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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 

could reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 

Problem Point Value Your score Topic 

1 24  Baseband PAM System 

2 30  QAM Communication Performance 

3 26   Automatic Gain Control 

4 20  Communication System Tradeoffs 

Total 100   

 

  



Problem 2.1. Baseband PAM System.  24 points. 

Consider the baseband pulse amplitude modulation (PAM) 

transmitter below whose parameters are described on the right: 

 

After 50 bits are input, the output 𝑠(𝑡) lasts from 0ms to 25ms and is 

plotted below.  Its spectrogram is also computed below. The sampling 

rate in the baseband PAM transmitter is 𝑓𝑠 = 10 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAM System Parameters 

an symbol amplitude 

2d constellation spacing 

fs sampling rate 

fsym symbol rate 

g[m] pulse shape 

J bits/symbol 

L samples/symbol period 

 levels, i.e. M = 2J 

m sample index 

n symbol index 

Determine numeric values for the following 

parameters and justify how you obtained them: 

(a) d half the constellation spacing. 6 points. 

Analyzing the plot on the left for 𝒔(𝒕). 

The value of at the origin is -1 which is a 

symbol amplitude. 

The maximum symbol amplitude is less than 

the peak value in the plot which is around 3.5. 

Symbol amplitudes are -3, -1, 1, 3.  So d = 1. 

Comment:  Peaks and valleys are due to 

interpolation—they are close to, but not equal 

to, symbol amplitude values.  See lecture slides 

13-4 and 13-6 in Lecture 13 on Digital PAM. 

(b) J bits/symbol. 6 points. 

For 4-PAM, 𝑱 = 𝟐. 

(c) L samples/symbol period. 6 points. 

𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 and 𝒇𝒔 = 𝟏𝟎𝟎𝟎𝟎 𝐇𝐳.  Find 𝒇𝒔𝒚𝒎. 

Approach #1:  𝑩𝒊𝒕 𝑹𝒂𝒕𝒆 = 𝑱 𝒇𝒔𝒚𝒎. 

𝑩𝒊𝒕 𝑹𝒂𝒕𝒆 =
𝟓𝟎 𝐛𝐢𝐭𝐬

𝟎. 𝟎𝟐𝟓 𝐬
= 𝟐𝟎𝟎𝟎 𝐛𝐢𝐭𝐬/𝐬 

With 𝑱 = 𝟐, 𝒇𝒔𝒚𝒎 = 𝟏𝟎𝟎𝟎 𝐇𝐳 and 𝑳 = 𝟏𝟎. 

Approach #2: The spectrogram shows a 

maximum baseband frequency of 0.5 kHz 

which is 
𝟏

𝟐
 𝒇𝒔𝒚𝒎.  This gives 𝒇𝒔𝒚𝒎 = 𝟏𝟎𝟎𝟎 𝑯𝒛 

and hence 𝑳 = 𝟏𝟎. 

(d) fsym symbol rate. 6 points. 

See the answer in part (c). 

Epilogue:  Given the symbol rate of 1000 Hz 

computed two different ways, the symbol time 

is 1 ms.  With 25 symbol periods in 25 ms, each 

symbol has 2 bits to match 50 bits transmitted. 

 

Spectrogram for 𝑠(𝑡) for sampling rate 𝑓𝑠 = 10 kHz 

 

Lectures: 7 Pulse Shaping, 13 Digital PAM and 14 Matched Filtering; JSK Ch. 8 and 9; Labs 3, 5 & 6; 

HW 1.2, 2.1, 2.2, 4.2, 4.3, 5.2 & 6.2; Midterm 2: F21 Prob. 2.1, F24 Prob. 2.1, Sp25 Prob. 2.1 

 

https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/13_Digital_PAM/lecture13.pptx


% Baseband PAM Signal Generation 

% by Prof. Brian L. Evans, UT Austin 

% Modified from ECE 445S Lecture Slide 13-5 

 

% m is sample index; n is symbol index 

  

% Simulation parameters 

N = 25;     % Number symbol periods 

  

% Pulse shape g[m] 

Ng = 4;     % Number symbol periods 

L = 10;     % Samples/symbol period 

f0 = 1/L; 

midpt = Ng*L/2; 

m = (-midpt) : (midpt-1); 

g = sinc(f0*m); 

  

% Adjust for group delay 

N = N + (Ng/2); 

  

% M-level PAM symbol amplitudes 

d = 1; 

M = 4; 

ioffset = M + 1; 

symAmp = (2*randi(M,[1,N]) - ioffset)*d; 

  

% Discrete-time baseband PAM signal 

mmax = N*L; 

v = zeros(1,mmax); 

v(1:L:end) = symAmp;  % interpolation 

s = conv(v, g);       % pulse shaping 

slength = length(s);  % trim result 

s = s(midpt+1:slength-midpt+1); 

  

% Interpretation in continuous time 

Tsym = 10^(-3); % Symbol period in sec 

fsym = 1/Tsym;    % Symbol rate in Hz 

fs = L*fsym;      % Sampling rate in Hz 

Ts = 1/fs;        % Sampling time in sec 

  

% Plots 

Mmax = length(s); 

m = 0 : (Mmax-1); 

t = m*Ts; 

Nmax = Mmax / L; 

n = 0 : (Nmax-1); 

figure; 

plot(t,s); 

% hold on; 

% stem(n*Tsym,symAmp); 

% hold off; 

xlim( [0 (Nmax-(Ng/2))*Tsym-Ts] ); 

ymax = 5; 

ylim( [-ymax ymax] ); 

xlabel('Time (s)'); 

title('Baseband PAM Signal s(t)'); 

  

figure; 

Nfft = L; 

Noverlap = Nfft-1; 

spectrogram(s, [], Noverlap, Nfft, fs, 'yaxis'); 

colormap bone; 

ylim( [0 fs/2] / 1000 );  % put units in kHz 

https://users.ece.utexas.edu/~bevans/courses/realtime/lectures/13_Digital_PAM/lecture13.pptx


Problem 2.2  QAM Communication Performance. 30 points.  

Consider the two 8-QAM constellations below.  Constellation spacing is 2d. 

 

 

 

 

 

 

 

 

 

Energy in the pulse shape is 1.  Symbol time Tsym is 1s. 

Each part below is worth 3 points.  Please fully justify your answers.  Show intermediate steps. 

 Left Constellation Right Constellation 

(a) Peak transmit power 10 d 2 9 d 2 

(b) Average transmit power 6 d 2 5 d 2 

(c) Peak-to-average power ratio 10𝑑2

6𝑑2
=

5

3
≈ 1.67 

𝟗𝒅𝟐

𝟓𝒅𝟐
=

𝟗

𝟓
≈ 𝟏. 𝟖 

(d) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

(e) Number of type I QAM regions 0 2 

(f) Number of type II QAM regions 4 2 

(g) Number of type III QAM regions 4 4 

(h) Probability of symbol error for 

additive Gaussian noise with zero 

mean & variance 2. 

𝑃𝑒 =
5

2
𝑄 (

𝑑

𝜎
) −

3

2
𝑄2 (

𝑑

𝜎
) 𝑷𝒆 =

𝟏𝟏

𝟒
𝑸 (

𝒅

𝝈
) − 𝟐𝑸𝟐 (

𝒅

𝝈
) 

(i) Express the argument of the Q 

function as a function of the Signal-

to-Noise Ratio (SNR) in linear units 

SNR =
6𝑑2

𝜎2
 

𝑑

𝜎
= √

SNR

6
 

𝐒𝐍𝐑 =
𝟓𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟓
 

 

(j) Give a Gray coding for the right constellation or show that one does not exist. 3 points. 

Gray coding means that every pair of adjacent symbols (based on their constellation regions) 

differ only by one bit.  For 8-QAM, we have three bits for each symbol.  Yet, the symbol at (𝟎, 𝒅) 

has four neighbors, and it’s not possible to Gray code 4 neighbors with 3 bits. 

(b) The average transmit power is proportional to 
𝟏

𝟖
(𝟒(𝒅)𝟐 + 𝟐(𝟐𝒅𝟐 + 𝒅𝟐) + (𝟑𝒅)𝟐) = 𝟓𝒅𝟐. 

(h) Let 𝒒 = 𝑸 (
𝒅

𝝈
). 𝑷𝒄 =

𝟐

𝟖
𝑷𝒄

𝑰 +
𝟐

𝟖
𝑷𝒄

𝑰𝑰 +
𝟒

𝟖
𝑷𝒄

𝑰𝑰𝑰 =
𝟐

𝟖
(𝟏 − 𝟐𝒒)𝟐 +

𝟐

𝟖
(𝟏 − 𝒒)(𝟏 − 𝟐𝒒) +

𝟒

𝟖
(𝟏 − 𝒒)𝟐  

and 𝑷𝒆 = 𝟏 − 𝑷𝒄 

Lectures 13-16; JSK Ch. 16; Labs 5 & 6; HW 4.1, 4.2, 4.3, 5.2, 6.3 & 7.3; Handout P PAM vs. QAM; 

Midterm 2.2: F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20, Sp21, F21, Sp22, Sp25 

 

See below 

See below 



Problem 2.3.  Automatic Gain Control.  26 points.  

Automatic gain control (AGC) is used to compensate for time-varying gain (e.g. fading). 

In this problem, you’ll design an adaptive AGC algorithm for a digital pulse amplitude 

modulation (PAM) receiver using decision-directed steepest descent algorithm: 

 
𝑟1(𝑡) is an analog continuous-time baseband PAM signal. 

L is the number of samples in a symbol period. 

Downsampling by L converts input 𝑎̅𝑚 at the sampling rate to output 𝑎̂𝑛 at the symbol rate. 

The decision device finds 𝑎𝑛 as the symbol amplitude in the PAM constellation map closest to 𝑎̂𝑛. 

(a) What are the two roles of the lowpass filter (LPF)?  How would you design it?  6 points. 

• Anti-aliasing filter to reduce the amount of aliasing caused by downsampling by 𝑳. 

• Matched filter to maximize the SNR at downsampler output assuming the only 

impairment is additive noise.  The LPF impulse response would be 𝒉[𝒎] = 𝒌 𝒈∗[𝑳 − 𝒎] 
where 𝒈[𝒎] is the pulse shape used by the transmitter and 𝒌 is a non-zero gain.  Hence, 

the AGC does not affect the optimality of the matched filter.  

(b) For the adaptive algorithm, what training signal would you recommend?  Using a training signal 

would allow the receiver to know what the values of 𝑎𝑛 are in the transmitter.  4 points. 

Training sequence should be easy to generate, have good correlation properties, and contain 

all discrete-time frequencies because the channel will attenuate/reject some frequencies. 

Option #1:  Long maximal-length pseudo-noise sequence.  Length is 2r – 1 bits where r is the 

number of states in the PN generator.  Map ‘1’ bit to 𝟑𝒅 and ‘0’ bit to −𝟑𝒅 in amplitude. 

Option #2: Chirp signal that sweeps from 0 Hz to 
𝟏

𝟐
 𝒇𝒔 . Acceptable as a test answer but how 

to map the chirp signal to symbol amplitudes?  What pulse shape to use? 

(c) For the decision-directed objective function 𝐽(𝑛) = (𝑎̂𝑛 − 𝑎𝑛)2, give the update equation for the 

discrete-time gain 𝑐[𝑛].  Assume 𝑎̂𝑛 depends on 𝑐[𝑛], but 𝑎𝑛 does not depend on 𝑐[𝑛].  12 points. 

𝒄[𝒏 + 𝟏] = 𝒄[𝒏] − 𝝁
𝒅

𝒅𝒄[𝒏]
 𝑱(𝒏) = 𝒄[𝒏] − 𝟐 𝝁 (𝒂̂𝒏 − 𝒂𝒏) 

𝒅

𝒅𝒄[𝒏]
 𝒂̂𝒏 = 𝒄[𝒏] − 𝝁̅ (𝒂̂𝒏 − 𝒂𝒏) 𝒂𝒏 

(d) What value would you choose for the step size 𝜇.  Why?  4 points. 

Small positive values for 𝝁 such as 0.001 to ensure convergence of the iterative algorithm.  

Using 𝝁 = 𝟎 would not allow the iterative algorithm to update.  Using a negative 𝝁 would 

convert the iterative algorithm into a steepest ascent algorithm to maximize the objective 

function.  A large positive value would cause the steepest descent algorithm to diverge. 

  

See next page for additional work 

JSK Sec. 3.7, 6.5-6.8, 9.3; HW 5.1, 6.1, 6.2, 7.2; HW 7.3 from Sp14; In-Lecture Assignments 3 & 4; PAM 

Lectures 12-14; AGC Lecture Slide 16-4; AGC Midterm #2 Prob. 2.3 in Sp15 and Sp19; 

Decision Directed Midterm #2 Prob. 2.3 in F17, F21, Sp 23 and F23 



In part (c), steepest descent is used to minimize the objective function 𝑱(𝒏) = (𝒂̂𝒏 − 𝒂𝒏)𝟐 

and the answer given on the previous page would be enough for a test: 

𝒄[𝒏 + 𝟏] = 𝒄[𝒏] − 𝝁
𝒅

𝒅𝒄[𝒏]
 𝑱(𝒏) = 𝒄[𝒏] − 𝟐 𝝁 (𝒂̂𝒏 − 𝒂𝒏) 

𝒅

𝒅𝒄[𝒏]
 𝒂̂𝒏 

The automatic gain 𝒄[𝒏] is updated at the symbol rate and not the sampling rate. 

To compute the derivative of the received symbol amplitude 𝒂̂𝒏 with respect to the 

automatic gain 𝒄[𝒏], we work backwards on the block diagram (lower branch) 

𝒂̂𝒏 = 𝒂̅𝒏𝑳 

and 𝒂̅𝒏𝑳 is the output of the LPF filter with impulse response 𝒉[𝒎] with 𝑵𝒈 𝑳 coefficients 

𝒂̅𝒏𝑳 = 𝒉[𝟎] 𝒓[𝒏𝑳] + 𝒉[𝟏] 𝒓[𝒏𝑳 − 𝟏] + ⋯ + 𝒉[𝑵𝒈𝑳] 𝒓[𝒏𝑳 − 𝑵𝒈𝑳 − 𝟏] 

Expanding this to express what happens every L terms (one symbol period of samples) 

𝒂̅𝒏𝑳 = 𝒉[𝟎] 𝒓[𝒏𝑳] + 𝒉[𝟏] 𝒓[𝒏𝑳 − 𝟏] + ⋯ + 𝒉[𝑳 − 𝟏] 𝒓[𝒏𝑳 − (𝑳 − 𝟏)] + 

𝒉[𝑳]𝒓[(𝒏 − 𝟏)𝑳] + 𝒉[𝑳 + 𝟏] 𝒓[(𝒏 − 𝟏)𝑳 − 𝟏] + ⋯ + 𝒉[𝟐𝑳 − 𝟏] 𝒓[(𝒏 − 𝟏)𝑳 − (𝑳 − 𝟏)] + ⋯ 

𝒉[𝑵𝒈𝑳] 𝒓[𝒏𝑳 − 𝑵𝒈𝑳 − 𝟏] 

Moreover, over the nth symbol period, for 𝒎 = 𝒏𝑳, 𝒏𝑳 + 𝟏, … , 𝒏𝑳 + (𝑳 − 𝟏), 

𝒓[𝒎] = 𝒓𝟏[𝒎] 𝒄[𝒏] 

Combining the two previous equations, 

𝒂̅𝒏𝑳 = 𝒉[𝟎] 𝒓𝟏[𝒏𝑳] 𝒄[𝒏] + 𝒉[𝟏] 𝒓𝟏[𝒏𝑳 − 𝟏] 𝒄[𝒏] + ⋯ + 𝒉[𝑳 − 𝟏] 𝒓𝟏[𝒏𝑳 − (𝑳 − 𝟏)] 𝒄[𝒏] + ⋯ 

The omitted terms after 𝒉[𝑳 − 𝟏] 𝒓𝟏[𝒏𝑳 − (𝑳 − 𝟏)] 𝒄[𝒏] do not depend on 𝒄[𝒏] but instead 

on 𝒄[𝒏 − 𝟏], 𝒄[𝒏 − 𝟐], ….   

𝒅

𝒅𝒄[𝒏]
 𝒂̂𝒏 =

𝒅

𝒅𝒄[𝒏]
𝒂̅𝒏𝑳 = 𝒉[𝟎] 𝒓𝟏[𝒏𝑳] + 𝒉[𝟏] 𝒓𝟏[𝒏𝑳 − 𝟏] + ⋯ + 𝒉[𝑳 − 𝟏] 𝒓𝟏[𝒏𝑳 − (𝑳 − 𝟏)] 

At this point, we’re stuck.  We don’t know the received baseband signal 𝒓𝟏(𝒕) and hence we 

don’t know 𝒓𝟏[𝒎].  The transmitted baseband signal, which is proportional to 𝒂𝒏, 

experiences linear and nonlinear distortion and additive impairments by time it becomes 

𝒓𝟏(𝒕).  The objective function 𝑱(𝒏) attempts to capture all these impairments.  For the 

purpose of computing the derivative of 𝒂̂𝒏 w/r to 𝒄[𝒏], we simplify 𝒓𝟏[𝒎] to be 𝒂𝒏. 

𝒅

𝒅𝒄[𝒏]
 𝒂̂𝒏 =

𝒅

𝒅𝒄[𝒏]
𝒂̅𝒏𝑳 = 𝒂𝒏 (𝒉[𝟎] + 𝒉[𝟏] + ⋯ + 𝒉[𝑳 − 𝟏])  

The term 𝒉[𝟎]  + 𝒉[𝟏]  + ⋯ + 𝒉[𝑳 − 𝟏] is a constant and can be rolled into the step size: 

𝒅

𝒅𝒄[𝒏]
 𝒂̂𝒏 =

𝒅

𝒅𝒄[𝒏]
𝒂̅𝒏𝑳 = 𝒂𝒏 

where 𝝁̅ = 𝟐 𝝁 (𝒉[𝟎]  + 𝒉[𝟏]  + ⋯ + 𝒉[𝑳 − 𝟏]).  The update equation becomes 

𝒄[𝒏 + 𝟏] = 𝒄[𝒏] − 𝝁̅ (𝒂̂𝒏 − 𝒂𝒏) 𝒂𝒏 

  



Problem 2.4. Communication System Tradeoffs.  20 points. 

Claude Shannon derived the following upper bound on the capacity, 𝐶, 
for a communication channel in units of bits/s for a QAM system: 

𝐶 = 𝐵 log2(1 + SNR) 

where 

𝐵 is the transmission bandwidth in Hz 

SNR is the Signal-to-Noise Ratio at the receiver in linear units (not in 

decibels) where 

SNR = 
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
 

The upper bound on the number of bits/symbol, 𝐽, is log2(1 + SNR). 

We seek to increase the channel capacity in a QAM system: 

Assuming the constellation spacing 2𝑑 stays the same, give formulas 

and an explanation as to how the following will increase or decrease or 

stay the same when increasing the transmission bandwidth, 𝐵: 

Baseband bandwidth: 
𝟏

𝟐
 𝒇𝒔𝒚𝒎 

Transmission bandwidth:  𝑩 = 𝒇𝒔𝒚𝒎 

(a) Bit rate.  4 points. 

𝐁𝐢𝐭 𝐑𝐚𝐭𝐞 = 𝑱 𝒇𝒔𝒚𝒎 = 𝑱 𝑩 in units of bits/s.   

Increasing 𝑩 linearly increases the Bit Rate. 

(b) Probability of symbol error (also known as the symbol error rate).  4 points. 

𝑷𝒆 = 𝑪𝟎 𝑸 (
𝒅

𝝈
 √𝑻𝒔𝒚𝒎) + 𝑪𝟏 𝑸𝟐 (

𝒅

𝝈
 √𝑻𝒔𝒚𝒎) where 𝑻𝒔𝒚𝒎 =

𝟏

𝒇𝒔𝒚𝒎
=

𝟏

𝑩
 , 𝑪𝟎 and 𝑪𝟏 are positive 

constants, the Q function (plotted above) decreases as its argument increases. 

As 𝑩 increases and 𝒅 and 𝝈 remain the same, the Probability of Symbol Error increases. 

(c) Baseband transmitter run-time implementation computational complexity.  4 points. 

The pulse shaping filter is a finite impulse response filter with 𝑵𝒈 𝑳 coefficients running at 

sampling rate 𝒇𝒔 and requires (𝑳 𝑵𝒈)(𝑳 𝒇𝒔𝒚𝒎) = 𝑳𝟐 𝑵𝒈 𝒇𝒔𝒚𝒎 = 𝑳𝟐 𝑵𝒈 𝑩 multiplications/s.  A 

polyphase filter bank implementation would need 𝑳 𝑵𝒈 𝑩 multiplications/s.  Either way, the 

run-time implementation computational complexity would increase linearly with 𝑩. 

(d) Power consumption in the D/A converter in the transmitter analog/RF front end. 4 points. 

D/A power consumption is proportional to 𝒇𝒔 𝟐𝑩𝒊𝒕𝒔 where 𝑩𝒊𝒕𝒔 is the number of bits on the 

input to the D/A converter and 𝒇𝒔 is the sampling rate for the transmitter.  For a transmitter, 

𝑩𝒊𝒕𝒔 ≥ 𝑴 and 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 = 𝑳 𝑩.  D/A power consumption will increase linearly with 𝑩.  

High-resolution, high-speed D/A converters consume as much as power as 𝒇𝒔
𝟐 𝟒𝑩𝒊𝒕𝒔. 

(e) Transmitted power.  4 points.  #1. Transmit power is proportional to 𝒅𝟐and d is not changing. 

#2. Maximum transmit power is not dependent on 𝑩.  The government or communication 

standard will set the maximum transmit power allowed for a particular system.  This is to 

reduce interference for transmitters operating in the same or nearby frequency bands. 

QAM System Parameters 

2d constellation spacing 

fs sampling rate 

fsym symbol rate 

g[m] pulse shape 

h[m] matched filter impulse resp. 

i[n] in-phase symbol amplitude 

q[n] quadrature symbol amplitude 

J bits/symbol 

L samples/symbol period 

 levels, i.e. M = 2J 

m sample index 

Ng number of symbol periods in 

a pulse shape 

n symbol index 

Lectures 13-16; JSK Sec. 14.4; JSK Ch. 2, 3, 16; Labs 3, 5 & 6; HW 3.3, 5.3, 6.3, 7.1, 7.2; 

Reading from Ch. 4 of Simon Haykin’s Communication Systems book; 

Midterm Prob. 2.4 in F20, 2.3 in Sp21, 2.4 in F23, 2.4 in Sp24, 2.4 in F24, 2.4 in Sp25 

 


