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Problem 2.1. Bandpass Pulse Amplitude Modulation Receiver Tradeoffs. 24 points.  
A bandpass pulse amplitude modulation (PAM) receiver is described as 

 
where m is the sampling index and n is the symbol index, and has system parameters 
𝑎[𝑛] transmitted symbol amplitude 𝑎[𝑛] received symbol amplitude 
2d constellation spacing   fs sampling rate  fsym symbol rate 
g[m] raised cosine pulse with rolloff α J  bits/symbol   L samples/symbol 
Μ number of levels, i.e. M = 2J  Ng symbol periods in g[m] ωc carrier freq. in rad/sample 

The only impairment is additive thermal noise w(t) modeled as zero-mean Gaussian with variance σ2. 

Hence, r(t) = s(t) + w(t) where s(t) is the transmitted bandpass PAM signal. 
Give a formula for each quantity below in terms of the symbol rate fsym and describe how much the 
quantity changes when the symbol rate increases. 
(a) Bit rate in bits/s.  4 points.  Bit rate J fsym increases linearly when fsym increases. 
(b) Transmission bandwidth in Hz.  4 points. 

Transmission bandwidth fsym (1 + α) increases 
linearly when fsym increases. 

(c) Sampling rate fs.  4 points.  
Sampling rate L fsym increases linearly when fsym increases.  (Alternately, fs > 2 fmax where 
fmax = fc + ½ fsym and fc > fsym .  The product 2 fmax increases linearly when fsym increases.) 

(d) Probability of symbol error.  4 points.  Recalling that Tsym = 1 / fsym , 

𝑷𝒆𝒓𝒓𝒐𝒓𝑷𝑨𝑴 = 𝟐 𝑴!𝟏
𝑴

 𝑸 𝒅
𝝈

𝑻𝒔𝒚𝒎 = 𝟐 𝑴!𝟏
𝑴

 𝑸 𝒅
𝝈 𝒇𝒔𝒚𝒎

 increases when 

fsym increases because Q(x) is monotonically decreasing vs. x !  
Increase in 𝑷𝒆𝒓𝒓𝒐𝒓𝑷𝑨𝑴  is proportional to 𝑻𝒔𝒚𝒎 in low SNR (small 
positive x) and faster than exponential in 𝑻𝒔𝒚𝒎 for high SNR 
(large positive x).  Slide 14-26: 𝑸(√𝝆) ≤ 𝟏/√𝟐𝝅  𝒆^(−𝝆/𝟐)/√𝝆 for large positive ρ . 

(e) Implementation complexity in multiplications per second. 8 points. (r) means r multiplications/s. 
Analog-to-digital (A/D) converter would have at least an analog filter, sampler, quantizer (0). 
Generate 𝐜𝐨𝐬 𝝎𝒄𝒎  via lookup table (0), diff. equ. (2 L fsym) or math library call (30 L fsym). 
Multiply r[m] and 𝐜𝐨𝐬 𝝎𝒄𝒎  to produce v[m] (L fsym) 
LPF plus downsampler takes (L2 Ng fsym) in direct form or (L Ng fsym) in polyphase form 
Decision block algorithm: Euclidean distance (2 M fsym) or using comparisons (0)  
Implementation complexity increases linearly when fsym increases 

Lectures 13 & 14 
JSK Ch. 8 & 11 
Lab #5 & WWM Ch. 17 
HW 5.2, 5.3, 6.1, 6.2 
Midterm 2.1 F19 
Handout P 

Slide 14-25  

𝑸(𝒙) =
𝟏
𝟐
𝐞𝐫𝐟𝐜 !

𝒙
√𝟐
! 



Problem 2.2  QAM Communication Performance. 30 points.  Problem continues onto the next page.  
Part I. Consider choosing a 32-QAM constellation.                        Constellation #2:  Power Efficient 

           Constellation #1:  8x4 rectangular 

 
Constellation spacing is 2d. Pulse shape energy is 1. Symbol time Tsym is 1s.  

Compute the peak and average power for constellation #2.  3 points each. 
 Constellation #1 Constellation #2 
(a) Peak transmit power 58𝑑! 𝟑𝟒𝒅𝟐 
(b) Average transmit power 26𝑑! 𝟐𝟎𝒅𝟐 
Constellation #2 has the lowest peak and average power 
possible, and is commonly used in practice. 

Part II. For constellation #2, we’re going to introduce a 
type IV constellation region.  We’ll also use it in Part III. 
On the right, decision region boundaries are shown by 
the in-phase (I) axis, quadrature (Q) axis and dashed lines. 
Type IV region has a diagonal line separating two nearest 
neighbors on a corner.  It’s a union of a type II region 
(finite in one dimension and infinite in the other) and half 
of a type III region (quarter plane). 
We now have eight type IV regions instead of four type III 
regions (quarter planes at corner points). 
 Constellation #1 Constellation #2 
(c) Number of type I regions 12 16 
(d) Number of type II regions 16 8 
(e) Number of type III regions 4 0 
(f) Number of type IV regions 0 8 
(g) Symbol error probability for additive 
Gaussian noise, zero mean & variance σ2 

13
4

 𝑄
𝑑
𝜎

−
21
8
𝑄!

𝑑
𝜎

 
see next page 

(h) Express d/σ as a function of Signal-
to-Noise Ratio (SNR) in linear units SNR = 26

𝑑!

𝜎!
 

!
!
= !"#

!"
≈ 0.196 SNR  

𝐒𝐍𝐑 = 𝟐𝟎 𝒅𝟐

𝝈𝟐
 

𝒅
𝝈
=

𝐒𝐍𝐑
𝟐𝟎

≈ 𝟎.𝟐𝟐𝟒 𝐒𝐍𝐑 

 

Lectures 15 & 16; JSK Ch. 16; Lab #6; HW 6.3 & 7.3; Handout P; Midterm 2.2 on 32-QAM in Sp13; 
Other Midterm 2.2 problems in F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19 



(a) We find the constellation points with the largest radii.  There are 8 such points.  The two in 
the upper right quadrant are 3d + j5d and 5d + j3d.  Their radius is 𝟑𝟒𝒅𝟐.  Peak power is 34d2. 

(b) We can use the fact that the constellation has quadrant symmetry to compute the average 
power in the upper right quadrant.  The instantaneous power calculations for the constellation 
points are 2d2, 10d2, 10d2, 18d2, 26d2, 26d2, 34d2, 34d2, which has an average of 20d2. 

(g) As a shorthand notation, we’ll use 𝒒 = 𝑸 𝒅
𝝈

.  The probabilities of correct detection for the 
type I, II, and III constellation regions, respectively, follow from Lecture Slides 15-13 and 15-14: 

Type I.  𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰 = 𝟏− 𝟐𝒒 𝟐 

Type II.  𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑰 = 𝟏− 𝟐𝒒 𝟏− 𝒒  

Type III.  𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑰𝑰 = 𝟏− 𝒒 𝟐 

 
For the type IV constellation region, we’ll use the constellation point 5d + j3d: 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑽 = 𝑷 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & −𝒅 < 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 < 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 + 𝟐𝒅  

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑽 = 𝑷 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 − 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 < 𝟐𝒅  

Let 𝒛 = 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 − 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎  be a random variable.  Assuming that 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎  and 
𝒗𝑰 𝒏𝑻𝒔𝒚𝒎  are statistically independent, z has zero mean and its variance is equal to the variance 
of 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎  plus the variance of 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 , per Spring 2016 Midterm #2 Problem 2.3. 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕
𝒕𝒚𝒑𝒆 𝑰𝑽 = 𝑷 𝒗𝑰 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒗𝑸 𝒏𝑻𝒔𝒚𝒎 > −𝒅  & 𝒛 < 𝟐𝒅  

𝑷𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍  
Given the difficulty in finding a closed-form solution for the symbol error probability using type 
I, II and IV constellation regions, we’ll find the lower and upper bounds instead. 

Lower bound: Using only type I, II, III regions, we have 𝟏𝟔
𝟑𝟐

 , 𝟏𝟐
𝟑𝟐

 and 𝟒
𝟑𝟐

 
probabilities for each region: 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏
𝟐
𝟏− 𝟐𝒒 𝟐 + 𝟑

𝟖
𝟏− 𝟐𝒒 𝟏− 𝒒 + 𝟏

𝟖
𝟏− 𝒒 𝟐  

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏
𝟐
𝟏− 𝟒𝒒+ 𝟒𝒒𝟐 + 𝟑

𝟖
𝟏− 𝟑𝒒+ 𝟐𝒒𝟐 + 𝟏

𝟖
𝟏− 𝟐𝒒+ 𝒒𝟐   

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝟐𝟕
𝟖
𝒒+ 𝟐𝟑

𝟖
𝒒𝟐  

𝑷𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟐𝟕
𝟖
𝒒− 𝟐𝟑

𝟖
𝒒𝟐 = 𝟐𝟕

𝟖
𝑸 𝒅

𝝈
− 𝟐𝟑

𝟖
𝑸𝟐 𝒅

𝝈
  

Upper bound: Using only type I and II regions, which would leave quarter plane gaps in each 
quadrant at 5d + j5d, -5d + j5d, etc., 

𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟏
𝟐
𝟏− 𝟐𝒒 𝟐 + 𝟏

𝟐
𝟏− 𝟐𝒒 𝟏− 𝒒 = 𝟏− 𝟕

𝟐
𝒒+ 𝟑𝒒𝟐  

𝑷𝒆𝒓𝒓𝒐𝒓𝒕𝒐𝒕𝒂𝒍 = 𝟏− 𝑷𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒕𝒐𝒕𝒂𝒍 = 𝟕
𝟐
𝒒− 𝟑𝒒𝟐 = 𝟕

𝟐
𝑸 𝒅

𝝈
− 𝟑𝑸𝟐 𝒅

𝝈
= 𝟐𝟖

𝟖
𝑸 𝒅

𝝈
− 𝟐𝟒

𝟖
𝑸𝟐 𝒅

𝝈
  



Summary: There is very little difference between the lower and upper bounds.  Almost all of the 
symbol error probability is in the type I and type II regions.   

Note:  The symbol error probability expression has the form 𝒄𝟎 𝑸 𝒅
𝝈
− 𝒄𝟏 𝑸𝟐 𝒅

𝝈
.  As 𝝈 → ∞, 

knowing that d is positive, the symbol error probability goes to 𝒄𝟎 𝑸 𝟎 − 𝒄𝟏 𝑸𝟐 𝟎  where 
𝑸 𝟎 = 𝟎.𝟓 .  Generally, 𝒄𝟎 > 𝒄𝟏 .  As 𝝈 → 𝟎,  the symbol error probability goes to 0.   
Randomly guessing a M-PAM symbol amplitude gives an symbol error probability of 𝑴!𝟏

𝑴
 . 

Part III.  In the receiver, finding the nearest constellation point to the received QAM symbol amplitude 
using Euclidean distance provides high-accuracy in the symbol detection.  Complexity is proportional 
to the number of levels M = 2J = 32 where J=5 is the number of bits in a symbol:  64 multiplications, 
96 additions, and 64 memory reads in words for each (I, Q) symbol amplitude. 

We introduced the type IV region in part II to unlock a low-complexity divide-and-conquer method 
that is just as accurate as using Euclidean distance but only needs to use comparison operations.  
Describe the method and compare its complexity with the Euclidean distance method.  9 points. 
Let (i, q) be the received symbol amplitude.  

1. If i > 0, then in right-half plane; otherwise, in left-half plane 
2. If q > 0, then in upper half plane; otherwise, in bottom half plane 

Remaining steps are for the upper right quarter plane (i.e. for i > 0 and q > 0): 
3. If i > 4d,  

If q < 2d, then point 3 
Else If q > i, then point 8 
Else point 6 

Else If i < 2d, 
If q > 4d, then point 7 
Else If q < 2d, then point 1 
Else point 4 

Else If q > 4d, then point 8 
Else If q < 2d, then point 2 
Else point 5 

The above divide-and-conquer algorithm uses 4, 5 or 6 comparisons (5.375 on average) and takes 
J+1 comparisons and memory reads. 
 
Euclidean distance method computes the Euclidean distance squared from the received symbol 
amplitude (i, q) to each symbol amplitude in the constellation map (I, Q):  (i – I)2 + (q – Q)2 .  The 
square root is an unnecessary calculation—it doesn’t change the ordering among the distances. 

Its complexity is 2x2J multiplications, 3x2J additions, 2x2J memory reads and 2J comparisons. 
 
In practice, QAM constellations are as large as J = 8 in cellular and Wi-Fi, and J = 15 for ADSL.  
The difference between linear and exponential complexity can be significant.  

Midterm 2.2(i) Sp16 
Midterm 2.1(f) F18 



Problem 2.3. Nonlinear Channel Equalization.  28 points. 
In the discrete-time system on the right, the equalizer 
operates at the sampling rate. 

The channel has significant nonlinear distortion. 
We’re going to use a nonlinear equalizer of the form 

r[m] = a0 + a1  y[m] + a2 y2[m] + …+ aN yN[m] 
where a0, a1, a2, … aN are real-valued coefficients.  

The channel model includes additive noise n[m] that  
has a Gaussian distribution with zero mean and variance σ2. 

(a) Give a training sequence for x[m] that you would use?  Why?  3 points. 
Pseudo-noise sequences and chirp sequences have all discrete-time frequencies present in 
them.  Either can be independently generated by the receiver.  A pseudo-noise sequence can 
be generated using only logical operations and memory. 

(b) For one of the training sequences in part (a), describe how you would estimate the transmission 
delay parameter Δ in the ideal channel model.   3 points. 
The receiver can correlate the received signal y[m] against the anticipated training sequence 
x[m], and we can take the location of the first peak to be Δ  samples. 

(c) What objective function would you use?  Why?  6 points. 
We would like to minimize the error between r[m] and s[m]:  𝑱 𝒆 𝒎 = 𝟏

𝟐
𝒆𝟐[𝒎] 

By driving e2[m] to zero, we also drive e[m] to zero.   
Another advantage is that the amount of the offset in the parameter update at each iteration 
will be proportional to the error— the update will rapidly converge for large errors and 
slowly converge for small errors, provided that the step size has been chosen correctly. 

Another advantage is relatively low computational complexity. 

(d) For an adaptive nonlinear equalizer, derive the update equation for the vector of coefficients 𝑎 
for the objective function in part (c).  Here, 𝒂 =  𝑎!  𝑎!  𝑎!  ⋯   𝑎! .  12 points. 

𝒆 𝒎 =  𝒓 𝒎 −  𝒔[𝒎] 

𝒂 𝒎+ 𝟏 = 𝒂 𝒎 − 𝝁 
𝒅𝑱 𝒆 𝒎

𝒅𝒂 𝒂!𝒂 𝒎
= 𝒂 𝒎 − 𝝁 𝒆[𝒎] 𝒚 𝒎  

where 𝒚 𝒎 = [ 𝟏    𝒚 𝒎     𝒚𝟐 𝒎    ⋯     𝒚𝑵 𝒎   ] . 

(e) For your answer in (c), what values of the step size (learning rate) µ would you use?  4 points. 

Use a small positive value for the step size µ , such as 0.01 or 0.001, for convergence of the 
steepest descent algorithm.  A step size of zero will prevent any updates.  A negative step size 
and a large positive step size will cause divergence. 
  

JSK Sec. 2.12 & 13.1-13.3; HW 5.1, 6.1, 6.2, 7.2; Slides 16-6 to 16-8; In-Lecture Problems 2&3; 
Midterm #2 Problems: 2.2 F12; 2.1 Sp13; 2.1 F13; 2.1 Sp14; 2.3 Sp17; 2.4 Sp17; 2.3 F17; 2.3 F19 

 



Problem 2.4.  Potpourri.  18 points 
(a) A handheld garage door opener transmits a binary request to an automatic garage door control unit.  

The binary request is to open the garage door if closed, and close the garage door if open. 
Please describe the signals based on PN sequences that the garage door opener would transmit to 
indicate that it is sending its binary request to the automatic garage door control unit (receiver)? 
The transmission/reception would have to be 
• Reliable -- a very high probability of correct detection 
• Secure -- nearly impossible for an opener meant for another 

unit to work on your garage door. 
Initialization. At manufacturing, the opener and control unit are initialized with the same 
random 32-bit number that will be the value of the pseudo-noise (PN) shift register generator 
in both.  This will make it highly unlikely for openers of the same brand to open your garage. 
Transmission/Reception: The PN generator would be used to create a self-synchronizing data 
scrambler in the opener and descrambler in the control unit. The opener would scramble a 
text message (converted to bits) that contains a 16-bit number of how many times the opener 
has been pressed in its lifetime.  The number must be equal to or higher than that tracked by 
the control unit. This prevents an eavesdropper from playing back a recorded transmission 
to open your garage.  An opener will repeat the transmission 10 times to improve reliability. 

(b) Steepest descent algorithm to minimize an objective (cost) function. 
Steepest descent algorithm for parameter x is 

𝒙 𝒎+ 𝟏 = 𝒙 𝒎 − 𝝁 𝒅𝑱 𝒙
𝒅𝒙 𝒙!𝒙 𝒎

  

to minimize the objective function J(x) given a 
positive value for step size (learning rate) µ . 

i. Draw an objective function that has at least one global minimum value 
and at least one local minimum that is not a global minimum. 3 points. 

ii. Give a way to determine if a steepest descent algorithm converged to an answer. 3 points. 
Method #1: Since J’(x) = 0 at a minimum,  𝑱′(𝒙) ≤ 𝟏𝟎!𝟕 for 10 iterations in a row. 
Method #2: For 10 iterations in a row, the relative change in x[m] is below a threshold 
 𝒙 𝒎+ 𝟏 − 𝒙 𝒎  ≤ 𝟏𝟎!𝟒  𝒙 𝒎  +  𝜺  where small ε  > 0 is added in case 𝒙 𝒎 ≈ 𝟎 

iii. How would you use multiple steepest descent algorithms running in parallel 
to reach a solution with a lower objective (cost) function?  3 points. 
Start each steepest descent algorithm with a different randomized initial 
guess and then choose the answer with smallest objective function value. 

iv. If you could only run one steepest descent algorithm, how could you modify 
it to get out of a possible local minimum?   3 points. 
Use the test in part (b)ii to determine if the algorithm might be a local minimum. 
Answer #1: Negate step size µ  to head toward a maximum value and then switch back.  
Downside is that it will take a long time to get out of a local minimum because near a 
local minimum, J’(x) is close to zero, and at a local minimum, J’(x) is zero. 
Answer #2: Temporarily switch to a large step size µ  and then switch back. 
Answer #3: Set the parameter to a random number and continue updating.  Once the 
iteration converges, compare the objective function value with the previous solution.  

x = -4 : 0.001 : 4; 
% p = [1 0 -10 10 48.5]; 
p = poly( [-3, -1, 1, 3 ] ); 
p(4) = 10; 
p(5) = p(5) + 39.5; 
Jx = polyval(p, x); 
plot(x, Jx); 

Global 
minimum 

Local 
minimum 

Lab #4; HW 4.1, 4.2, 4.3, 5.2; 
Wikipedia “garage door opener” 

In-Lecture Assignment 2 & 3; HW 5.1, 6.1, 6.2, 7.2, 7.3; 
Midterm #2 problems 2.2 F12; 2.1 Sp13; 2.1 Sp14; 2.3 F17 


