0 𝑥[𝑛] + 𝑏1 𝑥[𝑛 − 1] + 𝑏2 𝑥[𝑛 − 2] + ⋯ 

and the biquad computes a difference equation in a similar form 

𝑦[𝑛] = 𝑎1 𝑦[𝑛 − 1] + 𝑎2 𝑦[𝑛 − 2] + 𝑏0 𝑥[𝑛] +  𝑏1 𝑥[𝑛 − 1] + 𝑏2 𝑥[𝑛 − 2] 

which takes five multiplications and four additions per output sample.  The term 𝑏0 is the biquad 

gain applied at the input.  We’ll replace 𝑏0 with 𝐶 and factor it out of the feedforward terms: 

𝑦[𝑛] = 𝑎1 𝑦[𝑛 − 1] + 𝑎2 𝑦[𝑛 − 2] + 𝐶 (𝑥[𝑛] + 𝑏1 𝑥[𝑛 − 1] + 𝑏2 𝑥[𝑛 − 2]) 

which still requires five multiplications and four additions per output sample. 

In the listing of feedforward coefficients above, two of the feedforward coefficients, 𝑏0 and 𝑏2, 

were equal to 1.  This occurs when the zero locations are complex-valued and on the unit circle.  

In that case, which is common, only four multiplications per output sample is needed: 
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𝑦[𝑛] = 𝑎1 𝑦[𝑛 − 1] + 𝑎2 𝑦[𝑛 − 2] + 𝐶 (𝑥[𝑛] + 𝑏1 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2]) 

When the zero locations are real-valued and distinct, i.e. +1 and -1, only three multiplications four 

additions per output sample is needed: 

𝑦[𝑛] = 𝑎1 𝑦[𝑛 − 1] + 𝑎2 𝑦[𝑛 − 2] + 𝐶 (𝑥[𝑛] − 𝑥[𝑛 − 2]) 

In the most general case, computing the difference equation for a biquad requires 5 multiplications 

and 4 additions. The implementation complexity on the C6700 DSP is the same as a single tapped 

delay line with five coefficients, i.e. 33 instructions according to the above discussion.  (A first-

order section would need 3 multiplications and 2 additions per output sample, which would have 

the same complexity as a tapped delay line with three coefficients or 31 instructions.)  If the 

computation for biquad #2 waits until the computation of biquad #1 is finished, then the total 

number of cycles is obtained by adding up the instruction cycles for all the stages.  This is because 

unless we obtain the value of the current stage, we cannot evaluate the next stage.  In our case, we 

have ten biquads, which would require 10 * 33 = 330 instruction cycles. 

Optional: A fast implementation can be found by noticing that the difference equation in biquad 

#2 relies on the current input value (to be calculated by biquad #1), two previous inputs (already 

stored in the biquad) and two previous output values (already stored in the biquad).  Hence, we 

could start the calculation of the four of the five terms in the difference equation for biquad #2 

before biquad #1 is finished. That should save us 16 instruction cycles in each biquad.  This 

implementation would require 33 instruction cycles for the first cycle and 17 cycles for each biquad 

thereafter due to the overlapping calculations, for a total of 33 + 17 * 9 = 186 instruction cycles. 

Optional: A pipelined implementation of a cascade of biquads results from inserting a delay of 

one sample between each pair of biquads.  This insertion of a delay breaks the dependence of 

biquad n on the output of biquad n-1, thereby allowing biquad n and biquad n-1 to execute in an 

overlapped fashion.  That is, the computation of biquad n-1 can occur in parallel with the reads in 

biquad n. Inserting delays changes the phase (by increasing the group delay) but does not change 

the magnitude response.  The benefit is to reduce the number of C6000 cycles to be the same as 

direct form with two tapped delay lines, i.e. (order + 1 + order + 28) = 69 instruction cycles. 

Filter Coefficient Storage:  Each biquad would require storage of 2 numerator and 2 denominator 

coefficients. (Even though a biquad has six coefficients, a0 and b0 are always of value “1”.)  Each 

biquad has a constant gain, and that constant gain is chosen to help keep the implementation remain 

BIBO stable.  There are 10 biquads.  Hence, the storage is 5 * 10 = 50 coefficients, which would 

take 50 * 4 bytes = 200 bytes.  If the IIR filter were implemented as a single section, it would have 

21 numerator coefficients and 20 denominator coefficients (one of the denominator coefficients is 

always 1). The required storage is (21 + 20) * 4 = 164 bytes. 

Previous Values Storage: We need to store 20 previous input samples (ignoring the current input) 

and 20 previous outputs. For the two buffers, we would need 2  20  4 = 160 bytes.  To utilize 

the modulo addressing mode in the C6000 instruction set architecture, the circular buffer size 

should be a power of 2, which means that its size should be at least 32 words. So, for the two 

buffers, we’ll need 2  32  4 = 256 bytes. 

 

(d) How would you advocate using either an FIR filter or IIR filter for this application? In your  

answer, please include the design method for which you are advocating 
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Solution for (d):  Based on the results of this problem and homework problem 2.3, we notice that 

the best design algorithms in minimizing filter length are the Parks-McClellan (Remez) algorithm 

for linear phase FIR filters and the elliptic design algorithm for IIR filters. 

In terms of computation, the 564th-order FIR filter designed by the Parks-McClellan algorithm 

would take 565 multiplication-accumulation operations per output sample, whereas the elliptic IIR 

filter as a cascade of biquads would take 40 multiplication-operations as explained above, which 

is nearly 14x more efficient.  For a C6700 implementation, the FIR filter would take 565 + 28 = 

593 instructions. Implementing a direct form IIR structure as a single tapped delay line on the 

input values and a separate single tapped delay line on the output values would take (order + 1 + 

28) + (order + 28) or 97 instruction cycles.  As described in part (c), a cascade of biquads would 

take 330 instruction cycles; an efficient implementation of the cascade would take 186 instruction 

cycles; and a pipelined implementation of the cascade would take 69 instruction cycles. 

In terms of stability, an FIR filter is always stable, even under implementation. The choice of 

IIR filter structure will affect stability.  See the epilog for more information. 

In terms of phase response, an FIR filter designed by the Parks-McClellan algorithm has linear 

phase over all frequencies. An IIR filter has non-linear phase, although its phase response is 

approximately linear over parts of the passband.  IIR filters have lower run-time complexity than 

FIR filters we can design IIR filters with much lower orders vs. FIR filters, e.g. 20th-order IIR vs. 

564-order FIR filters in this case.  FIR filters have two major disadvantages because of their high 

orders: (1) they require more computation and hence use more power, and (2) the long impulse 

response of the filter introduces delay that may not be desirable for real-time tinnitus treatment. A 

group delay of 282 samples at a sampling rate of 44100 Hz means a delay of 6.39 ms. 

 

Epilog: Filtering Signals. 

There are three steps to design and implement a discrete-time filter: 

1. design the filter parameters according to desired goal 

2. convert the design to the selected filter structure 

3. realize the difference equation(s) for the filter structure to process the input signal to 

produce the output signal. 

FIR filter. We can design the filter parameters by (a) manually placing zeros, or (b) using an 

automated design algorithm such as Parks-McClellan or Kaiser windowing, or (c) using a pre-

designed filter such as an averaging filter or differencing filter and choose the order (length). The 

most common filter structure is the tapped delay line structure that directly implements 

convolution. For a causal implementation of the filter with input signal x[n] and output signal 

y[n], the difference equation is in terms of the current and previous input values, i.e. 

y[n] = h[0] x[n] + h[1] x[n-1] + ... + h[N-1] x[n - (L-1)] 

for n ≥ 0 where L is the number of FIR filter coefficients and h[n] is the impulse response. As a 

necessary condition for linear and time-invariance (LTI) to hold, the initial conditions { x[-1], x[-

2], ..., x[-(L-1)] } must be zero. The order of the filter would be N which is L - 1. 

IIR filter. We can design the filter parameters by (a) manually placing poles and zeros, or (b) 

using an automated design algorithm such as elliptic design, or (c) using a pre-designed filter 

such as a second-order bandpass filter used in homework 1.1(d). An Nth order filter means there 

are N poles; there are N zeros although some might be zero-valued. The most common filter 
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structure is to use a cascade of biquads for even-order filters or a cascade of biquads plus a first-

order section. One heuristic is order the biquads in ascending order of quality factors from input 

to output. See the "best mapping" below that uses an exhaustive search. For a causal filter 

implementation with input signal x[n] and output signal y[n] as a single section, the difference 

equation is in terms of previous output values as well as current and previous input values, i.e. 

y[n] = a[1] y[n-1] + ... + a[N] y[n - N] + b[0] x[n] + b[1] x[n-1] + ... + b[N] x[n - N] 

for n ≥ where { a[0], a[1], ..., a[N] } are the feedback coefficients with a[0] = 1 and { b[0], 

b[1], ..., b[N] } are the feedforward coefficients. As a necessary condition for LTI to hold, the 

initial conditions { y[-1], y[-2], ..., y[-N] } and { x[-1], x[-2], ..., x[-N] } must be zero. 

Quantization error. For FIR and IIR filters, implementation of the difference equation in step 3 

will be in particular numeric format, e.g. 16-bit integer or 32-bit IEEE floating point. The result 

of every multiplication and addition in the difference equation will be truncated or rounded to the 

numeric format, which will lead to quantization error in the output signal amplitude values. This 

quantization error in calculating the output values is in addition to any quantization errors that 

would have occured in step 2 in determining the filter coefficients. For an IIR filter, the 

quantization error for output value y[n] is propagated to future output values in an IIR filter, 

whereas this is not the case for an FIR filter. When we design an IIR in terms of poles and zeros, 

we expanding the factored form of the transfer function into unfactored form, i.e. a ratio of two 

polynomials, to obtain the feedback and feedforward coefficients. This can lead to perturbations 

of the pole and zero locations, which can sometimes lead to the filter not meeting the desired 

goal and even bounded-input bounded-output (BIBO) instability. 

Best mapping of poles and zeros to cascaded form. We have a cascade of B biquads for an 

Nth-order IIR filter, where B = N/2 if N is even and B = (N-1)/2 if N is odd. To find the best 

mapping of poles and zeros to cascaded form, we'd have to simulate all possible mappings to 

capture the quantization effects mentioned above. We have B pairs of conjugate pole pairs, and 

B pairs of zeros. All the complex-valued zeros are in conjugate pairs. 

For an exhaustive search of all possible mappings, we’ll take one of the B conjugate pairs of 

poles and place it in the first biquad in the cascade. We’ll then select one of the remaining B-1 

conjugate pairs of poles for the second biquad, and so forth. This has B! possibilities. In addition, 

for the first biquad, there are B possible choices of zero pairs, B-1 choices for the second biquad, 

etc. So, in total, we would have B! B! possibilities. This would mean 1 possibility when B = 1, 

and 4 for B = 2, and 36 for B = 3, and 567 for B = 4; 14440 for B = 5, etc. We can simulate each 

mapping in parallel for speed. Each simulation would input test signals that have all discrete-

time frequencies in them (e.g. a chirp signal, Gaussian noise, and an impulse) and compare the 

output spectrum to the ideal output spectrum. The filter with the closest match would be chosen. 

We can reduce the number of mappings to be simulated. We’ll proceed with the mapping of the 

conjugate pole pairs as before, which has B! possibilities. For each biquad, we’ll chose the zero 

pair closest in distance to the pole pair. This reduces the number simulations from B! B! to B!. 
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