## [10:33] Quantization (Lecture 8)

- Amplitude quantization used in several places
  - Decode received symbol amplitude in PAM/QAM to the nearest transmitted symbol amplitude and hence to a symbol of bits

Dec. 2, 2020

o Analog-to-digital (A/D) converter for microphone/antenna





- A/D converters have tradeoff between sampling rate  $f_s$  and number of bits B
  - o Increased  $f_s$  reduces sampling time  $T_s$  to complete quantization process
  - o Conversely, as the number of bits B increases, the sampling rate would decrease.

| A/D Converter | Channels | Bits/sample | Sampling rate | Signal Bandwidth |
|---------------|----------|-------------|---------------|------------------|
| NI PXIe-5186  | 2        | 8           | 12.5 GSPS     | 5 GHz            |
| NI PXI-5154   | 2        | 8           | 2 GSPS        | 1 GHz            |
| NI PXIe-5122  | 1        | 14          | 100 MSPS      |                  |
| NI PXI-5192   | 1        | 16          | 15 MSPS       |                  |
| NI PXI-5192   | 1        | 24          | 500 KSPS      |                  |

- o Sampling rate (conversion rate) in samples per second (SPS) instead of Hz
- One quantizer circuit implementation uses *B* stages in cascade where each stage is a bank of comparators, and the total delay is the sum of the delays through each stage

## [10:40] Uniform amplitude Quantization (Lecture Slide 8-5)

Midtread (round to nearest integer) vs. midrise (round with offset)

| Midtread |      |          |  |  |
|----------|------|----------|--|--|
| Level    | Bits | 2s comp. |  |  |
| -2       | 00   | 10       |  |  |
| -1       | 01   | 11       |  |  |
| 0        | 10   | 00       |  |  |
| 1        | 11   | 11       |  |  |

| Level | Bits |
|-------|------|
| -3/2  | 10   |
| -1/2  | 11   |
| 1/2   | 00   |
| 3/2   | 01   |

Midrise





Step Size: 
$$\Delta = \frac{\max - \min}{2^B - 1}$$

## [10:45] Quantization error analysis

Assume midrise quantization with *B* bits:

$$m \to Q_B[\cdot] \to v$$

- Assume input signal *x* is uniformly distributed in linear region of quantizer, e.g. between -1.5V and 1.5V on right:
- The number of quantization levels is  $L = 2^B$

For 
$$L$$
 large enough:  $\frac{1}{L-1} \approx \frac{1}{L}$ 

$$\Delta = \frac{2m_{\text{max}}}{L-1} \approx \frac{2m_{\text{max}}}{L}$$



- Quantization error  $q = Q_B[m] m = v m$ 
  - q is uniformly distributed random variable between  $-\Delta/2$  and  $+\Delta/2$

Dec. 2, 2020

q has zero mean with variance (power) of

$$\sigma_Q^2 = \underbrace{\frac{\Delta^2}{12}}_{\text{variance for uniform PV}} = \frac{1}{3} m_{\text{max}}^2 2^{-2B}$$

Additive quantization error (noise) model can be equated to SNR

$$10 \log_{10} SNR = 10 \log_{10} \left( \frac{P_{av}}{\sigma_Q^2} \right) = 10 \log_{10} \left( \frac{3P_{av}}{m_{\text{max}}^2} 2^{2B} \right) = \text{constant} + 6.02 \text{ dB/bit} \times B$$

- System design: choose *B* to match quantization SNR with thermal noise SNR
  - Using more bits would result in some bits containing no real information
  - Using fewer bits would result in loss of accuracy

