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• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system(s). 
• Please turn off all cell phones. 
• No headphones allowed. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 
 

Problem Point Value Your score Topic 
1 28  Filter Analysis 
2 24  Mixers 
3 24  Filter Design 
4 24  Potpourri 

Total 100   
 

 



Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output 
y[n] described by 

 y[n] = a1 y[n-1] + x[n] + b1 x[n-1] + b2 x[n-2] 
for n ≥ 0, where coefficients a1, b1 and b2 are real-valued constants. 

(a) What are the initial conditions and their values?  Why?  3 points. 
Let n = 0:  y[0] = a1 y[-1] + x[0] + b1 x[-1] + b2 x[-2]. 
Let n = 1:  y[1] = a1 y[0] + x[1] + b1 x[0] + b2 x[-1]. 
From the above, the initial conditions are y[-1], x[-1] and x[-2]. 
The initial conditions have to be zero to guarantee linearity and time-invariant properties. 

(b) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 
Any of the three IIR direct forms could be used here, e.g. from Lecture Slide 6-9 

 
(c) Derive a formula for the transfer function in the z-domain.  4 points. 

Take the z-transform of both sides of the difference equation using the knowledge that all 
of the initial conditions are zero (Lecture Slide 6-8): 
Y(z) = a1 z -1 Y(z) + X(z) + b1 z -1 X(z) + b2 z -2 X(z) 

(1 - a1 z -1) Y(z) = (1 + b1 z -1 + b2 z -2) X(z) 

𝑯 𝒛 =
𝒀(𝒛)
𝑿(𝒛) =

𝟏+ 𝒃𝟏𝒛!𝟏 + 𝒃𝟐𝒛!𝟐

𝟏− 𝒂𝟏𝒛!𝟏
  for   𝒛 > |𝒂𝟏| 

(d) Give the conditions on a1, b1 and b2 for the filter to be bounded-input bounded-output (BIBO) 
stable. 4 points. 

Pole must be inside the unit circle (Lecture Slides 6-12 & 6-13):    𝒂𝟏   < 𝟏 
A zero only plays a role in BIBO stability if it cancels a pole that leads to BIBO instability.  
If either zero equals a1, the filter is in theory BIBO stable for any value of a1 although an 
implementation of the original difference equation may not be BIBO stable. 

(e) Give a formula for the discrete-time frequency response of the filter.  4 points. 
When the LTI system is BIBO stable according to part (d), 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 =
𝟏+ 𝒃𝟏𝒆!𝒋𝝎 + 𝒃𝟐𝒆!𝟐𝒋𝝎

𝟏− 𝒂𝟏𝒆!𝒋𝝎
 

(f) Give numeric values for coefficients a1, b1 and b2 to design a lowpass filter that also eliminates 
frequencies at ω = 2π/3 and ω = −2π/3 in the stopband.  Draw the pole-zero diagram.  7 points 

Zeros are at 𝒛𝟎 = 𝒆𝒋𝟐𝝅/𝟑   and 𝒛𝟏 = 𝒆!𝒋𝟐𝝅/𝟑   
𝟏− 𝒛𝟎𝒛!𝟏 𝟏− 𝒛𝟏𝒛!𝟏 = 𝟏− 𝒛𝟎 + 𝒛𝟏 𝒛!𝟏 + 𝒛𝟎𝒛𝟏𝒛!𝟐 

So, 𝒃𝟏 = − 𝒛𝟎 + 𝒛𝟏 = −𝟐 𝐜𝐨𝐬 𝟐𝝅
𝟑

= 𝟏 and 𝒃𝟐 = 𝒛𝟎𝒛𝟏 = 𝟏 
Passband is centered at ω  = 0.  Pole is at 𝒂𝟏 = 𝟎.𝟗  𝒆𝒋𝟎 = 𝟎.𝟗 

Trivial pole at z = 0 not shown 
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Problem 1.2 Mixers.  24 points. 
Mixing provides an efficient implementation in analog continuous-time circuits for sinusoidal 
amplitude demodulation of the form 

 
Here, r(t) is the received bandpass signal of the form r(t) = m(t) cos(2 π fc t) where 
    m(t) is the baseband message signal with bandwidth W, and 
    fc is the carrier frequency such that fc > W 

 
(a) Give the passband and stopband frequencies for the bandpass filter.  3 points. 

The bandpass filter passes the transmission band frequencies [fc – W, fc + W] and 
attenuates out-of-band frequencies as much as possible to improve the signal-to-noise ratio. 
Passband frequencies are fc – W and fc + W.  Stopband frequencies are fc – 1.2 W and fc + 
1.2 W to allow each transition bandwidth to be 10% of the passband bandwidth. 

(b) Give the passband and stopband frequencies for the lowpass filter.  3 points 
fpass = W and fstop = 1.1 W to allow transition bandwidth be 10% of the passband bandwidth. 

(c) Draw the spectrums for s(t), v(t) and 𝑚(𝑡). You do not need to draw the spectrum for r(t). 9 points. 
s(t) is a bandpass signal. Sampling replicates S(f) at offsets of integer multiples of sampling 
rate fs.  Each band in V(f) and S(f) is 2W wide.  𝒎(𝒕) is the estimated baseband signal. 
 

 
 

 
 

 
 

 
 
 

 
 

(d) In order to simulate the mixer in discrete-time, e.g. in MATLAB, we use discrete-time filters for 
the lowpass and highpass filters and replace the sampling block with a downsampling block. 

 
 
 

V(f) 
fc+W ^ 

For bandpass sampling, 
fc = k fs where k is an 
integer and fs > 2 W. 

We had discussed 
connections between 
downsampling and 
downconversion in 
class on Feb. 23rd when 
going over solutions for 
homework #2 and I had 
followed the discussion 
with an announcement 
on Canvas on Feb. 25th 
(see page 5 below). 

HW 0.2 0.3 1.3 2.2 2.3 3.1 3.2 & 3.3 Labs #2 and #3 
Lectures 1 4 5 & 6 

This is a sequel to 
Problem 1.2 on Fall 
2017 Midterm #1. 



i. Give the constraints on the sampling rate to convert the mixer to discrete time.  6 points. 
We have two sampling rates at play.  Sampling rate fs is used for the sampler in the 
continuous-time circuit for downconversion using mixing.  Sampling rate fs2 is used 
to convert the overall system to discrete time. 

(1) Nyquist-Shannon Sampling Theorem gives 𝒇𝒔𝟐 > 𝟐   𝒇𝒄 +𝑾  and 

(2) The downsampler by L will convert the sampling rate for the input signal of fs2 to 
a lower sampling rate on the output of fs where L = fs2 / fs .  Hence, fs2 = L fs . 

Sampling rate fs2 is used for signals r(t) and s(t) and the bandpass filter.  Sampling 
rate fs is used for signals v(t) and 𝒎(𝒕) and the lowpass filter. 

ii. Determine the downsampling factor.  3 points.  L = fs2 / fs  
% MATLAB code for midterm #1 
% problem 1.2(d) for Spring 2018 
% 
% Programmer: Prof. Brian L. Evans 
% The University of Texas at Austin 
% Date: March 18, 2018 
% 
% Sinusoidal amplitude modulation 
% r(t) = m(t) cos(2 pi fc t) 
%                                ^ 
% r(t)     s(t)         v(t)     m(t) 
% ---> BPF ---> Sampler ---> LPF ---> 
% fs2      fs2           fs      fs 
 
% System Parameters 
%   Continuous Time 
W  =   300;    % Message bandwidth Hz 
fs =  1000;    % Sampling rate in Hz 
k  =    15;    % kth replica at fc 
fc =  k*fs;    % Carrier frequency Hz 
%   Discrete Time 
L =    4*k;    % Downsampling factor 
fs2 = L*fs;    % Sampling rate #2  
%   fs2 > 2 (fc + W) and fs2 = L fs 
%   With W < fc, fs2 = L fc, L >= 4 
 
% Simulation Parameters 
%   Bandpass signal amplitudes have 
%   near-zero mean, and downsampling  
%   by keeping every Lth sample gives 
%   values close to zero.  Floating 
%   point calculations lose accuracy 
%   when values are below eps, where 
%   eps is the largest positive value 
%   for which 1.0 + eps = 1.0. In my 
%   MATLAB, eps is 2.2204 x 10^(-16). 
SimGain = 3.69*10^11; 
 
% Time ref for m(t), r(t) & s(t) 
Tmax = 10; Ts2 = 1/fs2; 
t2 = Ts2 : Ts2 : Tmax; 
N2 = length(t2);  n2 = 1 : N2; 
 

% Baseband message w/ frequencies 0 to W 
fpass = W;  npass = -100*L : 100*L; 
hprot = sinc(2*(fpass/fs2)*npass); 
hprot = hprot / sum(abs(hprot).^2); 
noise = randn(1, N2); 
m = filter(hprot, 1, noise); 
% r[n2] = m[n2] cos(wc n2) 
wc = 2*pi*fc/fs2; 
r = m .* cos(wc*n2); 
 
% DOWNCONVERSION BY DOWNSAMPLING 
% Design bandpass filter with 
% passband from fc - W to fc + W 
% 1. Design lowpass prototype 
% 2. Modulate by cos(2 pi fc t) 
fpass = W;  npass = -10*L : 10*L; 
hprot = sinc(2*(fpass/fs2)*npass); 
wc = 2*pi*fc/fs2; 
hbpf = hprot .* cos(wc*npass); 
hbpf = hbpf / sum(abs(hbpf).^2); 
  
% Design lowpass filter with passband 
% frequency using truncated sinc pulse 
fpass = W;  npass = -100 : 100; 
hlpf = sinc(2*(fpass/fs)*npass); 
hlpf = hlpf / sum(abs(hlpf).^2); 
  
% Signal processing steps 
r = SimGain * r; 
s = filter(hbpf, 1, r);     % Bandpass 
v = s(1:L:end);             % Downsample 
mhat = filter(hlpf, 1, v);  % Lowpass 
  
% Compare message signals 
plotspec(m, Ts2); 
title('Original message signal'); 
Ts = 1/fs; figure; 
plotspec(mhat, Ts); 
title('Estimated message signal'); 
PowerInOrgMessage = sum(abs(m.^2)) 
PowerInEstMessage = sum(abs(mhat.^2)) 
SimGain 



The comments in the MATLAB code for the Simulation Parameters indicate that a very wide 
range of amplitude values is needed for downconversion using downsampling, e.g. 11 orders of 
magnitude in the above simulation.  This is reflected in the SimGain parameter.  The reason is 
that the downsampling operation samples many amplitude values that are very close to zero.  
This also means that the approach is very sensitive to additive noise and interference that are in 
the transmission band. 
 
 
Beginning of the class Canvas announcement sent on Feb. 25, 2018: 
On Friday in lecture, a student asked about the connection between downconversion and downsampling and the connection 
between upconversion and upsampling.  Downsampling can be used as a method for downconversion, and upsampling can 
be used as a method for upconversion.  Downsampling and upsampling change the sampling rate through discrete-time 
methods, and were introduced on homework #2. 

On Friday, I worked out how to perform upconversion and downconversion in continuous time using sampling.  The 
sinusodial [sinusoidal] amplitude modulation approach to upconversion involves a message signal being input into a 
lowpass filter followed by multiplication by cos(2 pi fc t) followed by bandpass filtering to produce a bandpass 
transmission. In the sampling approach, the multiplication by cos(2 pi fc t) is replaced by sampling at fs where fc = m fs 
where m is a positive integer and fs > 2 B where B is the baseband bandwidth.  The sampling approach to upconversion 
uses aliasing to its advantage. 

Similarly, the sinusodial [sinusoidal] amplitude demodulation approach for downconversion a receives a bandpass signal, 
then applies bandpass filtering, multiplication by cos(2 pi fc t) and lowpass filtering to give an estimate of the message 
signal.  In the sampling approach, multiplication by cos(2 pi fc t) is replaced by sampling at fs where fc = m fs where m is a 
positive integer and fs > 2 B where B is the baseband bandwidth.  The sampling approach to downconversion, which is also 
known as bandpass sampling, uses aliasing to its advantage. 

Lecture slides 4-12 and 4-13 also describe the continuous-time analysis.  Problem 1.4 on Midterm #1 in Fall 2013 and 
Problem 1.4 on Midterm #1 in Fall 2012 describe upconversion using sampling, and Problem 1.4(d) on Midterm #1 in Fall 
2013 describes downconversion through sampling. 

For a discrete-time approach, we'll use fs2 as the overall sampling rate.  In this case, we will be oversampling by choosing 
fs2 > 2 fmax where fmax = fc + B where B is the bandwidth in Hz of the baseband message signal in continuous time. 

For the upsampling approach to upconversion, the discrete-time baseband message signal would be upsampled and then 
bandpass filtered in discrete time to keep the replica that is centered at wc = 2 pi fc / fs2.  One possible upsampling factor is 
L = fs2 / fc where L is an integer.  Please see problem 1.2(d) on the Spring 2017 Midterm #1 Exam. 

For the downsampling approach to downconversion, the received discrete-time bandpass signal centered at discrete-time 
frequency wc = 2 pi fc / fs2 would be downsampled and then lowpass filtered in discrete time to extract the discrete-time 
baseband signal.  One possible downsampling factor is M = fs2 / fc where M is an integer.  Please see Problem 1.3 on 
Midterm #1 in Spring 2012. 

End of the class Canvas announcement sent on Feb. 25, 2018. 
 
Please note that the solution for Problem 1.3(b) on Spring 2012 Midterm is related to Problem 
1.2(d) above with the following specific settings: 

B = 2 W 
fs2 = M fc 

Due to bandpass sampling in Problem 1.2(d) above, fc = k fs where k is an integer, so 
fs2 = M fc = M (k fs) = (M k) fs 
L = M k  



 
Problem 1.3 Filter Design.  24 points.  

Every time that a particular tone at continuous-time frequency f0 in Hz is detected, a particular audio 
effects system plays the tone at frequency f0 and a tone at frequency 3 f0. 

Assume that 20 Hz < f0 < 5000 Hz and that the sampling rate is fs > 6 f0. 
The audio effects system will be running continuously.  When frequency f0 is not present, the audio 
effects system could generate very low volume sounds. 
(a) Design a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) 

filter to detect frequency f0 by giving formulas for the locations of the two poles and two zeros of 
the filter.  Normalize the gain at continuous-time frequency f0 to be 1.  9 points. 
Bandpass filter centered at 𝝎𝟎 = 𝟐𝝅 𝒇𝟎

𝒇𝒔
 where 𝝎𝟎 ∈ (−

𝝅
𝟑
, 𝝅
𝟑
) since 𝒇𝒔 > 𝟔𝒇𝟎 . 

Poles are located at 𝒑𝟎 = 𝟎.𝟗𝒆𝒋𝝎𝟎 and 𝒑𝟏 = 𝟎.𝟗𝒆!𝒋𝝎𝟎 to ensure BIBO stability. 
Place both zeros at z = -1 as in part (b) when the poles are close to z = 1 because 𝝎𝟎 ≈ 𝟎, or 

place the zeros at z = 1 and z = -1 for a more selective bandpass filter, or 
use the zeros for the bandpass resonator at z = 0 and z = cos(ω0) from homework 2.1(d). 

The transfer function for a second-order IIR filter (biquad) from Lecture Slide 6-6 is 

𝑯 𝒛 = 𝑪
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

  for   𝒛 >   𝟎.𝟗 

To normalize the gain at frequency 𝝎𝟎, we substitute 𝒛 = 𝒆𝒋𝝎𝟎   into H(z) and solve for C. 

(b) Draw the pole-zero diagram for the poles and 
zeros given in part (a).  6 points. 
 
 
 

 
 

 
 
 
 

(c) When the discrete-time IIR filter outputs a tone at continuous-time frequency f0, what additional 
signal processing step(s) would you apply to the filter output to generate tones at continuous-time 
frequencies f0 and 3 f0?  9 points.  Let the IIR filter output be y[n] and y[n] ≈  cos(ω0 n). 

Solution #1: Modulate y[n] by 𝐜𝐨𝐬 𝟐𝝎𝟎𝒏  to produce discrete-time frequencies ω0 and 3ω0. 
Solution #2: Input y[n] into a cubing block to give y3[n].  That is, y3[n] = y[n] y[n] y[n].  In the 
frequency domain, 𝒀 𝒆𝒋𝝎  is a pair of Dirac deltas located at -ω0 and ω0 with area π .  
𝟏
𝟐𝝅
𝒀 𝒆𝒋𝝎 ∗ 𝒀 𝒆𝒋𝝎  gives Dirac deltas at -2ω0, 0, and 2ω0.  

𝟏
𝟐𝝅
( 𝟏
𝟐𝝅
𝒀 𝒆𝒋𝝎 ∗ 𝒀 𝒆𝒋𝝎 ) ∗ 𝒀 𝒆𝒋𝝎  

gives Dirac deltas at -3ω0, -ω0, ω0, and 3ω0.  Or, 𝐜𝐨𝐬𝟑(𝝎𝟎𝒏) =
𝟑
𝟒
𝐜𝐨𝐬 𝝎𝟎𝒏 + 𝟏

𝟒
𝐜𝐨𝐬 𝟑𝝎𝟎𝒏 . 

Solution #3:  Sinusoidal demodulation by cos(ω0 n) and sinusoidal modulation by cos(3 ω0 n). 

HW 2.1 2.2 2.3 3.1 3.2 & 3.3 Lab #3 
Lectures 1 4 5 & 6 

f0 = 440; fs = 8*f0; 
z0 =  -1; z1 = -1;   % Try z0 = 1 
numer = [1 -(z0+z1) z0*z1]; 
r = 0.90; w0 = 2*pi*f0/fs; 
p0 = r*exp(j*w0); p1 = r*exp(-j*w0); 
denom = [1 -(p0+p1) p0*p1]; 
%%% Normalize response at f0 to 1 
z = exp(j*w0); zv = [1 z^(-1) z^(-2)]; 
C = (denom * zv') / (numer * zv'); 
figure; zplane(C*numer, denom); 
figure; freqz(C*numer, denom); 
 



Problem 1.4.  Potpourri.  24 points.  
(a) Consider a discrete-time infinite impulse response (IIR) filter that is causal, linear time-invariant 

(LTI), and bounded-input bounded-output (BIBO) stable and that is defined in terms of its poles, 
zeros and gain.  When implementing the filter in 32-bit IEEE floating-point arithmetic and data: 

i. Describe how an implementation could cause the filter to become BIBO unstable. 6 points. 
Assume that the poles, zeros and gain are represented in 32-bit IEEE floating-point, 
which uses 24 bits of mantissa + sign and 8 bits for the exponent. 
When expanding the factored form of the transfer function in the z-domain to an 
unfactored form using 32-bit IEEE floating-point arithmetic, one would compute 

𝑯 𝒛 = 𝑪
(𝟏− 𝒛𝟎𝒛!𝟏)(𝟏− 𝒛𝟏𝒛!𝟏)
(𝟏− 𝒑𝟎𝒛!𝟏)(𝟏− 𝒑𝟏𝒛!𝟏)

  =𝑪
𝟏− (𝒛𝟎 + 𝒛𝟏)𝒛!𝟏 + 𝒛𝟎𝒛𝟏𝒛!𝟐

𝟏− (𝒑𝟎 + 𝒑𝟏)𝒛!𝟏 + 𝒑𝟎𝒑𝟏𝒛!𝟐
 

The feedback coefficient −(𝒑𝟎 + 𝒑𝟏) would lose one bit of accuracy in the worst case 
due to a carry bit, and the feedback coefficient 𝒑𝟎𝒑𝟏 would lose 24 bits of accuracy in 
the mantissa in the worst case.  Using cascade of biquads helps reduce loss of accuracy. 
Converting an Mth-order IIR filter into a single section would cause a loss of 24(M-1) 
bits of accuracy in the worst case for the feedback coefficient in front of the z-M term. 
Due to the loss of accuracy in the feedback coefficients, factoring the denominator to 
find the new location of poles may reveal that some of the poles have moved onto or 
outside the unit circle.  Please see Lecture Slides 6-20 and 6-23.  

ii. Describe how an implementation could cause the loss of LTI properties.  6 points. 
By setting one or more of the initial conditions to a value other than zero. 

iii. Give an example of a particular causal, LTI, BIBO stable discrete-time IIR filter for which its 
causal, LTI and BIBO stable properties are preserved when the filter is implemented in 32-bit 
IEEE floating-point arithmetic and data.  6 points. 
Let’s consider a first-order, causal, LTI, BIBO stable, 
discrete-time IIR filter: y[n] = 0.5 y[n-1] + 0.5 x[n]. 
For LTI, y[-1] = 0.0.  If x[0] = 2.0 and x[n] = 1.0 for 
n > 1, then y[n] = 1.0 for n ≥  0. 

(b) For a finite impulse response (FIR) filter with N coefficients, what 
is the increase in the number of multiplication-addition operations if the input signal, FIR 
coefficients and output signal were complex-valued instead of real-valued?  6 points. 

1 complex multiplication (a + jb) (c + jd) = (ac – bd) + j (bc + ad) would take 4 real-valued 
multiplications and 2 real-valued additions. 
1 complex addition (a + jb) + (c + jd) = (a + c) + j (b + d) would take 2 real-valued additions. 
1 complex multiplication-addition would take 4 real-valued multiplication-additions. 
An FIR filter with N coefficients would take N multiplication-additions to compute one 
output value. 
A complex-valued FIR filter would take 4 times as many real-valued multiplication-additions 
to compute one output value. 

N = 1000; 
x = ones(1, N); 
x(1) = 2; 
a = [1 -0.5]; 
b = [0.5]; 
y = filter(b, a, x); 
sum(abs(y - 1.0))^2 
 

HW 0.4 1.1 2.1 2.3 & 3.3 Labs #2 & #3 
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