
 

Course Web site 

Spring 2024    EE 445S Real-Time Digital Signal Processing Laboratory    Prof. Evans 

Homework #7 Solutions 

 

Prologue: Problems 7.1 and 7.2 concern equalization. An equalizer compensates distortion 

experienced by a signal. Examples of distortion: 

• Audio– distortion introduced by a microphone or an audio speaker. 

• Communications– distortion experienced by the baseband discrete-time signal in the 

transmitter as it passes through the transmitter analog/RF front end, communication channel, 

and receiver analog/RF front end to become the baseband discrete-time signal in the receiver. 

• Image/video– blur from an out-of-focus camera or artifacts from compression/decompression 

We can model the LTI distortion as an FIR filter and the additive thermal noise as a Gaussian 

random signal.  When an equalizer is placed before the distortion, it is called a pre-distorter. 

Equalizing frequency distortion has many applications, including pre-distorting an image prior to 

display/printing, calibrating biomedical instrumentation, and compensating phase distortion in an 

analog-to-digital converter.  In a communication receivers. the equalizer is usually an FIR filter.  

Please watch the video lecture from spring 2014 entitled Digital Quadrature Amplitude 

Modulation Receivers Part 2 on channel equalization from 34:04 to 50:03 (end). 

The "best" FIR equalizer may be of any length, including longer than the channel impulse response 

length. To reduce the computational complexity of your simulations, please limit your search to 

FIR equalizers having 4 to 41 coefficients.  

The bit error rate may appear to be zero if enough bits aren't used in the simulation. For example, 

if one expects a bit error rate (BER) of 10-2, i.e. one bit error occurs every 100 bits on average, 

then one would generally have to run 100/BER bits (i.e. 10,000 bits) to have confidence in the 

measurement of this bit error rate. It is okay if you cannot drive the number of bit errors to zero.  

Problems 7.1 and 7.2 require a maximal length pseudo-noise sequence of length 1023 bits.  Length 

1023 sequence would require 10 stages, i.e. 210 – 1 = 1023.  One realization is a connection 

polynomial with connections at stages 3 and 10. Matlab code to generate the maximal length PN 

sequence of length 1023 using version 6.0 of the Communications Toolbox is the following: 

pn1023gen = commsrc.pn('GenPoly',       [10 3 0], ... 
                       'InitialStates', [0 0 0 0 0 1 0 0 0 0], ... 
                       'CurrentStates', [0 0 0 0 0 1 0 0 0 0], ... 
                       'Mask',          [0 0 0 0 0 1 0 0 0 0], ... 
                       'NumBitsOut',    1023); 
pn1023seq = round(2 * generate(pn1023gen) - 1); 

The PN sequence has a period of 1023 values. We can repeat one period of the generated PN 

sequence ten times to obtain a sequence of 10,230 values, or set the ‘NumBitsOut’ parameter to 

10230.  Or you can use this maximal length PN sequence with period of 1023 samples. 

 

7.1 Channel Equalization Using a Least Squares FIR Design. 

Johnson, Sethares & Klein, problem 13.3, on page 279:  

Use LSequalizer.m to find an equalizer that can open the eye for channel b= [1 1 -0.8 -0.3 1 1]. 

a. What equalizer length n is needed? 

http://www.ece.utexas.edu/~bevans/courses/realtime
http://www.youtube.com/watch?v=h9qHySkZp6g&index=43&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf
http://www.youtube.com/watch?v=h9qHySkZp6g&index=43&list=PLaJppqXMef2ZHIKM4vpwHIAWyRmw3TtSf
https://www.gaussianwaves.com/2018/09/maximum-length-sequences-m-sequences/
https://www.gaussianwaves.com/2018/09/maximum-length-sequences-m-sequences/
http://users.ece.utexas.edu/~bevans/courses/realtime/homework/pn1023seq.mat


 

Course Web site 

b. What delays delta give zero error at the output of the quantizer? 

c. What is the corresponding Jmin? 

d. Plot the frequency response of this channel. 

e. Plot the frequency response of your equalizer. 

f. Calculate and plot the product of the two. 

Changes:  Use a training signal s that is a pseudo-noise sequence of length 1023 concatenated 10 

times and the channel impulse response 

b = [1 -0.68 0.54 -0.25 0.32 -0.42 0.82 -0.9]; 

Plot the magnitude and phase of the channel frequency response using the freqz command.  The 

equalizer will seek to compensate the magnitude and phase response of the channel so that the 

cascade of the channel and equalizer would give (approximately) an ideal channel of a cascade of 

gain and delay. 

Estimate the computational complexity and memory usage to design the channel equalizer 

coefficients when using a training sequence of m samples and an FIR equalizer of (n+1) 

coefficients. 

Solution:  The code obtains the equalizer order n and delta values for the equalizer that produces 

the least square error between delayed samples from the sender and the actual received samples: 

 
% Prob 13.3 of Johnson, Sethares & Klein 
% Modified from LSequalizer.m 
% Find a least-squares equalizer f for channel impulse response b 
clear all; close all; clc; 
b = [1 -0.68 0.54 -0.25 0.32 -0.42 0.82 -0.9];       % define channel 
m=1023;                                % binary source length 
 

% With Communications Toolbox installed, use these 

% pn1023gen = commsrc.pn('GenPoly',      [10 7 0], ... 

% 'InitialStates', [0 0 0 0 0 1 0 0 0 0], ... 

% 'CurrentStates', [0 0 0 0 0 1 0 0 0 0], ... 

% 'Mask',          [0 0 0 0 0 1 0 0 0 0], ... 

% 'NumBitsOut',    m); 

% s=round(2 * generate(pn1023gen) - 1)';  % binary source of length m 

 

% Alternatively, if Communications Toolbox is not installed 

load pn1023seq 

s = pn1023seq’; 

s = [s s s s s s s s s s];              % duplicate to extend 10 times 
r=filter(b,1,s);                        % output of channel 
errmin_struct.err = 100000;       % initialize to large value 
errmin_struct.Jmin = 100000;      % initialize to large value 
errmin_struct.f = 0; 
errmin_struct.n = 0; 
errmin_struct.delta = 0; 
for n=3:40                              % length of equalizer - 1 
    for delta=1:n                         % use delay <= n * length(b) 
        p=length(r)-delta; 
        R=toeplitz(r(n+1:p),r(n+1:-1:1));   % build matrix R 
        S=s(n+1-delta:p-delta)';          % and vector S 
        f=inv(R'*R)*R'*S;                 % calculate equalizer f 
        Jmin=S'*S-S'*R*inv(R'*R)*R'*S;    % Jmin for this f and delta 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

        y=filter(f,1,r);                  % equalizer is a filter 
        dec=sign(y);                      % quantize and find errors 
        err=0.5*sum(abs(dec(delta+1:end)-s(1:end-delta))); 
        if ( err < errmin_struct.err ) 
            errmin_struct.err = err; 
            errmin_struct.J = Jmin; 
            errmin_struct.f = f; 
            errmin_struct.n = n; 
            errmin_struct.delta = delta; 
        end 
    end 
end 
eq_channel = conv(errmin_struct.f, b); 
% Print results of search for best equalizer length and delay 
errmin_struct   

At the end of simulation, the following Matlab struct contains the FIR LS equalizer filter order n, 

delays delta, and Jmin when the error has been minimized to zero: 
 

errmin_struct =  

 

  struct with fields: 

 

      err: 0 

     Jmin: 100000 

        f: [34×1 double] 

        n: 33 

    delta: 14 

        J: 1.435384376655984e+03 

 

(a) As the number of bit errors approaches zero, the eye diagram becomes more open. The finite 

impulse response (FIR) equalizer that gave zero bit errors over the training sequence has a filter 

order of 33 (i.e. n in the errmin_struct is 33). Hence, the FIR equalizer has 34 coefficients. 

 

[Optional]: The left figure shows the impulse 

response of the LS equalizer that gives zero bit 

errors. 

 

 

 

 

 

 

 

 

(b) The resulting delays delta is 14 samples.  The delays delta is the combined delay due to the 

channel and the equalizer.  The equalizer must be long enough to compensate effects of the 

channel, but not too long to overly model the channel.  A much higher order equalizer without 

much better improvement on bit errors is an example of diminishing return. 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

 

[Optional]: The left figure shows the impulse 

response of the overall system with the 

cascade of the channel and the channel 

equalizer.  The coefficients are not symmetric 

around the peak value.  At the receiver, the 

equalized sample will have a 14-sample 

delay.  

 

 

 

 

 

(c) Jmin for an equalizer length of 34 coefficients and delay delta of 14 samples is 1435.3843. 

 

(d) The frequency response of the channel is plotted below (using freqz): 

 

The channel distorts the transmitted signal. The 

equalizer will have difficulty in recovering 

frequencies with attenuation of -20 dB around 

frequencies 0.25π, 0.5π, and 0.8π rad/sample. 

The attenuation at the DC is about -8 dB. The 

channel phase response deviates from linear in 

small neighborhoods around 0, 0.25π, 0.5π, and 

0.8π rad/sample. 

 

 

 

 

(e) The frequency response of the 34-tap equalizer is shown below: 

 

The equalizer passbands are centered near 0π, 

0.25π, 0.45π, and 0.54π rad/sample. The 

passband at DC has the strongest gain at 7.3 

dB, while the gain at the 0.25π rad/sample is 

6.4 dB. The gain at 0.45π rad/sample is 1.7 dB 

and only 0.43 dB gain at 0.54π rad/sample.  

 

The equalizer phase response is nearly linear, 

and hence, the equalizer filter coefficients are 

nearly symmetric or nearly anti-symmetric 

about the group delay term.  

 

 

(f) Here is the frequency response of the cascade of the channel with the equalizer plotted by 

applying freqz to the convolution of impulse responses of the channel and equalizer: 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

  

The cascade of channel and equalizer should 

ideally pass all frequencies with unity gain and 

delay the transmitted signal by a constant 

amount. A constant delay corresponds to a 

linear phase response. In this case, the 

equalized channel has a magnitude response 

that is close to 0 dB (unity gain with 1 dB 

ripple) except for the nulls at 0.25π, 0.5π, and 

0.8π rad/sample.  The phase response is nearly 

linear, except for the deviations at 0.25π, 0.5π, 

and 0.8π rad/sample. 

 

The Matlab code below is used to generate and save all the above plots at the end of the simulation: 

figure; stem(errmin_struct.f); title('Impulse Response of LS Equalizer'); 

ylabel('Amplitude'); 
xlabel('n (samples)'); 
saveas(gcf, 'impulse-res-LS-EQ.png'); 

  
figure; [h1,w]=freqz(errmin_struct.f,1); freqz(errmin_struct.f,1); 
saveas(gcf, 'freq-res-LS-EQ.png'); 

  
figure; [h2,w]=freqz(b,1); freqz(b,1); 
saveas(gcf, 'freq-res-channel.png'); 

  
figure; freqz(eq_channel,1); 
xlabel('Normalized Frequency (rad/sample)'); 
ylabel('Magnitude (dB)'); 
title('Cascade of channel and equalizer (Min Error)'); 
saveas(gcf, 'freq-LS-EQ-channel.png'); 

  
figure; stem([0:length(eq_channel)-1], eq_channel);  
title('Impulse Response of Equalized Channel');  
ylabel('Amplitude'); xlabel('n (samples)'); 
saveas(gcf, 'impulse-res-LS-EQ-channel.png'); 

Computational Complexity. For an equalizer with (n+1) coefficients, training sequence of m 

samples, and delay Δ, computing LS equalizer coefficients uses f=inv(R'*R)*R'*S where R is q 

x (n+1), R’ is (n+1) x q, R' R is (n+1) x (n+1) and S is q x 1.  Here, q = m + length(b) – Δ – n. 

In this problem, Δ ≤ n, n ≤ 40 and length(b) = 8.  Since m = 10230, we’ll use q ≈ m. 

Vector S is composed of training sequence samples and is m x 1. Matrix R is composed of received 

samples and is m x (n+1) and R' R is (n+1) x (n+1).  Computing R’ R takes m(n+1)2 multiplication-

accumulate (MAC) operations. R’ S takes m (n+1) MACs, the matrix inverse takes 2(n+1)3 MACs, 

and the final product takes (n+1)2 MACs, for a total of m(n+1) + (n+1)2 + (2/3)(n+1)3+ m(n+1)2 

MACs.  (The matrix inverse is really used here to solve a linear system of equations. With vector 

x known, we rewrite y = A-1 x as the solution for y in A y = x.  An n by n system of linear equations 

can be solved with (2/3)n 3 MAC operations using Gaussian elimination.  The MATLAB command 

change from f=inv(R'*R)*R'*S to f=(R'*R) \ (R'*S).) 

http://www.ece.utexas.edu/~bevans/courses/realtime
https://en.wikipedia.org/wiki/Gaussian_elimination#Computational_efficiency


 

Course Web site 

For n = 33 and m = 10230, computational complexity is 12.22 MFLOPS. 

Here are several hints on calculating computational complexity: 

• A scalar element multiplies with a vector of N elements takes N multiplication operations.  

• The dot/inner product of two vectors of length N takes N multiplications and N-1 

additions, or equivalently N MAC operations.  

• The product of an N by M matrix and a column vector of M elements (i.e. an M x 1 

matrix) requires N dot/inner products of two vectors of length M, which requires N M 

MAC operations.  

• The product of an N by M matrix with an M by N matrix produces an N by N matrix with 

N2 entries. Each entry in the resulting matrix involves a dot/inner product of two vectors 

of length M. Therefore, the product of the two matrices requires M N2 MAC operations. 

• Matrix inverse are often avoided to solve a linear system of equations. That is, with 

vector x known, we can rewrite  
y = A-1 x 

as solving the following linear system of equations for y:  
A y = x 

An N by N system of linear equations can be solved with (2/3) N3 MAC operations, as 

described by the article "Gaussian elimination".  

Memory usage.  The LS equalizer stores matrices R, R’R, and vector S, which would take m(n+1) 

+ (n+1)2 + m words of memory.  For n = 33 and m = 10230, memory usage is 359,206 words. 

 

7.2 Channel Equalization Using An Adaptive FIR Design.  

Johnson, Sethares & Klein, problem 13.9, on page 287: 

“Use LMSequalizer.m to find an equalizer that can open the eye for the channel b=[1 1 -0.8 -0.3 

1 1]. 

a. What equalizer length n is needed? 

b. What delays delta give zero error in the output of the quantizer? 

c. How does the answer compare with the design in Exercise 13.3?” 

 

Changes:  Use a training signal s that is a pseudo-noise sequence of length 1023 and the channel 

impulse response 

b = [1 -0.68 0.54 -0.25 0.32 -0.42 0.82 -0.9]; 

Estimate the computational complexity and memory usage to design the channel equalizer 

coefficients when using a training sequence of m samples and an FIR equalizer of n coefficients. 

 

Prologue:  Please see the prologue on the first page of this solution set concerning equalization.  

For the adaptive least mean squares (LMS) equalizer in this problem, a step-by-step derivation is 

available on page 3 in the Fall 2020 QAM lecture notes part 1.  Also, the section on the Ideal 

Channel section (page 2) might also be helpful in understanding the derivation. 

Please see the following midterm #2 problems and their solutions involving adaptive FIR 

channel equalizer design: fall 2021 problem 2.3, fall 2019 problem 2.3, fall 2017 problem 2.3,   

spring 2017 problem 2.3, spring 2017 problem 2.4, spring 2014 problem 2.1, fall 2013 problem 

2.1, spring 2013 problem 2.1, and fall 2012 problem 2.2. 

http://www.ece.utexas.edu/~bevans/courses/realtime
http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination#Computational_efficiency
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/16_QAM/notes/2020-11-23%20Lecture%2016%20QAM%20Receivers.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2021.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2019.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2017.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2017.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2017.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2014.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2013.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoSpring2013.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/MidtermTwoFall2012.pdf


 

Course Web site 

Please see the solution for fall 2011 midterm #2 problem 2.4(a) in the course reader for a 

qualitative comparison between the least squares and adaptive least mean squares methods. 

Please augment the code for problem 7.2 by copying the code to calculate and track the 

minimum error (errmin) from the code for problem.  Reduce the step size parameter, mu, to be 

on the order of 0.001 so that the iterations will converge to a reasonable error value.  There are 

two different error calculations in this problem, and they are easy to confuse.  

 

Solution:  I used the following code to obtain the least n and delta required for that n. 
 

 
% Prob 13.9 of Johnson, Sethares & Klein 
% Modified from LMSequalizer. 
% Find a least mean squared equalizer f for channel impulse b 
clear all; close all; clc; 
b = [1 -0.68 0.54 -0.25 0.32 -0.42 0.82 -0.9];       % define channel 
m=1023;                                % binary source length 
 

% With Communications Toolbox installed, use these 

% pn1023gen = commsrc.pn('GenPoly',      [10 7 0], ... 

% 'InitialStates', [0 0 0 0 0 1 0 0 0 0], ... 

% 'CurrentStates', [0 0 0 0 0 1 0 0 0 0], ... 

% 'Mask',          [0 0 0 0 0 1 0 0 0 0], ... 

% 'NumBitsOut',    m); 

% s=round(2 * generate(pn1023gen) - 1)';  % binary source of length m 

 

% Alternatively, if Communications Toolbox is not installed 

load pn1023seq 

s = pn1023seq’; 

s = [s s s s s s s s s s];              % duplicate to extend 10 times 
r=filter(b,1,s);                       % output of channel 
errmin_struct.err = 100000; 
errmin_struct.n = 0; 
errmin_struct.delta = 0; 
errmin_struct.f = 1; 
for n=3:50 
    for delta=1:n 
        f=zeros(n,1);              % initialize equalizer at 0 
        mu=.0035;                   % stepsize 
        for i=n+1:m                % iterate 
            rr=r(i:-1:i-n+1)';     % vector of received signal 
            e=s(i-delta)-f'*rr;    % calculate error 
            f=f+mu*e*rr;           % update equalizer coefficients 
        end 
        y=filter(f,1,r);           % equalizer is a filter 
        dec=sign(y);               % quantization 
        err=0.5*sum(abs(dec(delta+1:end)-s(1:end-delta))); 
        if (err < errmin_struct.err) 
            errmin_struct.err = err; 
            errmin_struct.n = n; 
            errmin_struct.delta = delta; 
            errmin_struct.f = f; 
        end 
    end 
end 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

eq_channel = conv(errmin_struct.f, b); 
% Print results of search for best equalizer length and delay 
errmin_struct 

At the end of simulation, the following Matlab struct contains the FIR LMS equalizer filter order 

n, and delays delta when the error has been minimized to zero: 

errmin_struct =  

  struct with fields: 

      err: 0 

        n: 47 

    delta: 24 

        f: [47×1 double] 
 

The value of step size, µ = 0.0035 is used to 

make sure that the adaptive LMS equalizer 

converges and produces no bit errors over the 

training sequence. 

(a) As the number of bit errors approaches zero, 

the eye becomes more open. The finite impulse 

response (FIR) equalizer that gave the lowest 

number of bit errors over the training sequence 

has a length of 47 coefficients (i.e. n in the 

errmin_struct is 47). 

[Optional] Figure shows the impulse response 

of the LMS equalizer that gives 0 bit errors. 

(b) With an adaptive LMS equalizer of length of 47 and resulting delta value of 24 samples, the 

resulting bit error is zero.  The same phenomenon is observed on the Least Squares FIR case. 

 

[Optional]: The left figure shows the impulse 

response of the overall system of the cascade 

of the channel and the channel equalizer.  The 

coefficients are not symmetric around the peak 

value.  At the receiver, the equalized sysmte 

will have a primary delay of 24 samples.  

 

 

 

 

(c) We will compare the two equalizers in several ways. 

Adaptive LMS equalizer frequency response: Adaptive LMS equalizer frequency response is 

very different from the LS equalizer.  The passband frequency (above 0dB) is between DC and 

0.2π rad/sample. Other passband frequencies that are emphasized include narrow bands at 0.28π, 

0.45π, and 0.54π rad/sample. 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

 

Number of bit errors.  Both equalizers gave 

zero bit errors over the training sequence.  

However, the number of bit errors for the 

adaptive LMS equalizer depends on µ. 

Transmission delay: The delays through the 

cascade of the equalizer and channel was 24 

samples (LMS FIR equalizers) and 14 samples 

(LS FIR equalizers). The actual delay to 

minimize the number of bit errors will vary 

with the channel impulse response.  The 

transmission delay tells us how many initial 

samples to discard in a received signal. 

 

Equalized channel for adaptive LMS equalizer:  

The passband ripple and the nulls occur at 0.25π, 

0.5π, and 0.8π rad/sample of the equalized channel 

are same as those of the LS equalizer. However, 

the DC (-8 dB) and Nyquist frequency (-5 dB) in 

the LMS equalized channel is worse than the LS 

equalized channel.  The phase response is similar 

as those obtained by using LS equalizer.  

 

 

 

The following Matlab code generates and saves all the above plots at the end of the simulation: 

figure; stem(errmin_struct.f); title('Impulse Response of LMS Equalizer'); 

ylabel('Amplitude'); 
xlabel('n (samples)'); 
saveas(gcf, 'impulse-res-LMS-EQ.png'); 

  
figure; [h1,w]=freqz(errmin_struct.f,1); freqz(errmin_struct.f,1); 
saveas(gcf, 'freq-res-LMS-EQ.png'); 

  
figure; freqz(eq_channel,1); 
xlabel('Normalized Frequency (rad/sample)'); 
ylabel('Magnitude (dB)'); 
title('Cascade of channel and equalizer (Min Error)'); 
saveas(gcf, 'freq-LMS-EQ-channel.png'); 

  
figure; stem([0:length(eq_channel)-1], eq_channel);  
title('Impulse Response of Equalized Channel');  
ylabel('Amplitude'); xlabel('n (samples)'); 
saveas(gcf, 'impulse-res-LMS-EQ-channel.png'); 

Channel tracking. An adaptive LMS equalizer tracks changes in the channel over the training 

sequence, whereas the LS equalizer does not.  Advantage: adaptive LMS equalizer in practice. 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

Computational complexity. For an adaptive LMS equalizer, we assume fixed equalizer length n, 

delay Δ and gain g. There are m training samples/iterations. At each iteration, training requires n 

multiplications to compute one equalizer output sample, scalar multiplications to compute e[k] and 

 e[k], multiplication of scalar  e[k] and n equalizer coefficients, and addition of two vectors of 

length n. Training requires (2n+2)m multiply-add operations. With m = 10230 and n FIR filter 

coefficients, the LS equalizer requires mn+n2+(2/3)n3+mn2 multiply-adds (please note that n in 

problem 7.1 is the FIR filter order). Computational complexity is 12.22 MFLOPS for LS and 

0.982 MFLOPS for adaptive LMS equalizer. Advantage: adaptive LMS equalizer. 

Because the LS equalizer performs an inversion of the n x n matrix resulting from the calculation 

of R’R, the LS equalizer must be performed in floating point arithmetic for large values of n (e.g. 

n > 15).  Matrix inversion requires n2 divisions.  The adaptive LMS equalizer does not require 

any division operations and hence can more easily be implemented in fixed-point arithmetic. 

Memory usage.  The LS equalizer stores matrices R and R’R, and vector S, using mn +n2+m words 

of memory.  In the adaptive LMS equalizer, only n training signal samples would need to be 

available at a given time.  The algorithm stores three vectors of length n which uses 3n words of 

memory.  For m = 10230, memory usage is 359,206 words for the LS equalizer (n=33) and 141 

words for the adaptive LMS equalizer (n=47).  Memory usage for the LS equalizer is too high 

to fit into on-chip memory for many processors.  Advantage: adaptive LMS equalizer. 

Note:  Sometimes, the least squares method may have issues in the numeric precision of the inv(R’ 

R) calculation because R’ R may not be in full rank or have a high condition number. 

Summary. When compared to the LS equalizer in this simulation, the adaptive LMS equalizer (1) 

has same communication performance for a time-invariant channel, (2) has better performance for 

a time-varying channel (as would occur in practice) because it tracks changes in the channel over 

time, (3) requires an order of magnitude lower computational complexity and several orders of 

magnitude lower memory usage, and (4) can be implemented in fixed-point arithmetic.  The only 

drawback in the adaptive LMS equalizer is the proper choice of the step size, .   

Although not investigated here, the adaptive LMS equalizer will benefit substantially having a 

longer training sequence for the steepest descent algorithm to converge to a better answer. 

 

7.3. QAM Carrier Recovery 

Johnson, Sethares & Klein, problem 16.15, on page 371. 

Prolog:  You had evaluated the impact of carrier frequency and phase offset in QAM receivers in 

homework problem 3.2 (JSK problem 5.14) and the impact of phase offset in upconverted PAM 

receivers in homework problem 6.1 (JSK problem 10.21). Estimating and compensating for carrier 

frequency and phase offset is known as carrier recovery. For QAM Carrier Recovery, as mentioned 

in JSK Sections 16.3 and 16.4, in order to reconstruct the message symbols from a demodulated 

QAM signal, we will need to identify the phase and frequency of the carrier. From Equation (16.7) 

below, we know how to recover the message m(t) from the output of the receiver s(t). In the 

equation, we can see our modulating frequency 𝑓𝑐 and our modulating phase 𝜑, as well as our 

demodulating frequency 𝑓0 and our demodulating phase 𝜃. 

s(t)=
1

2
𝑒−𝑗2𝜋(𝑓0−𝑓𝑐)𝑡+𝑗(𝜑−𝜃)𝑚(𝑡)    (16.7) 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

To begin carrier recovery, the receiver can adjust the demodulating phase 𝜃 and demodulating 

frequency 𝑓0 to any desired values. We use this idea to determine what our 𝑓𝑐 and 𝜑 should be.  

The QAM Costas loop performs carrier recovery by tracking a time-varying phase which includes 

differences in transmit and receive carrier frequencies as well as transmit and receive phase offsets.  

The objective function in JSK (16.10) is periodic so that all local maxima are global maxima. 

 

Problem: Use the preceding code to “play with” the Costas loop for QAM. 

a. How does the stepsize mu affect the convergence rate? 

b. What happens if mu is too large (say mu=1)? 

c. Does the convergence speed depend on the value of the phase offset? 

d. When there is a small frequency offset, what is the relationship between the slope of the 

phase estimate and the frequency difference? 

% qamcostasloop.m simulate costas loop for QAM 
% input vreal from qamcompare.m 

  
r=vreal;                                   % vreal is from qamcompare.m  
fl=100; f=[0 .2 .3 1]; a=[1 1 0 0];        % filter specification    
h=firpm(fl,f,a);                           % LPF design 
mu=.003;                                   % algorithm stepsize 
f0=1000; q=fl+1;                           % assumed freq. at receiver 
th=zeros(1,length(t)); th(1)=randn;        % initialize estimate vector 
z1=zeros(1,q); z2=zeros(1,q);              % initialize buffers for LPFs 
z4=zeros(1,q); z3=zeros(1,q);              % z's contain past fl+1 inputs 
for k=1:length(t)-1 
 s=2*r(k); 
 z1=[z1(2:q),s*cos(2*pi*f0*t(k)+th(k))]; 
 z2=[z2(2:q),s*cos(2*pi*f0*t(k)+pi/4+th(k))]; 
 z3=[z3(2:q),s*cos(2*pi*f0*t(k)+pi/2+th(k))]; 
 z4=[z4(2:q),s*cos(2*pi*f0*t(k)+3*pi/4+th(k))]; 
 lpf1=fliplr(h)*z1'; lpf2=fliplr(h)*z2';  % new output of filters 
 lpf3=fliplr(h)*z3'; lpf4=fliplr(h)*z4';  % new output of filters 
 th(k+1)=th(k)+mu*lpf1*lpf2*lpf3*lpf4;    % algorithm update 
end 

  
plot(t,th), 
title('Phase Tracking via the Costas Loop') 
xlabel('time'); ylabel('phase offset') 

Solution for part a: Effect of step-size mu on the convergence rate. 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

 
Graphically an increase in mu increases the convergence rate. In the case of mu = 0.004, we see 

that the slope of the tracked phase offset is much steeper than for when mu = 0.002, demonstrating 

that a larger mu increases convergence rate. 

 

Solution for part b: What if mu is too large? (say mu = 1). 

 

However, if mu is too large (for instance mu=1), then we may not achieve convergence: 

 
Solution for part c: Effect of the phase offset on convergence speed. 

 

The phase offset only slightly affects the convergence rate. 

http://www.ece.utexas.edu/~bevans/courses/realtime


 

Course Web site 

 
 

Solution for part d: When there is a small frequency offset, what is the relationship between the 

slope of the phase estimate and the frequency difference? 

If there is a small frequency offset, then the frequency of the carrier is unknown at the receiver, so 

the phase estimates “converge” to lines. The slope of the lines is proportional to the difference in 

frequency between the carrier frequency and the frequency at the receiver. This slope can be used 

to estimate the frequency difference. 

http://www.ece.utexas.edu/~bevans/courses/realtime

