Chapter 2 Learning to Use the
Hardware and Software

Contents

Slide 1 A Sample Linker Command File

Slide 2 A Sample Linker Command File (cont.)
Slide 3 C Program to Use as a Starting Point
Slide 4 evmstart.c (cont.)

Slide 5 evmstart.c (cont.)

Slide 6 evmstart.c (cont.)

Slide 7 evmstart.c (cont.)

Slide 8 Creating a CCS Project for evmstart.c
Slide 9 Setting the Build Options

Slide 10 Setting the Build Options (cont.)

Slide 10 A Simple First Experiment
Slide 11 A Simple First Experiment (cont.)

Slide 12 The Codec to 'C6701 McBSPO Interface
Slide 13 McBSP Properties

Slide 13 (CS4231A Codec Properties

Slide 14 McBSP Block Diagram

Slide 15 McBSP Transmitter Block Diagram
Slide 16 Operation of the Serial Port Transmitter

Slide 17
Slide 18
Slide 19

Slide 19
Slide 20
Slide 20
Slide 21
Slide 22
Slide 23
Slide 24
Slide 25

Slide
Slide

26
27

Slide
Slide 29
Slide 30
Slide 31
Slide 32
Slide 33
Slide 34
Slide 35
Slide 36
Slide 37

28

McBSP Receiver Block Diagram
Operation of the Serial Port Receiver
More on the CS4231A Codec

The 14 Sampling Rates
Codec Stereo Word Format
Codec Mono Word Format
DAC and ADC Filters
C6x Periperal Support Library
Selected Codec and EVM Routines
Selected Serial Port Routines
Example C Code for Stereo Read
Example C Code for Stereo Write

Experiment 2 (Part 1)
Experiment 2 (Part 1) (cont.)

Generating Samples of a Sine Wave
Sample Program Segment for Polling
Some Important Information

Using Interrupts to Generate a Sinewave

Using Interrupts (cont. 1)

TMS320C6701 Available Interrupt Sources

Example of an ISFP

Interrupt Service Table Structure
Interrupt Control Registers
Conditions for an Interrupt

Slide 38
Slide 39
Slide 40
Slide 41
Slide 42
Slide 43

Slide 44

Slide 45
Slide 46
Slide 47
Slide 48
Slide 49
Slide 50
Slide 51
Slide 52
Slide 53
Slide 54
Slide 55
Slide 56
Slide 57
Slide 58
Slide 59
Slide 60
Slide 61

What Happens With an Interrupt
The Interrupt Selector

C Interrupt Service Routines

Using the Peripheral Support Library
Selected Library Interrupt Functions

Installing a C ISR
Experiment 2 (Part 2), Interrupts

Sample Program Segment for Interrupts
Sample Program for Ints (cont. 1)
Sample Program for Ints (cont. 2)
Chapter 2 (PART3), DMA

DMA Features (cont.)

DMA Control Registers

Purpose of DMA Register

DMA Register Fields

Setting Up a DMA Transfer

Address Control Fields in PRICTL
START and STATUS Fields in PRICTL
DMA Autoinitialization

DMA Reload Register Control
Triggering DMA Transfers

Event Selection Bits in PRICTL

Split Channel Operation

Split Channel Operation (cont.)

Slide 62 Split Address Generation

Slide 63 DMA Priorities

Slide 64 Library Support Functions for DMA
Slide 65 Support Library DMA Routines

Slide 66 Support Library DMA Routines (cont.)

Slide 67 Experiment 2 (Part 3), DMA
Slide 68 Experiment 2 (Part 3), DMA (cont.)

Slide 69 Example DMA Code Segment
Slide 70 Example DMA Code Segment (cont. 1)
Slide 71 Example DMA Code Segment (cont. 2)

/ Chapter 2 \

Learning to Use the Hardware and Software
Tools by Generating a Sine Wave

The directory C:\C6701\evmstart contains two
example files that you can use as a starting point for
all your projects.

A Sample Linker Command File

/3K 3k sk sk ok o sk sk ok o sk ok ok ok sk ok sk ok o ok ok ok ok ok ok o K ok o K ok o K ok ok sk ok sk ok o k ok ok k sk ok sk ok ok Kok ok ok ok ok ok /
/* File c:\c6701\evmstart\evmlink.cmd */
/% This linker command file can be used as the starting */
/* point for linking programs for the TMS320C6701 EVM. It */
/* assumes that memory MAP 1 has been selected. Almost all x/

/* sections have been allocated to internal memory. If */
/* more memory is needed sections can be mapped to external */
/* memory. */
/% The external SBSRAM has been divided into program */

/* (SBSRAM_PROG_MEM) and data (SBSRAM_DATA_MEM) memory. The */
/* lengths of each type of memory can be changed as desired. */
//stskottstok sk ok ok ok sk sk sk sk ok sk sk ok ok ok ok ok ofokfok ok okok ok ok sk ok ok ok ok ok ok sk ok sk sk sk sk ok sk ok ok k ok ok ok k ok /

-C
-heap 0x1000
-stack 0x800

MEMORY

{
/* Internal program memory, 16K 32-bit instructions */
INT_PROG_MEM (RX) : origin = 0x00000000 length = 0x00010000

/* Internal data memory, 64K bytes */

\\\\‘INT_DATA_MEM (RW) : origin = 0x80000000 length = OXOOOlOOii///

-~

A Sample Linker Command File (cont.)

/* External synchronous burst
SBSRAM_PROG_MEM (RX)
SBSRAM_DATA_MEM (RW)

}

SECTIONS

{
.vec:

/* Use SBSRAM_PROG

/* .text: load
.text: load =
.const: load =
.bss: load =
.data: load =
.cinit: load =
.stack: load =
far: load =
.sysmem: load =
.cio: load =
.ipmtext: load =

}

st

: origin

: origin

/* External synchronous dynamic
SDRAMO_DATA_MEM (RW)
SDRAM1_DATA_MEM (RW)

: origin

: origin

atic RAM. 256K bytes */
0x00400000 length = 0x00020000

0x00420000 length = 0x00020000
RAM, 8M bytes */

0x02000000 length = 0x00400000
0x03000000 length = 0x00400000

load = 0x00000000 /* Interrupt vectors included */
/*by using dev6x.lib

* /

~

_MEM for .text if it cannot fit in INT_PROG_MEM x*/
= SBSRAM_PROG_MEM */ /* Executable code */

INT_PROG_MEM
INT_DATA_MEM /=%
INT_DATA_MEM /=%
INT_DATA_MEM /*
INT_DATA_MEM /*
/*
INT_DATA_MEM /*
INT_DATA_MEM /*
/*

SDRAMO_DATA_MEM /* Used by malloc, etc.

INT_DATA_MEM /*
INT_PROG_MEM /=*

Initialized constants */
Global and static variables */
Data from .asm programs */
Tables for initializing */
variables and constants */
Stack for local variables */
Global and static variables */
declared far */

*/
Used for C I/0 functions */
Used by dev6x.lib */

/

-~

N

C Program to Use as a Starting Point

[ok sk ko sk ok ko ok ok ok ok ok ok sk ok sk sk o sk ok ok ok sk ok sk sk sk ok ok ok sk sk sk sk ok ok sk ok ok sk ok sk ok ok /
/* Program: evmstart.c */
/* This program can be used as the starting point for all */
/* DSP programs for ENEE 428. It initializes the C6701 */
/* EVM board, configures the McBSPO serial port, and then */
/* configures the stereo codec. It then enters an infinite */
/* loop that reads a sample from the codec A/D and loops it*/
/* back out to the codec D/A. This loop should be replaced*/

/* by the code to achieve the goals of the experiment. */
[F KKk ok ok ok ok Kok K ok ok ok Kok K oK o Kok ok ok K ok ok ok ok ok sk ok ok Kok ok ok ok ok ok ok ok ok K ok /

#include <stdio.h>
#include <stdlib.h>

/***/

/* For using the TI DSP support software. See */
/* TMS320C6201/6701 Evaluation Module Technical Reference,*/
/% SPRU305, Chapter 3. */
/* TMS320C6x Peripheral Support Library Programmer’s */
/* Reference, SPRU273B. * /
/* These headers are in C:\C6701\evm6x\dsp\include */

[R F KA F A KKK Kok KKK KKK KKK Ko KoK KK KKK Kok KoK KKK kKoK KoK KKKk Kk Kk Kk [
#include <common.h> /* macros for bit fields */
#include <board.h> /* for components on EVM board */

#include <mcbspdrv.h> /* serial port drivers */
#include <codec.h> /* for codec configuration */

/**/

#include <math.h>

/* NOTE: The TI compiler gives warnings if math.h is moved up
under stdlib.h */

~

/

4 N

evmstart.c (cont.)

#define PORT_O O
#define sampling_rate 16000

void main(void){
Mcbsp_dev bspH; /* handle to serial port */
Mcbsp_config mcbspConfig; /* config obj: mcbsp regs */
/* int act_samp_rate; */
/KoK ok ok ok ok ok ok ook ok o ok ok sk ok o ok ok o sk ok ok ok ok ok ok ok ok ok ok ok o k ok ok o ok o sk ok ok sk ok ok sk ok ok ok ok ok k ok /
/* The object module for evm_init() is located in: x/
/* C:\C6701\evm6x\dsp\lib\drivers\drv6x.1lib */
/* It initializes the EVM for use by determining the */
/* C6x map mode, setting the default EMIF to the EVM x/
/* configuration, and setting external peripheral base */
/* addresses which are dependent on the map mode */
/KKK ok ok ok ok ok ok ook ok o ok ok ok ok o K ok o ok ok ok ok ok o ok ok ok ok ok ok ok ok k ok ok ok ok o k ok ok ok ok k ok ok ok ok ok k ok /
evm_init () ;
mcbsp_drv_init(); /* init the MCBSPdrv library */
/* (in drv6x.lib) */
bspH = mcbsp_open(0); /* open mcbsp & return handle */
/* (prototyped in mcbspdrv.h) */
mcbsp_reset (bspH) ; /* reset the serial port */

/K ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ke ok ok o o o ok ok ok ok ok sk ok sk ok ok ke ok o o o ok ok ok ok ok ok ok ok ok ok ko /

/* configure serial port configuration structure */

/K ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ke ok ok ok o o ok ok ok ok ok sk ok sk ok ok ke ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok /
memset (&mcbspConfig, 0, sizeof (mcbspConfig)) ;

/* Initialize all structure elements to 0 */

mcbspConfig.loopback = DLB_DISABLE;
mcbspConfig.tx.update = TRUE;
mcbspConfig.tx.interrupt_mode = INTM_RDY;
mcbspConfig.tx.clock_polarity = CLKX_POL_RISING;
mcbspConfig.tx.frame_sync_polarity = FSYNC_POL_HIGH;
mcbspConfig.tx.clock_mode = CLK_MODE_EXT;
mcbspConfig.tx.frame_sync_mode = FSYNC_MODE_EXT;
mcbspConfig.tx.phase_mode = SINGLE_PHASE;

N /

mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.

mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.
mcbspConfig.

/* Now call mcbsp_config() to load

tx.
tx.
.word_lengthl
.word_length2
tx.
tx.
tx.

tx
tx

Irx

Irx
Irx
Irx
Irx
Irx
Irx

Irx

Irx

Irx
Irx

evmstart.c (cont.)

frame_lengthl
frame_length?2

companding
frame_ignore
data_delay

.update
IX.
.justification
.clock_polarity
.frame_sync_polarity
.clock_mode
.frame_sync_mode
.phase_mode

IX.
IX.
.word_lengthl
.word_length2
IX.

interrupt_mode

frame_lengthl
frame_length2

companding

.frame_ignore
.data_delay

0;

0;

= WORD_LENGTH_32;

= 0;

= NO_COMPAND_MSB_1ST;
= NO_FRAME_IGNORE;

= DATA_DELAYO;

= TRUE;

= INTM_RDY;

= RXJUST_RJZF;

= CLKR_POL_FALLING;
= FSYNC_POL_HIGH;

= CLK_MODE_EXT;

= FSYNC_MODE_EXT;

= SINGLE_PHASE;

= 0;

= 0;

= WORD_LENGTH_32;

= 0;

= NO_COMPAND_MSB_1ST;
= NO_FRAME_IGNORE;
= DATA_DELAYO;

the McBSP registers

/* according to the structure values.

mcbsp_config(bspH, &mcbspConfig) ;

/%
/*
/%

/%

If you uncomment the next statement, you will have
to map .text to SBSRAM_PROG_MEM because it will not
fit in INT_PROG_MEM.

printf ("McBSPO configuration completed\n"); */

* /
* /

* /
* /
* /

~

/

evmstart.c (cont.)

[k ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok Kk ok o ok ok ok ok ok o ok ok ok ok o ok ok ko okok ok ok k /
/* Configure the CODEC */
/* These routines reside in drvé6x.lib */
/o ok sk sk ko ok sk ok ok sk sk ok ke ok o ok ok ok sk sk ok ko ok ok ok sk ok ok ook sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok kokok ok k ok /
codec_init();

/* A/D 0 dB gain, no 20dB mic gain, sel (L/R)LINE input */
codec_adc_control (LEFT, 0.0, FALSE, LINE_SEL);
codec_adc_control (RIGHT, 0.0, FALSE, LINE_SEL);

/* mute (L/R)LINE input to mixer x/
codec_line_in_control (LEFT, MIN_AUX_LINE_GAIN, TRUE);
codec_line_in_control (RIGHT, MIN_AUX_LINE_GAIN, TRUE);

/* D/A 0.0 dB atten, do not mute DAC outputs x/
codec_dac_control (LEFT, 0.0, FALSE);
codec_dac_control (RIGHT, 0.0, FALSE);

/* Set codec data format (mono=FALSE, stereo=TRUE) */
codec_audio_data_format (LINEAR_16BIT_SIGNED_LE, TRUE, BOTH);

/* Set the sampling rate. The rate is quantized to the */

/* nearest of the following values (in kHz): */
/* 5.5125, 6.6150, 8.0000, 96.000, 11.025, 16.0000, */
/* 189000, 22.0500, 27.4286, 32.0000, 33.0750, 37.8000,%*/
/* 44.1000, 48.0000 */

/* act_samp_rate = codec_change_sample_rate(sampling_rate,TRUE); x*/
codec_change_sample_rate(sampling_rate,TRUE) ;

/* Disable Codec interrupts */
codec_interrupt_disable();

/* printf("The codec sampling rate is %d\n", act_samp_rate); */

evmstart.c (cont.)

/***/

/* Turn on the serial port transmitter and receiver */
/KK 3k ok ok ok ok ok ok o o o o ok ok k ok Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o o o ek ok ok ok ok ok ok ok ok ok k kK /

MCBSP_ENABLE(PORT_O, MCBSP_RX|MCBSP_TX) ;

/***/

/* Main program: Replace with your code */
[Kok ok ok ok ok ok ok o sk o ok ok ok ok o ok o ok o ok ok ok ok o ok o 3k ok 3k ok o ok o K ok 3 ok o ok ok ok 3k ok o sk ok K ok ok o K ok ok K/

for(;;){
/* Poll XRDY bit, then read & write data */
while (!MCBSP_XRDY(PORT_0)) ;
MCBSP_WRITE(PORT_O, MCBSP_READ(PORT_0));

}

4 N

Creating a CCS Project for
evmstart.c

e Start CCS and click on Project, select New,

and fill out the boxes as follows:
Project Name: give it a name

Location: a directory in your
private workspace

Project type: Executable (.out)
Target: TMS320C67xx

e Add the following library files to the project:
C:\C6701\evmb6x\dsp\lib\devlib\dev6x.1ib
C:\C6701\evmb6x\dsp\lib\drivers\drvéx.1lib
C:\ti\c6000\cgtools\1ib\rts6701.1ib

e Add the linker command file:
C:\C6701\evmstart\evmlink.cmd

e Add the C source file:
C:\C6701\evmstart\evmstart.c

4 N

Creating a Project for evmstart.c
Setting the Build Options

Click on Project and select Build Options. Enter

the following options:

Compiler — Basic

Target Version: 670x
Generate Debug Info: Full Symbolic Debug (-g)
Opt Speed vs Size: Speed Most Critical (ms)
Opt Level: None

Program Level Opt: None

Compiler — Preprocessor

Include Search Path (-i): c:\c6701\evm6x\dsp\include
Define Symbols (-d): CHIP_6701
Preprocessing: None

Compiler — Files
Asm Directory: a directory in your workspace

Obj Directory: a directory in your workspace

N /

4 N

Setting the Build Options (cont.)

Linker — Basic

Output Filename (-0): evmstart.out

(You can change this.)

Map Filename (-m): evmstart.map

(You can change this.)

Autoinit Model: Run-time Autoinitialization

A Simple First Experiment

e When the project has been created, build the
executable module by clicking on the Rebuild
All icon or Project — Rebuild All.

e Load the program using File —+ Load Program

The program, evmstart, simply loops the A /D
input back to the D/A output. Check this by
doing the following:

N /

10

/ A Simple First Experiment (cont.)\

e Plug a stereo cable into the EVM line input
and connect both channels to the same signal
generator output. The program evmstart.out
sets the codec to sample at 16000 Hz, so set
the signal generator to output a sine wave of
less than 8000 Hz.

e Plug a stereo cable into the EVM line output.
Connect the left and right outputs to two

different oscilloscope channels.

e Start the program running and check that the
sine waves appear on the scope. Make sure
the input level is small enough so that there
is no clipping.

e Vary the sine wave frequency. What happens
when it is more than 8000 Hz? Measure the
amplitude response of the system by varying
the input frequency and dividing the output
amplitude by the input amplitude. Plot the

\ respoinse. /

11

The Codec to ’C6701 McBSPO

CS4231A SN74CBTD3384 TMS320C6000
AUDIO CODEC BUFFER DSP
Serial McBSP
Interface CLKS
SCLK > CLKR
5TO33V CLKX
FSYNC " VOLTAGE FSR
TRANSLATION I—' FSX
SDOUT > DR
[:00] S = T » EXT_INTx
SDIN DX
cs CE1
RD ARE
‘WR AWE
A[L:0] ADDRESS EA[3:2]
Parallel EMIF
Interface
5TO033V
D[7:0]K 5VDATA VOLTAGE 33VDATA Y ED[7:0]
TRANSLATION
SN74CBTD3384
BUFFER

Brian G. Carlson and Vassos Soteriou, “TMS320C6201/6701 EVM:
TMS320C6000 McBSP to Multimedia Audio Codec Interface,” SPRA477,

Figure 1, p. 4, August 2001

12

-~

Multichannel Buffered Serial Port
(McBSP) Properties

e Can generate shift clocks and frame sync
signals internally, or use external signals

(EVM uses external ones)

e u-law and A-law hardware companding

options

e Multichannel selection of up to 32 elements
from a 128 element TDMA frame

CS4231A Codec Properties
e Stereo A/D and D/A converters with filters
e Fourteen possible sampling rates

e Serial sample and parallel control interface

/

13

-~

McBSP Block Diagram

'C6000 McBSP

DX o
CLKX ;
«+—=+—p Transmitter < FSX ,
< DR
<«CLKR L pl Receiver
» FSR 5
|
CPUclk
B L FSG
Sample
CLKS >Rate Gen. |CLKG
XEVT XINT
<«+——— Events/ ——»
REVT | Interrupts |RINT

To DMA

To CPU

DX /DR Serial transmit/receive data
FSX/FSR Transmit/receive frame sync
CLKX/CLKR Transmit/receive serial shift clock
XINT/RINT Transmit/receive interrupt to CPU
XEVT/REVT Transmit/receive interrupt to DMA
CLKS External clock for Sample Rate Gen.

Shaku Anjanaiah and Brad Cobb, “TMS320C6000 McBSP

Initialization,” SPRA488A, September 2001, Figure 1, p. 2.

14

4 N

McBSP Transmitter Block Diagram

f-
Data Transmit Register
(018C0004h) DXR
-
Transmit Shift 1 _
Register XSR % Transmit Data
DX pin

Serial Port Control Register (018C0008h)

XINTM XEMPTY |XRDY | XRST RJUST RINTM RFULL |RRDY [RRST
21 20 18 17 16 14 13 5 4 2 1 0

Note: Addresses are for McBSPO

15

4 N

Operation of Serial Port Transmitter

e The CPU or DMA writes a word into the
Data Transmit Register (DXR). The XRDY

flag is cleared whenever data is written to the
DXR.

e After a word (32 bits in our case) is shifted
out of Transmit Shift Register (XSR), a
parallel transfer of the DXR into the XSR is
performed. The XRDY flag is set when the

transfer occurs.

e The serial port transmitter sends an interrupt
request (XINT) to the CPU when the XRDY
flag makes a transition from 0 to 1 if XINTM
= 00b in the SPCR. It also sends a Transmit
Event Notice (XEVT) to the DMA.

N /

16

-~

Data Receive Register
(018C0000h)

Receive Buffer
Register

Receive Shift
Register

3

~

McBSP Receiver Block Diagram

DRR

T

RBR

T

RSR

1
<+—“— Receive Data

DR pin

Note: Addresses are for McBSPO

17

-~

~

Operation of Serial Port Receiver

RX bits shift serially into the Receive Shift
Register (RSR).

When a full element is received, the 32-bit
RSR is transferred in parallel to the Receive
Buffer Register (RBR) if it is empty.

The RBR is copied to the Data Receive
Register (DRR) if it is empty.

The RRDY bit in SPCR is set to 1 when
RSR is moved to DRR, and it is cleared when
DRR is read.

When RRDY transitions from 0 to 1, the
McBSP generates a CPU interrupt request
(RINT) if RINTM = 00b in the SPCR. A

receive event (REVT) is also sent to the
DMA controller.

/

18

/ More on the CS4231A Codec \
The Fourteen Sampling Rates

Two different crystals are attached to the codec
which allows the following sampling rates (in

kHz) to be selected:

0.0125 6.6150 &8.0000 9.6000
11.0250 16.0000 18.9000 22.0500
27.4286 32.0000 33.0750 37.8000
44.1000 48.0000

Word Formats

e We configure the codec to generate 16-bit
linear samples.
e Stereo Mode

— Configure McBSPO for a one phase frame
containing one 32-bit word.

— The most significant 16-bits are the left
channel sample and the least significant

\ 16-bits are the right channel sample. /

19

/ Codec Word Formats (cont.) \

e Mono Mode

— Configure McBSPO for a one phase frame
containing one 32-bit word.

— The right channel ADC input is set to

Z€TrO0.

— The left channel output sample is sent to
both DAC channels.

DAC and ADC Filters

See pages 45 and 46 of the CS4231A reference
given below for plots of the DAC and ADC filter
amplitude responses. They are lowpass filters
with a cutofl frequency of half the sampling rate.
The responses automatically scale with the

sampling rate.

For complete details on the codec see:
Crystal Semiconductor Corp., “CS4231A Parallel
Interface, Multimedia Audio Codec,” DS139PP2,

\September, 1994. /

20

4 N

C6x Peripheral Support Library
The C6x Peripheral Support Library (drv6x.lib

and dev6x.lib) contains C callable functions and
macros for configuring and interfacing with the
EVM, codec, and DSP peripherals. (TT is not
manufacturing the TMS320C6701 EVM any
longer and has not included these libraries in the

newest versions of CCS.)

The libraries are at:
e C:\C6701\evmbx\dsp\lib\drivers\drv6x.1lib

e C:\C6701\evmbx\dsp\lib\devlib\dev6x.1ib

For complete documentation see:

1. TMS320C6202/6701 EVM Technical
Reference, SPRU305.

2. TMS320C6x Peripheral Suport Library
Programmer’s Reference, SPRU273.

N /

21

-~

codec_init ()

codec_reset ()
codec_adc_control()
codec_dac_control()
codec_audio_data_format ()
codec_playback_enable ()
codec_playback_disable()
codec_capture_enable ()
codec_interrupt_enable()
codec_serial_port_enable()
codec_change_sample_rate ()
evm_init ()

evm_codec_enable ()

N

Selected Codec and EVM Routines

~

Initialize to default config
Reset the codec

Control input A/D converters
Control D/A converter output
Set data format

Enable playback mode
Disable playback mode
Enable capture mode

Enable codec to gen interrupts
Enable SDOUT and SDIN
Change sampling rates
Initialize EVM for use
Enable the codec

22

4 N

Selected Serial Port Routines

MCBSP_ENABLE() Enables McBSP tx, rcv, or both
MCBSP_TX_RESET() Reset McBSP transmitter
MCBSP_RX_RESET() Reset McBSP receiver

MCBSP_READ() Read data value from DRR
MCBSP_WRITE() Write data value to DXR
MCBSP_RRDY () Returns McBSP RRDY bit
MCBSP_XRDY () Returns McBSP XRDY bit
mcbsp_init () Initializes McBSP registers
mcbsp_open () Open McBSP for subsequent calls
mcbsp_close() Releases port

mcbsp_config() Configures MCBSP for operation
mcbsp_reset () Reset MCBSP

N /

23

-~

Example C Code for Stereo Read

int data;
float left, right;

Wait for RRDY to be set, then read
input sample */

while (!MCBSP_RRDY(0));

data = MCBSP_READ(O);

Shift right to move left ch 16 bits to
bits 15 - 0 and extended sign into
bits 31 - 16. Then convert to float. */
left = data >> 16;

Shift left by 16 to lop off left ch and
then right by 16 to sign extend.
Convert to float. */

right = data << 16 >> 16;

24

4 N

Example C Code for Stereo Write

float left, right;
int ileft, iright, sample;

/* Convert left and right values to integers */
ileft = (int) left;
iright = (int) right;

/* Combine L/R samples into a 32-bit word */
(ileft<<16) | (iright & O0xOOOOFFFF) ;

sample

/* Poll XRDY bit until DXR empty */
while (!MCBSP_XRDY(0));
MCBSP_WRITE(O, sample);

25

/ Experiment 2 (Part 1) \

Generating Sine Waves Using XRDY
Polling

For Experiment 2 (Part 1) do the following:
1. Set the sampling rate to 8 kHz.
2. Set the codec to stereo mode.

3. Generate a 1 kHz sine wave on the left
channel and a 2 kHz sine wave on the right
channel. Remember that |sin(z)| < 1 and
that floats less than 1 become 0 when
converted to ints. Therefore, scale your
floating point sine wave samples to make
them greater than 1 and fill reasonable part
of the D/A dynamic range before converting
them to ints.

4. Combine the left and right channel integer
samples into a 32-bit integer and write the
resulting word to the McBSP0O DXR using

\ polling of the XRDY flag. /

26

-~

. Observe the left and right channel outputs on

. When you have verified that your program is

~

Experiment 2 (Part 1) (cont.)

two oscilloscope channels.

Verify that the sine wave frequencies observed
on the scope are the desired values by

measuring their periods.

Use the signal generator to measure the
frequencies. Set the EXT-INT switch to EXT
and attach a channel of the codec output to
the EXT COUNTER input connector.

working, change the left channel frequency to
7 kHz and the right channel frequency to 6
kHz. Measure the D/A output frequencies.
Explain your results. (Hint: Look up
“aliasing” in any reference on digital signal

processing.)

/

27

Generating Samples of a Sine Wave

Continuous Time Sine Wave
s(t) = sin 27 fyt

Sampled Sine Wave
Let fs = 1/T be the sampling rate where T is the

sampling period.

fo

s(nT) = sin2wfonT =sin2w=-n

s
= sinnA#f

where A0 = 27 fy/ fs
Recursive Angle (GGeneration

Let
O(n) = nAd

Then

On+1)=(n+1)A0 =nAd+ A =0(n) + Ab

N /

28

s

_

#include <math.h>
#define pi 3.141592653589

int sample = 0;

float fs = 8000.;

float fO = 1000.;

float delta = 2.*xpixf0/fs;
float twopi = 2.0*pi;
float angle = 0;

float left;

for(;;){ /*

Infinite loop

left = 15000.0*sin(angle);

/* Scale for D/A

sample = ((int) left) <<16;

ample Program Segment for Polli

*/

*/

/* Put in top half */

while (!MCBSP_XRDY(0)); /* Poll XRDY
MCBSP_WRITE(O, sample);/* Write to DXRx/
angle += delta;
if(angle >= twopi) angle - = twopi;

/ *

Keep angle from overflowing

*/

*/

~

ng

/

29

4 N

Some Important Information

e Remember to include math.h in your C

program.

e The back of the EVM has stereo input and
output jacks. The lab has stereo cables to
convert from the stereo plug to the 3 wires:
ground, left channel and right channel. The
banana connectors can be used to connect the
stereo cables to the oscilloscope. The 2

alligator clips to BNC cables can also be used.

e Stereo cable wires
— Left Channel: White wire
— Right Channel: Red wire

— Ground: Bare wire

N /

30

-~

N

Method 2 for Generating a Sine
Wave — Using Interrupts

Almost all the time in the polling method is spent
sitting in a loop waiting for the XRDY flag to get
set. A much more efficient approach is to let the

DSP perform all sorts of desired tasks in the
background and have the serial port interrupt
these background tasks when it needs a sample to
transmit. The interrupt service routine is called a

foreground task.

The TMS320C6701 contains a vectored priority

interrupt controller.

e The highest priority interrupt is RESET

which cannot be masked.

e The next priority interrupt is the

Non-Maskable Interrupt (NMI) which is used

to alert the DSP of a serious hardware

problem.

~

/

31

-~

N

Using Interrupts (cont. 1) \

e There are two reserved interrupts and 12

additional maskable CPU interrupts. The
peripherals, such as the timers, serial ports,
and DMA controller, plus the four external
interrupt pins present a set of 16 interrupt
sources. The 16 TMS320C6701 interrupt
sources are shown in the table on Slide 33.

The interrupt system includes a multiplexer
to select the CPU interrupt sources and map
them to the 12 maskable prioritized CPU

interrupts.

When CPU interrupt n occurs, program
execution jumps to byte offset

4 x 8 Xxn = 32n in an interrupt service table
(IST). The IST contains 16 interrupt service
fetch packets (ISFP), each consisting of eight
32-bit instruction words. An ISFP may
contain an entire interrupt service routine or

may branch to a larger service routine. /

32

€¢

-

TMS320C6701 Available Interrupt Sources

Sel Num | Acronym Description

00000b DSPINT Host Processor to DSP interrupt
00001b TINTO ifier O interrupt

00010b TINT1 ifler 1 interrupt

00011b SD_INT EMIF SDRAM timer interrupt
00100b EXT_INT4 External interrupt pin 4
00101b EXT_INT5 External interrupt pin 5
00110b EXT_INTG6 External interrupt pin 6
00111b EXT_INT7 External interrupt pin 7

0xb DMA_INTz | DMA channel z interrupt
01100b XINTO McBSP 0 transmit interrupt
01101b RINTO McBSP 0 receive interrupt
01110b XINT1 McBSP 1 transmit interrupt
01111b RINT1 McBSP 1 receive interrupt

~

-~

b

mvce
mvce
nop
nop

nop

N

Example of an Interrupt Service
Fetch Packet

An ISFP for RESET for C programs is shown
below.

b0
PCE1, DbO
b0, ISTP
3

mvkl _c_int00, bO;
mvkh _c_int00, bO;

b

b

b

b

We will normally start the interrupt service table
(IST) at location 0. It can be relocated and the
Interrupt Service Table Pointer register (ISTP)
points to its starting address which must be a
multiple of 256 words. The organization of the
IST is shown in Slide 35.

; branch to C initialization
; get base of IST
; load pointer to IST base

~

load lower 16 bits of _c_init

load upper 16 bits of _c_init

do 3 NOP’s for branch latency 5
add two words to fetch packet

to make a total of 8 words

/

34

-~

Interrupt Service Table Structure
Priority | Byte Offset ISFP IER Bit
Highest 000h RESET 0

020h NMI 1
040h Reserved 2
060h Reserved 3
080h INT4 4
0AOh INT5 5
0COh INT6 6
OEOh INT7 7
100h INTS 8
120h INT9 9
140h INT10 10
160h INT11 11
180h INT12 12
1A0h INT13 13
1COh INT14 14
Lowest 1EOh INT15 15

35

9¢

-

Interrupt Control Registers

~

Name Description
CSR | Control status reg Globaly set or disable ints
IER | Int enable reg Enable interrupts
IFR | Int flag reg Shows status of interrupts
ISR Int set reg Manualy set flags in IFR
ICR | Int clear reg Manualy clear flags in IFR
ISTP | Interrupt service Pointer to the beginning of
table pointer the interrupt service table
NRP | Nonmaskable int Return address used on retun
retul pointer from a nonmaskable interrupt
IRP Interrupt return ptr | Return address used on retull

from a maskable interrupt

4 N

Conditions for an Interrupt

The following conditions must be met to process

a maskable interrupt:

e The global interrupt enable bit (GIE) which is
bit 0 in the control status register (CSR) is
set to 1. When GIE = 0, no maskable

interrupt can occur.

e The NMIE bit in the interrupt enable register

(IER) is set to 1. No maskable interrupt can
occur if NMIE = 0.

e The bit corresponding to the desired
interrupt is set to 1 in the IER.

e The desired interrupt occurs, which sets the
corresponding bit in the interrupt flags
register (IFR) to 1 and no higher priority
interrupt flags are 1 in the IFR

N /

37

-~

N

~

What Happens When an Interrupt

Occurs

e The corresponding flag in the IFR is set to 1.

e [f GIE = NMIE = 1 and no higher priority

interrupts are pending, the interrupt is serviced:

GIE is copied to PGIE and GIE is cleared to

preclude other interrupts.
The flag bit in the IFR is cleared.

The return address is put in the interrupt

return pointer (IRP).

Execution jumps to the corresponding fetch

packet in the interrupt service table (IST).

The service routine must save the CPU state

on entry and restore it on exit.

A return from a maskable interrupt is

accomplished by the assembly instructions

B IRP; return, moves PGIE to GIE
NOP 5 ; delay slots for branch

38

-~

N

The Interrupt Selector

in Slide 33
Interrupt
Multiplexer Low
Register
019C0004h
4-0 INTSEL4
9-5 INTSELS
14-10 | INTSELG6
15 Reserved
20-16 | INTSELT7
2521 | INTSELS
30-26 | INTSEL9
31 Reserved

Interrupt
Multiplexer High
Register
019C0000h

4—-0 INTSEL10
9-5 INTSEL11
14-10 | INTSEL12
15 Reserved
20-16 | INTSEL13
25-21 INTSE14
30-26 | INTSEL15
31 Reserved

33. The interrupt selector chooses and prioritizes
which 12 the CPU will use.

e Any interrupt source can be mapped to any CPU
interrupt by setting the INTSELn field of
MUXL/MUXH to the desired selection number given

~

e The 16 maskable interrupt sources are shown in Slide

39

-~

~

C Interrupt Service Routines
TI Extension to Standard C

e Declare the function to be an ISR by using
the interrupt keyword:
interrupt void your_isr_name(){}
or use the interrupt pragma:
#pragma INTERRUPT(your_isr_name)

e The C compiler will generate code to:

1. Save the CPU registers used by the ISR
on the stack. If the ISR calls another
function, all registers are saved.

2. Restore the registers before returning with

a B IRP instruction.

e You cannot pass parameters to, or return

values from an interrupt service routine.

/

40

4 N

Using the Peripheral Support
Library
To write and build programs using the TI C

interrupt extensions and the Peripheral Support

Library:
e Include the following header files in your C
program
C:\C6701\evm6x\dsp\include\intr.h
C:\C6701\evmbx\dsp\include\regs.h

e Link in the following libraries
C:\C6701\evm6x\dsp\lib\drivers\drv6x.1lib

C:\C6701\evmb6x\dsp\lib\devlib\dev6x.1lib

e When using dev6x.1ib, the interrupt service
table is generated in a section called .vec.
The sample beginning linker command file
evmlink.cmd loads the .vec section starting

at absolute address 0.

N /

41

(A4

Selected Periphersf8upport Library Interrupt Functions \

INTR_CHECK_FLAG(bit)

Returns value of bit in IFR

INTR_CLR_FLAG(bit)

Clears int by writing 1 to ICR

INTR_ENABLE (bit)

Sets bit in IER

INTR_DISABLE(bit)

Clears bit in IER

INTR_GLOBAL_ENABLE(bit)

Sets GIE bit in CSR

INTR_GLOBAL _DISABLE(bit)

Clears GIE bit in CSR

intr_hook (*fp,cpu_intr)

Place func ptr into isr jump

table at location for cpu intr

intr_init ()

Init ISTP with addr of global
label vec_table (resolved at link)

intr_map(cpu_intr, isn)

Maps int source to the CPU int

intr_isn(cpu_intr)

Returns int src num for CPU int

-~

N

Installing a C ISR \

Initialize ISTP using label vec_table created
by dev6x.1ib

intr_init () ;

Map the interrupt source number to a CPU
interrupt number.
intr_map(CPU_INT15, ISN_XINTO);

Clear the interrupt flag to make sure none is
pending.
INTR_CLR_FLAG(CPU_INT15) ;

Hook the ISR to the CPU interrupt. Let the
ISR be my_isr ().
intr_hook(my_isr, CPU_INT15);

Enable the NMI interrupt.
INTR_ENABLE(CPU_INT_NMI) ;

Enable the CPU interrupt in the IE register.
INTR_ENABLE (CPU_INT15) ;

Set the GIE bit in the CSR.
INTR_GLOBAL_ENABLE() ; 4///

43

/ Experiment 2 (Part 2) \

Generating Sine Waves by Using Interrupts

Repeat the steps for Experiment 2 (Part 1) but
now use a C interrupt service routine to generate

the sine wave samples and write them to the

McBSPO0 data transmit register (DXR). No
polling of the XRDY flag is needed because
samples are transmitted only when interrupts

occur at the codec’s sampling rate.

The main() function should:
e initialize McBSP0
e initialize the codec, 8 kHz sampling rate

e map CPU INT15 to McBSP0 XINTO
Note: The choice of INT'15 was arbitrary.
Any of INT4 — INT15 can be used.

e hook CPU INT15 to your ISR

e enable interrupts

\o go into an infinte interruptable loop /

44

-~

#include
#include
#include
#include
#include
#include

#include

#define
#define
#define
#define

N

Interrupts

<stdlib.h> /*
<common.h> / *
<board.h> /*
<intr.h> / *
<mcbspdrv.h> /x
<codec.h> /*
<math.h> /*

Standard C library
macros for Ti 1lib’s
EVM drivers
Interrupt functions
Serial port drivers
Codec drivers

C math functions

PI 3.141592653589

FS 8000.
LFREQ 1000.
RFREQ 2000.

void main(void){
/* Initialize EVM, McBSPO, and Codec first

float Ldelta = 2.*PI*LFREQ/FS;
float Rdelta = 2.*PI*RFREQ/FS;

Sample Program Segment for

~

45

/ Sample Program for Ints (cont. 1) \

/* Install interrupt service routine x*/

intr_init(); /* Disables all interrupts */

/* McBSPO transmit int x*/
intr_map(CPU_INT15, ISN_XINTO);

/* Hook our ISR to INT15 */
intr_hook(tx_isr, CPU_INT15);

/* Clear old interrupts */
INTR_CLR_FLAG(CPU_INT15) ;

/* Enable interrupts x*/
/* NMI must be enabled for x*/

/* other ints to occur * /
INTR_ENABLE (CPU_INT_NMI) ;

/* Set INT15 bit in IER */
INTR_ENABLE (CPU_INT15) ;

/* Turn on enabled ints * /

INTR_GLOBAL_ENABLE() ;

/* Note: Functions in capital letters are */

/* macros defined in the .h files * /
MCBSP_WRITE(0,0);/*Write a word to start*/
/* transmitter */

for(;;); /* Infinite interruptable loop */
\2 /

46

-~

Sample Program for Ints (cont. 2)

interrupt void tx_isr(void){

int Lsample, Rsample;

int LRsample;

WARNING: Langle and Rangle must maintain
their values between ISR calls. This can
be done by making them static as below or

by making them global variables. */

static float Langle = 0. Rangle = O.;

Generate left and right sine wave samples.
Scale them up to use the D/A dynamic range
and convert them to integers Lsample and
Rsample. Combine Lsample and Rsample into
a single 32-bit int LRsample and send it
to the codec. Increment Langle and Rangle
by Ldelta and Rdelta modulo 2 pi for the
next samples and return to the infinite

loop. *

~

/

/

47

4 N

Chapter 2 (Part 3)
Direct Memory Access (DMA)

The Direct Memory Access (DMA) Controller is
another important internal ’‘C6000 peripheral.
The DMA controller transfers data between any
locations in the DSP’s 32-bit address space
independently of the CPU. See TMS320C6000
Peripherals Reference Guide, SPRU190D,
Chapter 4 for complete details.

Some features of the controller are:
e Four independent programmable channels

e A fifth (auxiliary) channel services requests
from the host port interface (HPI)

e Can transfer 8-bit bytes, 16-bit halfwords, or
32-bit words

e Fach block transfer can consist of multiple

frames.

N /

48

-~

DMA Features (cont.) \

Split-channel mode where a single channel
can perform both the receive and transmit
element transfers to or from a peripheral
simultaneously as if it were two DMA

channels.

After a transfer, addresses can stay the same,
be incremented or decremented by one
element, or incremented or decremented by

the value in a global index register.

Autoinitialization at the end of a block

transfer

Read, write, or frame transfers may be
initiated (synchronized) by selected events

like word receptions or transmissions by a

McBSP.

Can send an interrupt to the CPU at the end

of a block transter so the CPU can take some

desired action. /

49

4 N

DMA Control Registers

Mnemonic Name
SRCzx DMA channel z source address
DSTz DMA channel z destination address

XFRCNTz DMA channel z transfer count
PRICTLx DMA channel z primary control
SECCTLz DMA channel z secondary control
AUXCTL DMA auxiliary control register
GBLADDRy | DMA global address register y
GBLCNTZ DMA global count reload register z
GBLIDXz DMA global index register z

re {0,1,2 3}, ye {A, B, C, D}, z€ {A, B}

N /

50

-~

~

Purpose of DMA Register
SRCxz: Address for next read transfer
DSTx: Address for next write transfer
PRICTLx: Used to control transfer
SECCTLz: Used to enable interrupts and

monitor activity
AUXCTL: Controls auxiliary channel
XFRCNT2xz: Number of frames to transfer

& number of elements per frame

GBLADDRYy: Peripheral address used in

split transfer mode

GBLCNT2z: Used to reload XFRCNT after

last element transfer

GBLIDX?Z2: Used to control address updates

during transfer

51

¢S

-

DMA Channel Primary Control Register (PRICTL)

~

DST | SRC CNT DST | SRC
reload | reloag |[EMed| FS [TCINT| PRI WSYNC | RSYNC [INDEX | = © [SPLITESIZE| 51 | oR | Status | Start
31302928 27 26 25 24 23 1918 14 13 12 11109 87 65 43 21 0
DMA Channel Secondary Control Register (SECCTL)
WSYNC[WSYNC|RSYNC [RSYNC |WDROP|WDROP|RDROP|RDROP| BLOCK | BLOCK | LAST | LAST [FRAME|FRAME| SX | SX
Rsvd | DMAC | "cip | sTAT | cLR | sTAT| IE |conp| IE |cono| IE |conp| IE |conp| IE | conp | IE |conD
31191816 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DMA Channel Transfer Count Register (XFRCNT)
FRAME COUNT ELEMENT COUNT
31 16 15 0
DMA Global Count Reload Register (GBLCNT)
FRAME COUNT RELOAD ELEMENT COUNT RELOAD
31 16 15 0
DMA Global Index Register (GBLIDX)
FRAME INDEX ELEMENT INDEX
31 16 15 0
DMA Global Address Register (GBLADDR)
SPLIT ADDRESS Reserved

3 2

/

-~

. Halt the DMA by setting START = 00b in the

. In the Secondary Control Register (SECCTL) set

. Load source and destination address registers and

. Load the element size field (ESIZE) in PRICTL

. Set read (RSYNC) and write (WSYNC)

. Start the DMA transer by writing 01b for no

~

Major Steps for Setting Up a DMA
Transfer

Primary Control Register (PRICTL).

WSYNC CLR=1 and RSYNC CLR=1 to clear
write sync status (WSYNC STAT) and read sync
status (RSYNC STAT).

the SRC DIR and DST DIR fields in PRICTL to

specify how address are modified after a transfer.
and transfer count register (XFRCNT).
synchronization sources in PRICTL.

autoinitialization or 11b for autoinitialization to
the START field of the PRICTL register.

/

53

78"

-

Address Control Fields in PRICTL

ESIZE

Element size

0: 32-bit
01: 16-bit
01 &-bit

DST/SRC
DIR

Dest /Source address modification

after transfer

0: No modification
01: Increment by one element size

01 Decrement by one element size

11: Adjust using GBLIDX selectelly INDEX

INDEX

Gelects GBLIDX to use as programmalle value

0: Use GBLIDX register A
1: Use GBLIDX register B

-~

START and STATUS Fields in

PRICTL

STATUS (PRICTL[3:2])

00
01
10
11

Stopped
Running without autoinitialization

Paused

Running with autoinitialization

START (PRICTLI1:0])

00
01
10
11

Stop
Start without autoinitialization
Pause

Start with autoinitialization

N

Note: Once START is modified, PRICTL should
not be modified again until STATUS = START.

~

J

55

-~

~

DMA Autoinitialization

e Without autoinitialization, the DMA stops
when the programmed number of elements is
transferred and it generates a CPU interrupt
if TCINT (PRICTL[25]) is set. Then an ISR
can operate on the transferred block and set
up the DMA for the next transfer.

e With autoinitialization, the DMA controller
can automatically reinitialize itself when a
block transfer is completed and begin a new
transfer. The transfer count, source address,
and destination address are reloaded from
special registers which can be modified for the
next transfer while the current one is in

progress.

e Setting START = 11 in PRICTL starts the

DMA in the autoinitialization mode.

/

56

-~

N

DMA Reload Register Control

00
01
10
11

00
01
10
11

0

1

Successive transfers must be similar because reload

values only available for registers modified during
transfers (XFRCNT, SRC, DST).

Destination Address Reload Control
DST RELOAD (PRICTL[31:30])

Reload disabled

Use DMA GBLADDR reg B as reload
Use DMA GBLADDR reg C as reload
Use DMA GBLADDR reg D as reload

Source Address Reload Control
SRC RELOAD (PRICTL|[29:28])

Reload disabled

Use DMA GBLADDR reg B as reload
Use DMA GBLADDR reg C as reload
Use DMA GBLADDR reg D as reload

Transfer Count Reload for Autoinitialization
CNT RELOAD (PRICTLI[12])

Reload XFRCNT with GBLCNT A
Reload XFRCNT with GNLCNT B

~

/

57

[=]

-

No sync:

in PRICTL.

frame transfer.

o

e Synchronization by Triggering Events

Read sync: Wait for event to occur before each read
Write sync: Wait for event to occur before each write

Frame sync: Wait for event to occur before each frame xfer

o Triggering events selectely RSYNC, WSYNC, and FS fidk

e DMA triggering events are similar to interrupts to the CPU.

e When FS = 1, the event selected in RSYNC enables an entire

~

Triggering DMA Transfers

Reads and writes occur as fast as possible

/

6G

-

Event Selection Bits in PRICTL

Nuln Acronym Description

00000b | None No Synchronization

00001b | TINTO Tmer O interrupt

00010b | TINT1 Timer 1 interrupt

00011b | SD_INT EMIF SDRAM timer interrupt
Oyb EXT_INTy | External int pin y (y = 4,5,6,7)
0tb DMA_INTz | DMA channel z int (z = 0,1,2,3)
01100b | XEVTO McBSP 0 transmit event
01101b | REVTO McBSP 0 receive event

01110b | XEVT1 McBSP 1 transmit event
01111b | REVT1 McBSP 1 receive event

10000b | DSPINT Host Processor to DSP interrupt

4 N

Split-channel operation allows a single DMA

Split Channel Operation

channel to service both the input (receive) and
output (transmit) streams from a peripheral with

a fixed address like a McBSP. This makes the
DMA channel equivalent to two channels.

Split-channel operations consist of transmit
element transfers and receive element transfers,

each of which consists of a read and write transter.

e Transmit element transfer

— Transmit read transfer: Data is read
from SRC address, SRC is adjusted as
configured, and transfer count is
decremented. This event is not

synchronized.

— Transmit write transfer: Data from
read is written to split destination

address. The write is synchronized
according to WSYNC.

/

60

4 N

Split Channel Operation (cont.)

e Recelve element transfer

— Receive read transfer: Data is read
from from the split source address. The

read is synchronized according to the
RSYNC field.

— Receive write transfer: Data from the
receive read is written to the destination
address. The destination address is then
adjusted as configured. This event is not

synchronized.

In split mode, RSYNC and WSYNC must be

nonzero. The element and frame count must be
the same for the transmitted and received data.
Also, frame synchronization must be disabled in

split-channel operation.

N /

61

-~

00
01
10
11

Split Address (Generation

The global address register (GBLADDR) selected by
the SPLIT field in PRICTL determines the address of
the peripheral for a split transfer:

e Split source address: The selected GBLADDR

register contains the address for the input stream.

e Split destination address: The address for the
output data stream is assumed to be one word
address (four byte addresses) greater than the
split source address. For example, for McBSPO:
DRR byte address = 0x018C0000
DXR byte address = 0x018C0004

SPLIT (PRICTL[11:10]) Field Values

Split mode disabled

Enabled; use GBLADDR reg A
Enabled; use GBLADDR reg B
Enabled; use GBLADDR reg C

~

62

4 N

Priorities

DMA vs. CPU Priority

Each DMA channel can be independently
configured in high-priority mode by setting the
PRI bit in the associated PRICTL register. Each
resource uses its own scheme for resolving

conflicts. Two examples are:

e If the CPU and DMA try to access the same
internal data memory block at the same time,

PRI determines the priority.

e The internal program memory always gives

the CPU priority over the DMA.

Priority Between DMA Channels

The DMA controller gives Channel 0 the highest
priority and Channel 3 the lowest priority. The
auxiliary channel can be assigned a priority

anywhere in this range.

N /

63

4 N

Peripheral Support Library
Functions for DMA

To use the Peripheral Support Library routines:

e Include the following header files in your C
program
C:\C6701\evmbx\dsp\include\dma.h
C:\C6701\evmbx\dsp\include\regs.h

e Include the following libraries in your project:
C:\C6701\evmbx\dsp\lib\drivers\drv6x.1lib
C:\C6701\evmbx\dsp\lib\devlib\dev6x.1lib

If interested, you can find the source code in the
x,src files. You can extract the individual

modules by using the archiver ar6x.exe.

Some Peripheral Support Library DMA functions
are listed in the next two slides. For more details
see: TMS320C6x Peripheral Support Library
Programmer’s Reference, SPRU273B.

N /

64

g9

/ Peripheral SuPport Library DMA Routines \

e dma_global_init(auxcr, gcra, gcrb, gndxa, gndxb,

gaddra, gaddrb, gaddrc, gaddrd): Set global dma registers

e dma_init(ch, prictl, secctl, src_ad, dst_ad, tfrctr)

Set registers for the selected channel
e dma_reset{: Reset all DMA registers to default values
e DMA_AUTO_START(ch): Begin autoinitialization operation on ch
e DMA_START(ch): Begin DMA operation on selected channel
e DMA_Stop(ch): Stop DMA operation on selected channel
e DMA_Pause(ch): Pause DMA operation on selected channel

e DMA_SRC_ADDR_ADDR(ch): Returns the address of the DMA

source address register on the selected channel

o /

99

Periphers8upport Library DMA Routines (cont.)

DMA_DEST_ADDR_ADDR (ch): Returns address of dest address reg

DMA_PRIMARY_CTRL_ADDR(ch): Returns address of PRICTL reg

DMA_SECONDARY_CTRL_ADDR(ch): Returns address of SECCTL

DMA_XFER_COUNTER_ADDR(ch): Returns address of XFRCNT

DMA_RSYNC_CLR(ch):
DMA_RSYNC_SET(ch):
DMA_WSYNC_CLR(ch):

DMA_WSYNC_SET(ch):

Clear RSYNC in SECCTL so no sync
Set RSYNC in SECCTL selecting sync
Clear WSYNC in SECCTL so no sync
Set WSYNC in SECCTL selecting sync

~

/ Experiment 2 (Part 3) \
Generating a Sine Wave Using the DMA
Controller

To learn how to use the DMA controller, do the

following:
e Configure McBSPO to transmit 32-bit words.

e Configure the codec for 16-bit linear, stereo

mode, with an 8 kHz sampling rate.

e Generate a 512 word integer array,
table[512], where the upper 16 bits are the
samples for 64 cycles of a 1 kHz sine wave for
the left channel, and the lower 16 bits are the
samples for 128 cycles of a 2 kHz sine wave
for the right channel. Of course, the left and
right channel sine wave samples must be
scaled to use a large part of the DAC’s
dynamic range and must be converted to

16-bit integers before being combined into

\ 32-bit words. /

67

-~

N

~

Experiment 2 (Part 3), DMA (cont.)

e Configure the DMA controller to read the

entire array of 512 samples and write them to
the Data Transmit Register (DXR) of
McBSPO. Synchronize the transfers with the
XRDY event to get the 8 kHz sampling rate.
Use autoinitialization so the read address is
automatically reset to the start of the sample
array after the last word has been transmitted

and the array is continually retransmitted.

Observe the codec left and right channel
outputs on the oscilloscope and verify that
they are sine waves with the desired

frequencies.

An example code segment is shown in the
following slides to help you get started. The
function LOAD_FIELD(addr,val,bit,length)
used in the code is defined in regs.h.

/

68

69

4 N

Example DMA Code Segment

#define SZ_TABLE 512
int table[512];
void create_table(void) ;

void main(void){

/* DMA global and channel specific registers initialized */
/* to default values */
unsigned int dma_gcr =0, dma_gndxa=0, dma_gaddra=0,
dma_gcra=0, dma_gndxb=0, dma_gaddrb=0,
dma_gcrb=0, dam_gaddrc=0, dma_gaddrd=0,
dma_tcnt=0, dma_pri_ctrl=0, dma_sec_ctrl=0,
dma_src_addr, dma_dst_addr;

MCBSP_ENABLE(O, MCBSP_TX); /* enable mcbsp for Tx */
create_table(); /* creates table of sine values */

dma_reset () ; /* reset DMA config registers */

0L

-

/ *

/ *

Example DMA Code Segment (cOnt. 1)

Set source addr, dest addr, and transfer count */
dma_src_addr = (unsigned int) table;

dma_dst_addr = MCBSP_DXR_ADDR(O0) ;

dma_tcnt = SZ_TABLE;

Reload: no dest reload, src from GARB, tfr cnt from GCRA */
LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_GARB,

SRC_RELOAD, SRC_RELOAD_SZ);
LOAD_FIELD(&dma_pri_ctrl, DMA_RELOAD_NONE,

DST_RELOAD, DST_RELOAD_SZ) ;
dma_gaddrb = dma_src_addr;
dma_gcra = dma_tcnt;

Set sync info: No sync for reading sample and */
XEVTO (mcbsp O Tx) as sync source for write */

LOAD_FIELD(&dma_pri_ctrl, SEN_NONE, RSYNC, RSYNC_SZ);
LOAD_FIELD(&dma_pri_ctrl, SEN_XEVTO, WSYNC, WSYNC_SZ);

~

/

TL

Example DMA Code Segment (cOnt. 2)

/* Addr adjust: src inc and dest unchanged after tfr */
LOAD_FIELD(&dma_pri_ctrl, DMA_ADDR_INC, SRC_DIR,
SRC_DIR_SZ);
LOAD_FIELD (&dma_pri_ctrl, DMA_ADDR_NO_MOD, DST_DIR,
DST_DIR_SZ);

/* Load DMA channel registers */
dma_global_init(dma_gcr, dma_gcra, dma_gcrb,
dma_gndxa, dma_gndxb, dma_gaddra, dma_gaddrb,
dam_gaddrc, dma_gaddrd) ;
dma_init(DMA_CH1, dma_pri_ctrl, dma_sec_ctrl,
dma_src_addr, dma_dst_addr, dma_tcnt);

/* Start DMA channel 1in AUTO mode. */
DMA_AUTO_START(DMA_CH1) ;
while(1);
+

o

