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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 

could reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

 

  Problem Point Value Your score Topic 

Dylan G. 1 24  Baseband PAM System 

Helly R. 2 30  QAM Communication Performance 

Mark S. 3 26   Improving Communication Performance 

Irving B. 4 20  Communication System Tradeoffs 

 Total 100   

 

 

Note: Character names are in the Optima font which is one of the fonts used in Severance.  



Problem 2.1. Baseband PAM System.  24 points. 

Consider a two-level pulse amplitude modulation 

(2-PAM) system, a.k.a. binary phase shift keying. 

The system parameters are described on the right:  

• J = 1 bits/symbol; i.e., M = 2 levels/symbol 

• L = 3 samples per symbol period 

• Pulse shape g[m] is a rectangular pulse of 

3 samples in duration as shown on the right. 

• Constellation map: input ‘0’ maps to 1 Volt 

and input ‘1’ maps to -1 Volt. 

Assume all filters are linear and time-invariant (LTI). 

(a) For the 2-PAM transmitter below, input bit stream is 0101.  

Plot the discrete-time signals a[n], y[m] and s[m].  12 points.  

 

 

 

 

The upsampler copies each input sample to the output and appends 𝑳 − 𝟏 = 𝟐 zeros.  The 

upsampler output has L times the number of samples (𝑳 = 𝟑). Matlab code for 𝒔[𝒎] is above. 

(b) For the 2-PAM receiver below, assume there is no channel distortion or additive noise, and 

assume r[m] = s[m] and h[m] = g[m].  The Decision Device compares the input value against 0.  

Plot the discrete-time signals v[m], 𝑎̂[𝑛] and give the received bit stream based on the 2-PAM 

transmitter in (a).  12 points. 

 

 

 

 

 

 

 

  

PAM System Parameters 

a[n] symbol amplitude 

2d constellation spacing 

fs sampling rate 

fsym symbol rate 

g[m] pulse shape 

h[m] matched filter 

impulse response 

J bits/symbol 

L samples/symbol period 

 levels, i.e. M = 2J 

m sample index 

n symbol index 

r = s; h = g; 

v = filter(h, 1, r); 

m = 0 : length(v)-1; 

figure; 

stem(m, v, 'black'); 

title( 'v[m]' ); 

xlim( [-0.2, length(v)-0.8] ); 

ylim( [-L-0.2, L+0.2] ); 

%%% v = v(L:end); 

ahat = v(1:L:end); 

n = 0 : length(ahat)-1; 

figure; 

stem(n, ahat, 'black'); 

title( 'ahat[m]' ); 

ylim( [-L-0.2, L+0.2] ); 

bits = (ahat < 0) %%% 0 0 1 0 

a = [1 -1 1 -1]; L = 3; 

y = zeros(1, L*length(a)); 

y(1:L:end) = a; 
g = ones(1, L); %%% [1 1 1] 

s = filter(g, 1, y); 

m = 0 : length(s)-1; 

figure; stem(m, s, 'black'); 

ylim( [-1.2, 1.2] ); 

 

  

𝑣[𝑚] 𝑎̂𝑛 

Although not asked, bit errors 

can be fixed by accounting for 

delay through matched filter. 

Discard L-1 samples at output 

of the matched filter. 

 

Prologue: Lectures 7 Pulse Shaping, 13 Digital PAM and 14 Matched Filtering; JSK Ch. 8 and 9; 

Labs 3 and 5; HW 2.1, 4.2, 4.3, 5.2 & 6.2; Fall 2021 Midterm Prob. 2.1 

 



Problem 2.2  QAM Communication Performance. 30 points.  

Consider the two 8-QAM constellations below.  Constellation spacing is 2d. 

 

 

 

 

 

 

 

 

 

 

Energy in the pulse shape is 1.  Symbol time Tsym is 1s. 

Each part below is worth 3 points.  Please fully justify your answers.  Show intermediate steps. 

 Left Constellation Right Constellation 

(a) Peak transmit power 10d 2 10d 2 

(b) Average transmit power 6d 2 6d 2 

(c) Peak-to-average power ratio 10𝑑2

6𝑑2
=

5

3
≈ 1.67 

𝟏𝟎𝒅𝟐

𝟔𝒅𝟐
=

𝟓

𝟑
≈ 𝟏. 𝟔𝟕 

(d) Draw the type I, II and/or III decision regions for the right constellation on top of the right 

constellation that will minimize the probability of symbol error using such decision regions. 

(e) Number of type I QAM regions 0 0 

(f) Number of type II QAM regions 4 4 

(g) Number of type III QAM regions 4 4 

(h) Probability of symbol error for 

additive Gaussian noise with zero 

mean & variance 2. 

𝑃𝑒 =
5

2
𝑄 (

𝑑

𝜎
) −

3

2
𝑄2 (

𝑑

𝜎
) 𝑷𝒆 =

𝟓

𝟐
𝑸 (

𝒅

𝝈
) −

𝟑

𝟐
𝑸𝟐 (

𝒅

𝝈
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(i) Express the argument of the Q 

function as a function of the Signal-

to-Noise Ratio (SNR) in linear units 

SNR =
6𝑑2

𝜎2
 

𝑑

𝜎
= √

SNR

6
 

𝐒𝐍𝐑 =
𝟔𝒅𝟐

𝝈𝟐
 

𝒅

𝝈
= √

𝐒𝐍𝐑

𝟔
 

 

(j) Give a Gray coding for the right constellation or show that one does not exist. 3 points. 

Gray coding means that the bit pattern for each symbol of bits among any pair of neighboring 

constellation regions differs by one bit; this minimizes the number of bits errors when there is 

a symbol error.  Gray coding is possible for the constellation on the upper left.  Based on the 

constellation regions on the upper right, the constellation region for the point 𝒅 − 𝒋𝒅 has four 

nearest neighbors, and there are only three bits in an 8-QAM constellation.  Same is true for 

the point at −𝒅 − 𝒋𝒅.  So, Gray coding is not possible for the constellation on the right.   

Prologue: Lectures 13-16; JSK Ch. 16; Labs 5 & 6; HW 4.1, 4.2, 4.3, 5.2, 6.3 & 7.3; Handout P PAM vs. QAM; 

Midterm 2.2: F14, Sp15, F15, Sp16, F16, Sp17, F17, Sp18, F18, Sp19, F19, Sp20, F20, Sp21, F21 & Sp22 

 



Problem 2.3.  Improving Communication Performance.  26 points.  

One way to improve communication performance is to use two antennas to process a transmitted 

signal sent by a single antenna. 

For this problem, assume the transmitter is sending a pulse amplitude modulation (PAM) signal over 

the air in a radio frequency (RF) transmission band. 

(a) First, we’ll assume the only 

impairment in the system is additive 

thermal noise as shown on the right: 

 

 

i. The model for additive thermal noise is in the communication channel, but where does the 

additive thermal noise physically occur in the system?  3 points. 

The additive thermal noise physically occurs in the analog/RF front end of the 

receiver.  It is due to the random motion of electrons due to temperature. 

ii. What is a good statistical model for the additive thermal noise?  Why?  Explain what the 

statistical model parameters mean.  4 points. 

The additive thermal noise consists of the aggregate contribution of random motion of 

electrons due to temperature.  Each electron moves according to a statistical 

distribution.  Assuming that the electron motions are statistically independent, the 

additive thermal noise is approximated well as a Gaussian distribution due to the 

Central Limit Theorem.  The mean is zero, and the variance 𝝈𝟐 is the noise power. 

iii. How would you recommend combining the receive antenna outputs 𝑦1(𝑡) and 𝑦2(𝑡) to 

produce a single PAM signal that would have a lower probability of symbol error than 

either 𝑦1(𝑡) or 𝑦2(𝑡) by itself?  Assume the receiver knows the values of the statistical 

model parameters for 𝑤1(𝑡) and 𝑤2(𝑡).  6 points. 

Answer #1: Antenna selection.  Select the antenna with the higher SNR, i.e., lower 

variance in this case since we’re assuming that each antenna receives the same 

transmit power.  This only partially answers the question, but it is commonly used. 

Answer #2:  Equal gain combining by averaging 𝒚𝟏(𝒕) and 𝒚𝟐(𝒕).  This approach 

assumes the variances 𝝈𝟏
𝟐 and 𝝈𝟐

𝟐 have the same value.  It’s also a good approach when 

we do not know the values of the variances 𝝈𝟏
𝟐 and 𝝈𝟐

𝟐  or the SNR at each antenna. 

Answer #3: Weighted combination.  The higher the variance, the less reliable the 

received signal is.  So, we could give a higher weighting to the more reliable signal, e.g.  

𝒚(𝒕) =
𝝈𝟐

𝝈𝟏 + 𝝈𝟐
𝒚𝟏(𝒕) +

𝝈𝟏

𝝈𝟏 + 𝝈𝟐
𝒚𝟐(𝒕) 

This comes from normalize the weighting by the standard deviations: 

𝒚(𝒕) =
𝟏/𝝈𝟏

𝟏/𝝈𝟏 + 𝟏/𝝈𝟐
𝒚𝟏(𝒕) +

𝟏/𝝈𝟐

𝟏/𝝈𝟏 + 𝟏/𝝈𝟐
𝒚𝟐(𝒕) 

  

Prologue: Primarily Lecture 12 Channel Impairments (additive noise) but also Lectures 13 Digital 

PAM and 14 Matched Filtering; JSK Sections 2.1 and 9.1; JSK Ch. 10; Labs 4, 5 & 6; HW 4.1, 4.2, 

4.3, 5.2, 6.3 & 7.3; Midterm 2.4 in Sp 22 

 



(b) Second, we’ll assume the only 

impairment in the system is a gain in 

each path from the transmitter to the 

receiver as shown on the right. 

i. What is each gain modeling in terms of a 

physical phenomenon?  3 points. 

The attenuation due to distance that the electromagnetic wave propagates. 

ii. Propose a method for the receiver to estimate the gains ℎ11 and ℎ21.  4 points. 

Here are the mathematical relationships:  𝒚𝟏(𝒕) = 𝒉𝟏𝟏 𝒙(𝒕) and 𝒚𝟐(𝒕) = 𝒉𝟐𝟏 𝒙(𝒕). 

Transmitter sends training signal 𝒙(𝒕) known to the receiver.  Gain 𝒉𝟏𝟏 is best linear 

fit of 𝒚𝟏(𝒕) vs. 𝒙(𝒕).  By observing the received training signal 𝒚𝟏(𝒕) and treating the 

𝒉𝟏𝟏 as a constant, we take the expectation (average value) w/r to time of both sides: 

 𝑬{ 𝒚𝟏(𝒕) } = 𝑬{ 𝒉𝟏𝟏 𝒙(𝒕) } =  𝒉𝟏𝟏 𝑬{ 𝒙(𝒕) }  which means 

 𝒉𝟏𝟏 =
𝑬{𝒚𝟏(𝒕)}

𝑬{ 𝒙(𝒕) }
=

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒚𝟏(𝒕) 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 𝒙(𝒕)
 

Same for 𝒉𝟐𝟏 in terms of 𝒚𝟐(𝒕) vs. 𝒙(𝒕).   

iii. How would you recommend combining the receive antenna outputs 𝑦1(𝑡) and 𝑦2(𝑡) to 

produce a single PAM signal that would have a lower probability of symbol error than 

either 𝑦1(𝑡) or 𝑦2(𝑡) by itself?  Assume the receiver knows gains ℎ11 and ℎ21. 6 points. 

At the receiver, we have two estimates of 𝒙(𝒕) which are 
𝒚𝟏(𝒕)

𝒉𝟏𝟏
 and 

𝒚𝟐(𝒕)

𝒉𝟏𝟏
 .  We could 

average the two estimates for higher reliability: 

𝒚(𝒕) =
𝟏

𝒉𝟏𝟏
𝒚𝟏(𝒕) +

𝟏

𝒉𝟐𝟏
𝒚𝟐(𝒕) 

or we could normalize the weighted combination of these coefficients as 

𝒚(𝒕) =
𝟏/𝒉𝟏𝟏

𝟏/𝒉𝟏𝟏 + 𝟏/𝒉𝟐𝟏
𝒚𝟏(𝒕) +

𝟏/𝒉𝟐𝟏

𝟏/𝒉𝟏𝟏 + 𝟏/𝒉𝟐𝟏
𝒚𝟐(𝒕) 

𝒚(𝒕) =
𝒉𝟐𝟏

𝒉𝟏𝟏 + 𝒉𝟐𝟏
𝒚𝟏(𝒕) +

𝒉𝟏𝟏

𝒉𝟏𝟏 + 𝒉𝟐𝟏
𝒚𝟐(𝒕) 

 

 

 

  

Figures are modified from Lars Reichardt, Juan Pontes, Yoke Leen Sit, and Thomas Zwick, 

“Antenna Optimization for Time-Variant MIMO Systems”, EuCap, 2011. 

 

Prologue: Primarily Lectures 12 Channel Impairments (LTI modeling) and 16 QAM Receiver (Ideal 

Channel) and Handout on Designing Averaging Filters; Labs 4, 5 & 6; HW 4.1, 4.2, 4.3, 5.2, 6.3 & 7.3; 

Midterm 2.4 in Sp 22 

 

https://www.researchgate.net/publication/224239772_Antenna_optimization_for_time-variant_MIMO_systems


Problem 2.4. Communication System Tradeoffs.  20 points. 

Two-way communication systems have a data channel and a control 

channel in each direction. 

The data channel supports high bit rates such as for streaming audio or 

video whereas the control channel has low bit rates for configuration and 

feedback information (e.g. received SNR).  The received SNR is used by 

the transmitter to determine the number of bits per symbol, 𝐽. 

The bit rate is 𝐽 𝑓𝑠𝑦𝑚 and the parameters are explained on the right. 

For the remainder of this problem, consider the data rate on the data 

channel only. 

(a) One way to increase the bit rate is to increase 𝐽 which is the number 

of bits per symbol. 

The Shannon Capacity, 𝑪, for the communication of information 

over an additive noise channel is 

𝑪 =  
𝟏

𝟐
 𝑫 𝑩 𝐥𝐨𝐠𝟐(𝟏 + 𝑺𝑵𝑹) 

in bits/s/Hz where D is modulation dimension (1 for PAM and 2 for QAM), B is bandwidth, 

and SNR is the Signal-to-Noise Ratio at the receiver in linear units.  In order to increase the 

bound on the number of bits per symbol, 𝐥𝐨𝐠𝟐(𝟏 + 𝑺𝑵𝑹), we’ll need to increase the SNR. 

i. Give one transmitter method to increase 𝐽.   3 points. 

Answer #1. Increase the power of the transmitted signal, which will in turn increase 

the power of the received signal. 

Answer #2: Use a training signal to help the receiver to adapt its subsystems to 

compensate for impairments experienced by the transmitted signal through the 

analog/RF front ends and the communication channel.  It’s important to keep the 

training signal short enough because training is overhead that reduces the bit rate. 

Answer #3: Pause transmission for a short time between symbols or add a cyclic prefix 

to each symbol to reduce the inter-symbol interference in the receiver.  Need to keep 

the pause duration / cyclic prefix length short, because each reduces the bit rate. 

ii. What is the tradeoff in run-time implementation complexity?  2 points. 

Answer #1. Increases the power consumption in the transmitter. 

Answer #2: Need to add a subsystem to generate the training signal, e.g. a pseudonoise 

signal (linear shift feedback register) or a chirp signal. 

Answer #3: Insert a pause saves power in the transmitter; adding a cyclic prefix copies 

the last few samples of a symbol to the front of the symbol. 

iii. Give one receiver method to increase 𝐽.  3 points. 

Answer #1: Add a matched filter.  It maximizes the SNR of the received symbol 

amplitude if the only impairment in additive noise. 

Answer #2: Use a channel equalizer to compensate for impairments experienced by 

the transmitted signal through the analog/RF front ends and the communication 

channel.  Needs a training signal from the transmitter. 

QAM System Parameters 

2d constellation spacing 

fs sampling rate 

fsym symbol rate 

g[m] pulse shape 

h[m] matched filter impulse resp. 

i[n] in-phase symbol amplitude 

q[n] quadrature symbol amplitude 

J bits/symbol 

L samples/symbol period 

 levels, i.e. M = 2J 

m sample index 

Ng number of symbol periods in 

a pulse shape 

n symbol index 

Prologue: Lectures 13 Digital PAM, 14 Matched Filtering, 15 QAM Transmitters and 16 QAM Receivers; 

JSK Ch. 8, 9, 10, 11 & 16; Labs 4, 5 & 6; HW 4.1, 4.2, 4.3, 5.2, 6.3 & 7.3 

 



 

 

  

iv. What is the tradeoff in run-time implementation complexity?  2 points. 

Answer #1: Matched filter is a finite impulse response (FIR) filter, which has the same 

run-time implementation complexity as the pulse shaping FIR filter in the 

transmitter, which is 𝑳𝟐 𝑵𝒈 𝒇𝒔𝒚𝒎 multiplications/s.  We can implement the cacade of 

the matched filter and the downsampling by 𝑳 in a polyphase decimation filter bank 

to save a factor of 𝑳 in computations. 

Answer #2: Use a channel equalizer to compensate for impairments experienced by 

the transmitted signal in the analog/RF front ends and the communication channel.  

Needs a training signal from the transmitter and need to regenerate the training 

signal in the receiver.  An adaptive FIR equalizer takes at least twice the complexity of 

an FIR filter with 𝑵 coefficients, which is 𝑵 𝒇𝒔 multiplications/s. 

 

The other way to increase the bit rate is to increase the symbol rate, 𝑓𝑠𝑦𝑚 . 

v. How does an increase in 𝑓𝑠𝑦𝑚 affect transmission bandwidth?  Give a formula.  4 points. 

The baseband bandwidth is 
𝟏

𝟐
 𝒇𝒔𝒚𝒎 (𝟏 +  𝜶) where 𝜶𝝐[𝟎, 𝟏] is the rolloff factor for a 

raised cosine pulse, and the transmission bandwidth is double that, 𝒇𝒔𝒚𝒎 (𝟏 +  𝜶). 

vi. What is the tradeoff in transmitter run-time implementation complexity when increasing 

𝑓𝑠𝑦𝑚?  3 points. 

Sampling rate 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 increases linearly with 𝒇𝒔𝒚𝒎 .  Power consumption in the 

digital-to-analog (D/A) converter is proportional to the sampling rate and all the 

discrete-time signal processing in the baseband transmitter runs at a rate 

proportional to 𝒇𝒔𝒚𝒎 . 

vii. What is the tradeoff in receiver run-time implementation complexity when increasing 𝑓𝑠𝑦𝑚?  

3 points. 

Similar to the answer in part vi.  Sampling rate 𝒇𝒔 = 𝑳 𝒇𝒔𝒚𝒎 increases linearly with 

𝒇𝒔𝒚𝒎 .  Power consumption in the analog-to-digital (A/D) converter is proportional to 

the sampling rate and all the discrete-time signal processing in the baseband receiver 

runs at a rate proportional to 𝒇𝒔𝒚𝒎 . 


