

EE 445S

Real-Time Digital Signal

Processing Laboratory

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712

bevans@ece.utexas.edu

http://www.ece.utexas.edu/~bevans

Spring 2014

http://www.ece.utexas.edu/~bevans

Table of Contents

0. Introduction
1. Sinusoidal Generation
2. Introduction to Digital

Signal Processors
3. Signals and Systems
4. Sampling and Aliasing
5. Finite Impulse Response

Filters
6. Infinite Impulse Response

Filters
7. Interpolation and Pulse

Shaping
8. Quantization
9. TMS320C6000 Digital

Signal Processors (DSPs)
10. Data Conversion – Part I
11. Data Conversion – Part II
12. Channel Impairments
13. Digital Pulse Amplitude

Modulation (PAM)
14. Matched Filtering
15. Quadrature Amplitude

Modulation (QAM)
Transmitter

16. QAM Receiver
17. Fast Fourier Transform
18. DSL Modems
19. Analog Sinusoidal Mod.

20. Wireless OFDM Systems
21. Spread Spectrum

Communications
22. Modern DSPs
23. Native Signal Processing
24. Algorithm Interoperability
25. System-level Design
26. Review for Midterm #2

Handouts

A. Course Description
B. Instructional Staff/Resources
C. Learning Resource Center
D. Matlab
E. Convolution Example
F. Fundamental Theorem of

Linear Systems
G. Raised Cosine Pulse
H. Modulation Example
I. Modulation Summary
J. Noise-Shaped Feedback
K. Sample Quizzes
L. Direct Sequence Spreading
M. Symbol Timing Recovery
N. Tapped Delay Line on C6700
O. All-Pass Filters
P. QAM vs. PAM
Q. Four Ways To Filter
R. Intro to Fourier Transforms
S. Adding Random Variables

Italics means available on Web only at http://www.ece.utexas.edu/~bevans/courses/rtdsp

EE445S Real-Time DSP Lab: Lecture & Lab

This course is a four-credit course, with three hours of lecture and three hours of lab scheduled
per week.

For spring 2014, lecture will be held in ETC 5.148 on Mondays, Wednesdays, and Fridays from

11:00 am to 12:00 pm, beginning Jan. 13th and ending May 2nd. The laboratory sessions will be

held in ENS 252B on Mondays, Tuesdays, Wednesdays, and Fridays from Jan. 21st to May 2nd.

This course does not require a semester project nor does it have a final examination. Final grades

will consist of pre-lab quizzes, laboratory reports, homework assignments and exams. Exams

will be based on material covered in lecture, homework assignments, laboratory sessions and

reading assignments.

All lecture slides (13 MB) and the course reader (18 MB) are available for Spring 2014.

For the first half of the semester, the weekly schedule of lecture and lab topics follows. Reading

assignments are also given, where JSK means Johnson, Sethares and Klein, Software Receiver

Design, and WWM means Welch, Wright and Morrow, Real-Time Digital Signal Processing.

Week
Monday

Lecture

Wednesday

Lecture
Friday Lecture Lab Reading

Jan.

13th
Introduction Introduction

Sinusoidal

Generation
NONE

Wednesday: JSK ch. 1

Friday: JSK 2.1-2.7

Reader handouts A-D & R

Jan.

20th

DR. MARTIN

LUTHER

KING DAY

Sinusoidal

Generation

Discussion of

homework #0

solutions

Introduction

- Tools

Tuesday: Pre-lab Reading
Wednesday: JSK 2.8-2.16

Friday: JSK 3.1-3.4

Jan.

27th

Signals and

Systems

Signals and

Systems

Discussion of

homework #1

solutions

Sine Wave

Generation

Monday: Pre-lab Quiz
Wednesday: JSK 3.5-3.8 and

app. A.2, A.4, G.1 & G.2

Friday: JSK 4.1-4.6, and

Reader handouts E & F

Feb.

3rd

Finite Impulse

Response

Filters

Finite Impulse

Response Filters

Discussion of

homework #2

solutions

Sine Wave

Generation

Monday: JSK 7.1-7.2

Wednesday: JSK app. F

Feb.

10th

Finite Impulse

Response

Filters

Finite Impulse

Response Filters

Introduction to

Digital Signal

Processors (DSPs)

Digital

Filters
Monday: Pre-lab Quiz
Friday: Reader handout N

Feb.

17th

Introduction to

DSPs

Infinite Impulse

Response Filters

Infinite Impulse

Response Filters

Digital

Filters

Wednesday: Reader handout

O

Feb.

24th

Discussion of

homework #3

Infinite Impulse

Response Filters

Infinite Impulse

Response Filters

Digital

Filters

Friday: JSK 5.1-5.2, 6.1-6.3

and A.3; Reader handout H

Mar.

3rd

Sampling and

Aliasing

Sampling and

Aliasing
Midterm #1

Digital

Filters
Monday: JSK 6.4

file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/EvansRealTimeSp14.zip
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/handouts/CourseReaderSpring2014.pdf
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/00_Introduction/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/01_Sinusoids/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/01_Sinusoids/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab1/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab1/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/03_Signals_Systems/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/03_Signals_Systems/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab2/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab2/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab2/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/05_FIR_Filters/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/05_FIR_Filters/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/05_FIR_Filters/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab2/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab2/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/02_Architecture/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/02_Architecture/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/02_Architecture/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/handouts/TappedDelayLineOnC6713.doc
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/06_IIR_Filters/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/06_IIR_Filters/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/04_Sampling_Aliasing/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/04_Sampling_Aliasing/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/midterm1.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab3/index.html

For the second half of the semester, the weekly schedule of lecture and lab topics follows.

Week
Monday

Lecture

Wednesday

Lecture

Friday

Lecture
Lab Reading

Mar.

17th

Interpolation

and Pulse

Shaping

Interpolation

and Pulse

Shaping

Discussion

of midterm

#1 solutions

Data

Scramblers

Monday: Pre-lab Quiz

Wednesday: JSK 5.3-5.4, 8.1-8.5, and

Reader handout I

Friday: JSK 9.1-9.4 and app. B & E

Mar.

24th

Channel

Impairments

Digital Pulse

Amplitude

Modulation

Discussion

of homework

#4 solutions

Pulse

Amplitude

Modulation

Monday: Pre-lab Quiz
Wednesday: JSK 11.1-11.6 and app. C

Friday: JSK 10.1-10.4, and Reader

handout M & S

Mar.

31st

Digital Pulse

Amplitude

Modulation

Matched

Filtering

Discussion

of homework

#5 solutions

Pulse

Amplitude

Modulation

Monday: JSK 13.1-13.3

Wednesday: JSK 12.1-12.4

Friday: JSK 16.1-16.2

Apr.

7th

Matched

Filtering

Matched

Filtering

Matched

Filtering

Pulse

Amplitude

Modulation

Monday: JSK 16.3-16.6

Wednesday: JSK 16.7-16.11

Friday: Reader handout P

Apr.

14th

QAM

Transmitter

QAM

Transmitter

QAM

Receiver

Quadrature

Amplitude

Modulation
Monday: Pre-lab Quiz

Apr.

21st
Quantization Quantization

Data

Conversion

Quadrature

Amplitude

Modulation

Monday: Reader handout J

Friday: JSK ch. 7 & app. D

Apr.

28th

Data

Conversion
Review Midterm #2

Guitar Special

Effects
Monday: Pre-lab Quiz

The following lectures are not scheduled to be presented this semester:

 TMS320C6000 DSP

 Advanced Data Conversion

 Fast Fourier Transform

 DSL Modems

 Analog Sinusoidal Modulation

 Wireless OFDM Systems

 WiMAX

 Spread Spectrum Communications

 Modern DSP Processors

 Native Signal Processing

 Algorithm Interoperability

 System-level Design

 Synchronization in ADSL Modems

 Wireless 1000x

file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/realtime.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/07_Interpolation/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/07_Interpolation/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/07_Interpolation/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab4/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab4/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab4/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/12_Channel_Impairments/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/12_Channel_Impairments/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/13_Digital_PAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/13_Digital_PAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/13_Digital_PAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/14_Matched_Filtering/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/14_Matched_Filtering/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab5/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/15_QAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/15_QAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/16_QAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/16_QAM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/08_Quantization/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/10_Data_Conversion/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/10_Data_Conversion/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab6/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/26_Review/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/midterm2.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab7/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab7/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/laboratory/c6748winDSK/lab7/index.html%23reading
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/09_Architecture/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/11_Data_Conversion/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/17_FFT/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/18_ADSL/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/19_Modulation/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/20_OFDM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/20_OFDM/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/21_Spread_Spectrum/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/22_Architecture/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/23_NativeSigProc/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/24_Interoperability/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/25_System_Design/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/27_ADSL/index.html
file:///C:/Users/Brian%20Evans/Documents/Courses/realtime/lectures/JeffAndrews.html

EE445S Real-Time Digital Signal Processing Laboratory - Overview

Prof. Brian L. Evans

This undergraduate elective is an introduction to the analysis, design, and implementation of embedded
real-time digital signal processing systems. "Real-time" means guaranteed delivery of data by a certain
time. "Embedded" means that the subsystem performs behind-the-scenes tasks within a larger system.
These tasks are often tailored to an application, e.g. speech compression/decompression for a cell phone.

Traditionally, users do not directly interact with the embedded systems in the product. For example, a
modern cell phone contains several embedded systems, including processors, memory systems, and
input/output systems, but the user interacts with the cell phone through the touchscreen and/or voice
commands. As another example, a PC contains several embedded digital systems, including the disk

drive, CD/DVD player, video processor, and wireless LAN system. Embedded systems range from a
system-on-chip to a board to a rack of computing engines to a distributed network of computing engines.

The application space for embedded systems includes control, communication, networking, signal
processing, and instrumentation. High-volume products in units shipped worldwide in 2012 include

 1750M cell phones

 350M PCs/laptops

 115M DVD/Blu-ray players

 100M digital still cameras

 75M DSL/VDSL modems

 70M cars/light trucks

 34M video game consoles

High-end cars now have more than 150 embedded processors in them. More than two billion products are
sold each year with multiple embedded digital signal processing systems in them. In fact, there are more
embedded programmable processors in the world than people.

Texas is a worldwide epicenter for microprocessors for control, signal processing, and communication
systems. In 2007, Texas Instruments (Dallas, TX) and Freescale (Austin, TX) have 64% and 12%,
respectively, of the $8B embedded programmable digital signal processor market. Their digital signal
processors were developed, and are still being developed, in Texas. Near three-fourths of all digital signal
processors are used in wireless systems for both cellular and data networks. Texas Instruments and
Freescale are also market leaders in the embedded programmable microcontroller market, esp. for the
automotive sector. In addition, Qualcomm and Cirrus Logic have developed several generations of
programmable digital signal processors in Austin, Texas, for cell phones and audio systems, respectively.

To boot, Austin is a worldwide leader in ARM-based digital VLSI design centers.

Through this undergraduate elective, I hope that students gain an intuitive feel for basic discrete-time
signal processing concepts and how to translate these concepts into real-time software using digital signal
processor technology. The course will review some of the mathematical foundations of the course
material, but emphasize the qualitative concepts. The qualitative concepts are reinforced by hands-on
laboratory work and homework assignments.

In the laboratory and lecture, the course will cover

http://users.ece.utexas.edu/~bevans/

 digital signal processing: signals, sampling, filtering, quantization, oversampling, noise shaping,
and data converters.

 digital communications: Analog/digital modulation, analog/digital demodulation, pulse shaping,
pseudo-noise sequences, ADSL transceivers, and wireless LAN transceivers.

 digital signal processor architectures: Harvard architecture, special addressing modes, parallel
instructions, pipelining, real-time programming, and modern digital signal processor
architectures.

In particular, we will discuss design tradeoffs between implementation complexity and signal
quality/communication performance.

In the laboratory component, students implement transceiver subsystems in C on a Texas Instruments
TMS320C6748 floating-point dual-core programmable digital signal processor. The C6000 family is used

in DSL modems, wireless LAN modems, mobile wireless basestations, and video conferencing systems.
For professional audio systems, the C6700 floating-point sub-family empowers guitar effects and
intelligent mixing boards. Students test their implementations using rack equipment, Texas Instruments
Code Composer Studio software, and National Instruments LabVIEW software. A voiceband transceiver
reference design and simulation is available in LabVIEW.

In addition to learning about voiceband modem design in the lab and lecture, students will also learn in
lecture about the design of modern analog-to-digital and digital-to-analog converters, which employ
oversampling, filtering, and dithering to obtain high resolution. Whereas the voiceband modem is a single
carrier system, lectures will also cover modern multicarrier modulation systems, esp. asymmetric digital

subscriber line (ADSL) and wireless LAN systems. In particular, we discuss the data transmission
subsystems in ADSL and wireless LAN transceivers. Last, we spend several lectures on digital signal
processor architectures, esp. the architectural features adopted to accelerate digital signal processing
algorithms.

For the lab component, I chose a floating-point DSP over a fixed-point DSP. The primary reason was to
avoid overwhelming the students with the severe fixed-point precision effects so that the students could
focus on the design and implementation of real-time digital communications systems. That said, floating-
point DSPs are used in industry to prototype algorithms, e.g. to see if real-time performance can be met. If

the prototype is successful, then it might be modified for low-volume applications or it might be mapped
onto a fixed-point DSP for high-volume applications (where the engineering time for the mapping can
potentially be recovered).

A UT undergraduate ECE student who took the real-time DSP laboratory course in Fall 1999 and
graduated in May of 2000 wrote the following about the course in August 2000:

"... keep that real-time DSP lab as good as it was when I took it. I have to say, that lab was the best class I
took at UT. It is close enough to the cutting edge of technology that you can hold a conversation with
someone from industry and actually contribute useful ideas. 345L is a close second. Good work."

A UT undergraduate BME student who took the real-time DSP laboratory course in Spring 2009 wrote
the following about the course in June 2009:

"I wanted to thank you for teaching the EE 445S course this last spring semester (Spring 09). I got my
summer internship based on my experience in the EE 445S lab and the whole course. I am told that
[Company X] has never hired any Biomedical Engineering student before, but because of this course I got
the opportunity to be the first BME student in this company."

http://www.ni.com/labview
http://users.ece.utexas.edu/~bevans/courses/realtime/demonstration/index.html
http://users.ece.utexas.edu/~bevans/courses/realtime/demonstration/index.html

1

Introduction

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE 445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 0 http://www.ece.utexas.edu/~bevans/courses/rtdsp
0-2

Outline

• Instructional staff

• Real-time digital signal processing

• Course overview

• Communication systems

• Single carrier transceiver

• Multicarrier transceivers

• Conclusion

Instructional Staff

• Prof. Brian L. Evans

Conducts research in digital communication,

digital image processing & embedded systems

Past and current projects on next two slides

Office hours: M 12:00-12:30pm, W 12:00-12:30pm,

TH 12:30-2:30pm (ENS 433B)

Coffee hours F 12:00-2:00pm starting Jan. 17th

• Teaching assistants (lab sections/office hours below)

Mr. Chao Jia

W & F lab sections

TH 3:30-5:30pm

F 9:30-10:30am

Ms. Zeina Sinno

M & T lab sections

W 3:00- 4:30pm

TH 5:30- 7:00pm
0-3

Completed Research Projects

DSP Digital Signal Processor FPGA Field Programmable Gate Array

LTE Long-Term Evolution (cellular) PXI PCI Extensions for Instrumentation

21 PhD and 9 MS alumni

Instructional Staff

System Contribution SW release Prototype Funding

ADSL equalization Matlab DSP/C Freescale, TI

2x2 testbed LabVIEW LabVIEW/PXI Oil&Gas

Wimax/LTE resource alloc. LabVIEW DSP/C Freescale, TI

Underwater

comm.

space-time comm.

large rec. arrays

Matlab Lake Travis

testbed

UT Applied

Res. Labs

Camera image acquisition Matlab DSP/C Intel, Ricoh

Display image halftoning Matlab C HP, Xerox

video halftoning Matlab C Qualcomm

Elec. design

automation
fixed point conv. Matlab FPGA Intel, NI

distributed comp. Linux/C++ Navy sonar Navy, NI

0-4

2

Current Research Projects
9 PhD students

Instructional Staff

System Contributions SW release Prototype Funding

Powerline

comm.

interference reduction;

testbeds

LabVIEW Freescale, TI

modems

Freescale,

IBM, TI

Wi-Fi interference reduction Matlab NI FPGA Intel, NI

time-based analog-to-

digital converter

IBM 45nm

TSMC 180nm

Cellular

(LTE)

cloud radio access net.

baseband compression

Matlab Huawei

Handheld

camera

reducing rolling shutter

artifacts

Matlab Android TI

EDA reliability patterns NI

EDA Electronic Design Automation FPGA Field Programmable Gate Array

LTE Long-Term Evolution (cellular) TSMC Taiwan Semicond. Manufac. Corp.

0-5

Real-Time Digital Signal Processing

• Real-time systems [Prof. Yale Patt, UT Austin]

Guarantee delivery of data by a specific time

• Signal processing [http://www.signalprocessingsociety.org]

Generation, transformation, extraction, interpretation of

information

Algorithms with associated architectures and implementations

Applications related to processing information

• Embedded systems

Perform application-specific tasks

Work “behind the scenes” (e.g. speech compression)

0-6

Course Overview

• Objectives

Build intuition for signal processing concepts

Explore design tradeoffs in signal quality vs.
implementation complexity

• Lecture: breadth (3 hours/week)

Digital signal processing (DSP) algorithms

Digital communication systems

Digital signal processor (DSP) architectures

• Laboratory: depth (3 hours/week)

Translate DSP concepts into software

Design/implement data transceiver

Test/validate implementation

Measures of

signal quality?

Implementation

complexity?

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

4.5 5 5.5 6 6.5 7

SymMinSSNR

SymMMSE

MinSSNR

SymMinISI

MMSE

MinISI

MDS

DualPath

ADSL receiver design: bit rate

(Mbps) vs. multiplications

in equalizer training methods

[Data from Figs. 6 & 7 in B. L. Evans et al.,

“Unification and Evaluation of Equalization

Structures…”, IEEE Trans. Sig. Proc., 2005]

105 106 107

Pre-Requisites and Co-Requisites

• Pre-Requisites

Introduction to Programming: C programming, arrays
and circular buffers, asymptotic analysis

Signals & Systems: convolution, transfer functions,
frequency responses, filtering

Intro. to Embedded Systems: assembly and C languages,
microprocessor organization, quantization

• Co-Requisites

Probability: Gaussian and uniform distributions, sum of
random variables, statistical independence, random
processes, correlation

Engineering Communication: technical writing

Course Overview

 dt
t

  


0-8

3

Detailed Topics

• Digital signal processing algorithms/applications

Signals, convolution and sampling (signals & systems)

Transfer functions & freq. responses (signals & systems)

Filter design & implementation, signal-to-noise ratio

Quantization (embedded systems) and data conversion

• Digital communication algorithms/applications

Analog modulation/demodulation (signals & systems)

Digital modulation/demodulation, pulse shaping, pseudo noise

Signal quality: matched filtering, bit error probability

• Digital signal processor (DSP) architectures

Assembly language, interfacing, pipelining (embedded systems)

Harvard architecture, addressing modes, real-time prog.

Course Overview

0-9

Digital Signal Processors In Products

0-10

Consumer audio

Pro-audio

Amp

Mixing

board

IP camera

IP phone

Video conferencing

Multimedia

In-car entertainment

Communications

Smart power meters

DSL modems

Tablets

Course Overview

0-11

Required Textbooks

Software Receiver Design,
Oct. 2011

Design of digital
communication systems

Convert algorithms into
Matlab simulations

Bill Sethares

(Wisconsin)

Rick Johnson

(Cornell)

Andy Klein

(WPI)

Thad Welch

(Boise State)
Cameron

Wright

(Wyoming)

Michael

Morrow

(Wisconsin)

U

T

Real-Time Digital Signal
Processing from Matlab

to C with the TMS320C6x

DSPs, Dec. 2011

Matlab simulation

Mapping algorithms to C
0-11

Course Overview

Supplemental (Optional) Textbooks

• J. H. McClellan, R. W. Schafer & M. A. Yoder,

DSP First: A Multimedia Approach, 1998

DSP theory and algorithms at sophomore level

Demos: http://users.ece.gatech.edu/~dspfirst/

• B. P. Lathi, Linear Systems & Signals, or

M. J. Roberts, Signals and Systems, or

Oppenheim & Willsky, Signals and Systems

Textbook for pre-requisite signals & systems course

• Steve Smith, The Scientist and Engineer’s

Guide to Digital Signal Processing, 1997

Available free online: http://www.dspguide.com

R. Schafer’s

1975 book

seminal for

DSP theory

0-12

Course Overview

4

Related BS ECE Technical Cores

Signal/image processing

Real-Time Dig. Sig. Proc. Lab

Digital Signal Processing

Introduction to Data Mining

Digital Image & Video

Processing

Courses with the highest

workload at UT Austin?

Communication/networking

Real-Time Dig. Sig. Proc. Lab

Digital Communications

Wireless Communications Lab

Telecommunication Networks

Embedded Systems

Embedded & Real-Time Systems

Real-Time Dig. Sig. Proc. Lab

Digital System Design (FPGAs)

Computer Architecture

Introduction to VLSI Design

Undergraduate students may

take grad courses upon request

and at their own risk 

0-13

Course Overview

Grading

• Calculation of numeric grades

21% midterm #1

21% midterm #2

14% homework (drop lowest grade of eight)

 5% pre-lab quizzes (drop lowest grade of six)

39% lab reports (drop lowest grade of seven)

• 21% for each midterm exam

Focus on design tradeoffs in signal quality vs. complexity

Based on in-lecture discussion and homework/lab assignments

Open books, open notes, open computer (but no networking)

Dozens of old exams (most with solutions) in course reader

Test dates on course descriptor and lecture schedule

Average GPA

has been ~3.1

MyEdu.com

No final

exam

0-14

Course Overview

Grading

• 14% homework – eight assignments (drop lowest)

Strengthen theory and analysis

Translate signal processing concepts into Matlab simulations

Evaluate design tradeoffs in signal quality vs. complexity

• 5% pre-lab quizzes – for labs 2-7 (drop lowest)

10 questions on course Blackboard site taken individually

• 39% lab reports – for labs 1-7 (drop lowest)

Work individually on labs 1 and 7

Work in team of two on labs 2-6 and receive same base grade

Attendance/participation in lab section required and graded

• Course ranks in graduate school recommendations

 0-15

Course Overview

0-16

Maximizing Your Numeric Grade

• Attend every lecture

Most important information not
on slides [fall 2010 student]

• Complete every homework

• Submit only your own work

Independent solutions on all
homework assignments, lab 1/7
reports and all pre-lab quizzes

Lab team on lab 2-6 reports

Cite sources for all other work

Lowest

Grades

Lecture

Absences

Zeros on

homework

55.13 10 6

68.12 10 6

73.96 0 0

74.43 5 4

74.80 12 2

74.90 2 1

75.89 6 2

Spring 2011

“In May 2006, William Swanson, CEO of Raytheon … was docked approximately
US $1 million in pay by the company after it was revealed he had plagiarized 16 of
the 33 rules in his popular 2004 book, Swanson's Unwritten Rules of Management.”
[Sept. 8, 2006, issue of IEEE's The Institute electronic newsletter]

Course Overview

5

Communication System Structure

• Information sources

Voice, music, images, video, and data (message signal m(t))

Have power concentrated near DC (called baseband signals)

• Baseband processing in transmitter

Lowpass filter message signal (e.g. AM/FM radio)

Digital: Add redundancy to message bit stream to aid receiver

in detecting and possibly correcting bit errors

m(t)

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

)(ˆ tm

CHANNEL

Communication Systems

0-17

Communication System Structure

• Carrier circuits in transmitter

Upconvert baseband signal into transmission band

Then apply bandpass filter to enforce transmission band

m(t)

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

)(ˆ tm

CHANNEL

w

w
0

1

w1 -w1

F(w)

0

S(w)

½

-w0 - w1 -w0 + w1
w0

w0 - w1 w0 + w1
w0

½Fw  w0 ½Fw + w0

Baseband signal Upconverted signal

Communication Systems

0-18

Communication System Structure

• Channel – wired or wireless

Propagating signals spread and attenuate over distance

Boosting improves signal strength and reduces noise

• Receiver

Carrier circuits downconvert bandpass signal to baseband

Baseband processing extracts/enhances message signal

m(t)

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

)(ˆ tm

CHANNEL

Communication Systems

0-19

Single Carrier Transceiver Design

• Design/implement transceiver

Design different algorithms for each subsystem

Translate algorithms into real-time software

Test implementations using signal generators & oscilloscopes

Laboratory Transceiver Subsystems

1 introduction block diagram of transmitter

2 sinusoidal generation sinusoidal mod/demodulation

3(a) finite impulse response filter pulse shaping, 90o phase shift

3(b) infinite impulse response filter transmit and receive filters,

carrier detection, clock recovery

4 pseudo-noise generation training sequences

5 pulse amplitude mod/demodulation training during modem startup

6 quadrature amplitude mod (QAM) data transmission

7 digital audio effects not applicable

Single Carrier Transceivers

6

0-21

Lab 4

Rate
Control

Lab 6

QAM
Encoder

Lab 3

Tx Filters

Lab 2

Bandpass
Signal

LabVIEW demo by Zukang Shen (UT Austin)

Lab 1: QAM Transmitter Demo
http://www.ece.utexas.edu/~bevans/courses/realtime/demonstration

Single Carrier Transceivers

Reference design in LabVIEW

0-22

Lab 1: QAM Transmitter Demo
LabVIEW

control

panel
QAM

baseband

signal

Eye

diagram

LabVIEW demo by Zukang Shen (UT Austin)

Single Carrier Transceivers

Got Anything Faster?

• Multicarrier modulation divides broadband
(wideband) channel into narrowband subchannels

Uses Fourier series computed by fast Fourier transform (FFT)

Standardized for ADSL (1995) & VDSL (2003) wired modems

Standardized for IEEE 802.11a/g wireless LAN

Standardized for IEEE 802.16d/e (Wimax) and cellular (3G/4G)

subchannel

frequency

m
a
g
n
it
u
d
e

carrier

channel

Each ADSL/VDSL subchannel is 4.3 kHz wide (about
width of voiceband channel) and carries a QAM signal

Multicarrier Transceivers

0-23

Conclusion

• Objectives

Build intuition for signal processing concepts

Translate signal processing concepts into
real-time digital communications software

• Deliverables and takeaways

Tradeoffs of signal quality vs. implementation complexity

Design/implement voiceband transceiver in real time

Test/validate implementation

• Role of technology

Matlab for algorithm development

TI DSPs and Code Composer Studio for real-time prototyping

LabVIEW for test and measurement

Plug into
network of

1,400+ course

alumni

All software/hardware

used lead in usage in

their respective markets

0-24

1/23/2014

1

Generating Sinusoidal Signals

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE 445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 1 http://www.ece.utexas.edu/~bevans/courses/rtdsp
1-2

Outline

• Bandwidth

• Sinusoidal amplitude modulation

• Sinusoidal generation

• Design tradeoffs

1-3

Bandwidth

• Non-zero extent in positive frequencies

• Applies to continuous-time & discrete-time signals

• In practice, spectrum won’t be ideally bandlimited

Thermal noise has “flat” spectrum from 0 to 1015 Hz

Finite observation time of signal leads to infinite bandwidth

• Alternatives to “non-zero extent”?

Ideal Lowpass Spectrum

fmax -fmax

f

Bandwidth fmax

Ideal Bandpass Spectrum

f1 f2

f

–f2 –f1

Bandwidth W = f2 – f1

Bandwidth

1-4

Lowpass Signal in Noise

• How to determine fmax?

Apply threshold and eyeball it

OR

Estimate fmax that captures certain

percentage (say 90%) of energy

In practice, (a) use large frequency in place of  and

(b) integrate a measured spectrum numerically

Lowpass Spectrum

in Noise

f

 
max

max 0

2
Energy 9.0)(min

f

f
dffH

Idealized Lowpass

Spectrum

fmax -fmax

f

Bandwidth





0

2
)(Energy where dffH

approximate

Baseband signal: energy in frequency domain concentrated around DC

1/23/2014

2

1-5

Bandpass Signal in Noise

• How to find f1 and f2?

Apply threshold and eyeball it

OR

Assume knowledge of fc and

estimate f1 = fc  W/2 and

 f2 = fc + W/2 that capture

percentage of energy

In practice, (a) use large frequency in place of  and

(b) integrate a measured spectrum numerically

Idealized Bandpass Spectrum

f1 f2

f

–f2 –f1

Bandpass Spectrum In Noise

f







Wf

WfW

c

c

dffH2

1

2

1

2
Energy 9.0)(min

cfWdffH 20 and)(Energy where
0

2
 



fc
- fc

Bandwidth

1-6

Amplitude Modulation by Cosine

• y1(t) = x1(t) cos(wc t)

Assume x1(t) is an ideal lowpass signal with bandwidth w1

Assume w1 << wc

Y1(w) has (transmission) bandwidth of 2w1

Y1(w) is real-valued if X1(w) is real-valued

• Demodulation: modulation then lowpass filtering

w
0

1

w1 -w1

X1(w)

w

0

Y1(w)

½

-wc - w1 -wc + w1
wc

wc - w1 wc + w1
wc

½X1(w  wc) ½X1(w  wc)

lower sidebands

Amplitude Modulation

() () ()cc XXY wwwww  111
2

1

2

1

1-7

Amplitude Modulation by Sine

• y2(t) = x2(t) sin(wc t)

Assume x2(t) is an ideal lowpass signal with bandwidth w2

Assume w2 << wc

Y2(w) has (transmission) bandwidth of 2w2

Y2(w) is imaginary-valued if X2(w) is real-valued

• Demodulation: modulation then lowpass filtering

w

Y2(w)

j ½

-wc – w2 -wc + w2
wc

wc – w2 wc + w2
wc

-j ½X2(w  wc) j ½X2(w  wc)

-j ½

w
0

1

w2 -w2

X2(w)

lower sidebands

Amplitude Modulation

() () ()cc X
j

X
j

Y wwwww  222
22

How to Use Bandwidth Efficiently?

• Send lowpass signals x1(t)

and x2(t) with w 1 = w 2 over

same transmission bandwidth

Called Quadrature Amplitude

Modulation (QAM)

Used in DSL, cable, Wi-Fi, and

LTE cellular communications

• Cosine modulated signal is orthogonal to sine

modulated signal at transmitter

Receiver separates x1(t) and x2(t) through demodulation
1-8

+ cos(wc t)

sin(wc t)

x1(t)

x2(t)

s(t)

() () ()() () ()()cccc XXjXXS wwwwwwwww  2211
2

1

2

1

Amplitude Modulation

1/23/2014

3

1-9

Lab 2: Sinusoidal Generation

• Compute sinusoidal waveform

Function call

Lookup table

Difference equation

• Output waveform off chip

Polling data transmit register

Software interrupts

Quantization effects in digital-to-analog (D/A) converter

• Expected outcomes are to understand

Signal quality vs. implementation complexity tradeoff

Interrupt mechanisms

Sinusoidal Generation

1-10

Sinusoidal Waveforms

• One-sided discrete-time cosine (or sine) signal with

fixed-frequency w 0 in rad/sample has form

cos(w0 n) u[n]

• Consider one-sided continuous-time analog-

amplitude cosine of frequency f0 in Hz

cos(2  f0 t) u(t)

Sample at rate of fs by substituting t = n Ts = n / fs

(1/Ts) cos(2  (f0 / fs) n) u[n]

Discrete-time frequency w0 = 2  f0 / fs in units of rad/sample

Example: f0 = 1200 Hz and fs = 8000 Hz, w0 = 3/10 

• How to determine gain for D/A conversion?

Design Tradeoffs in Generating Sinusoidal Signals

1-11

Math Library Call in C

• Uses double-precision floating-point arithmetic

• No standard in C for internal implementation

• Appropriate for desktop computing

On desktop computer, accuracy is a primary concern, so
additional computation is often used in C math libraries

In embedded scenarios, implementation resources generally at
premium, so alternate methods are typically employed

• GNU Scientific Library (GSL) cosine function

Function gsl_sf_cos_e in file specfunc/trig.c

Version 1.8 uses 11th order polynomial over 1/8 of period

20 multiply, 30 add, 2 divide and 2 power calculations per
output value (additional operations to estimate error)

Design Tradeoffs in Generating Sinusoidal Signals

1-12

Efficient Polynomial Implementation

• Use 11th-order polynomial

Direct form a11 x
11 + a10 x

10 + a9 x
9 + ... + a0

Horner's form minimizes number of multiplications

a11 x
11 + a10 x

10 + a9 x
9 + ... + a0 =

 (... (((a11 x + a10) x + a9) x ...) + a0

• Comparison

Realization Multiply

Operations

Addition

Operations

Memory

Usage

Direct form 66 10 13

Horner’s form 11 10 12

Design Tradeoffs in Generating Sinusoidal Signals

http://www.gnu.org/software/gsl/

1/23/2014

4

1-13

Difference Equation

• Difference equation with input x[n] and output y[n]

y[n] = (2 cos w0) y[n-1] - y[n-2] + x[n] - (cos w0) x[n-1]

From inverse z-transform of z-transform of cos(w0 n) u[n]

Impulse response gives cos(w0 n) u[n]

Similar difference equation for sin(w0 n) u[n]

• Implementation complexity

Computation: 2 multiplications and 3 additions per cosine value

Memory Usage: 2 coefficients, 2 previous values of y[n] and
1 previous value of x[n]

• Drawbacks

Buildup in error as n increases due to feedback

Fixed value for w0

Initial conditions

are all zero

Design Tradeoffs in Generating Sinusoidal Signals

1-14

Difference Equation

• If implemented with exact precision coefficients

and arithmetic, output would have perfect quality

• Accuracy loss as n increases due to feedback from

Coefficients cos(w0) and 2 cos(w0) are irrational, except when

cos(w0) is equal to -1, -1/2, 0, 1/2, and 1

Truncation/rounding of multiplication-addition results

• Reboot filter after each period of samples by

resetting filter to its initial state

Reduce loss from truncating/rounding multiplication-addition

Adapt/update w0 if desired by changing cos(w0) and 2 cos(w0)

Design Tradeoffs in Generating Sinusoidal Signals

1-15

Lookup Table

• Precompute samples offline and store them in table

• Cosine frequency w 0 = 2  N / L

Remove all common factors between integers N and L

Continuous-time period for cos(2  f0 t) is T0 = 1 / f0

Discrete-time period for cos(2  (N / L) n) is L samples

Store L samples in lookup table (N continuous-time periods)

• Built-in lookup tables in read-only memory (ROM)

Samples of cos() and sin() at uniformly spaced values for 

Interpolate values to generate sinusoids of various frequencies

Allows adaptation of w0 if desired

Design Tradeoffs in Generating Sinusoidal Signals

1-16

Design Tradeoffs

• Signal quality vs. implementation complexity in

generating cos(w 0 n) u[n] with w 0 = 2  N / L

Method MACs/

sample

ROM

(words)

RAM

(words)

Quality in

floating pt.

Quality in

fixed point

C math

library call

30 22 1 Second

Best

N/A

Difference

equation

2 2 3 Worst Second

Best

Lookup

table

0 L 0 Best Best

MAC Multiplication-accumulation

RAM Random Access Memory (writeable) ROM Read-Only Memory

Design Tradeoffs in Generating Sinusoidal Signals

EE 445S Real-Time Digital Signal Processing Laboratory

1

INTRODUCTION TO

DIGITAL SIGNAL

PROCESSORS

Prof. Brian L. Evans

Contributions by

Dr. Niranjan Damera-Venkata and

Mr. Magesh Valliappan

Embedded Signal Processing Laboratory

The University of Texas at Austin

http://signal.ece.utexas.edu/

Accumulator architecture

Load-store architecture

Memory-register architecture

register

file

on-chip

memory

2 -2

Outline

 Embedded processors and systems

 Signal processing applications

 TI TMS320C6000 digital signal processor

 Conventional digital signal processors

 Pipelining

 RISC vs. DSP processor architectures

 Conclusion

2 -3

Embedded Processors and Systems

 Embedded system works

On application-specific tasks

 “Behind the scenes” (little/no direct user interaction)

 Units of consumer products shipped in 2012

1750M cell phones 75M DSL/VDSL modems

 350M PCs 70M cars/light trucks

 115M DVD/Blu-ray players 34M game consoles

 100M digital still cameras

 How many embedded processors are in each?

 How much should an embedded processor cost?

2011: average US prices were $73 for traditional cell phone

and $191 for digital still camera

2012: iPhone5 costs $749 (16GB) & $849 w/o contract

2 -4

Smart Phone Application Processors

 Standalone app processors (Samsung)

 Integrated baseband-app processors (Qualcomm)

iPhone5 (10+ cores)

• Touchscreen: Broadcom

 (probably 2 ARM cores)

• Apps: Samsung

 (2 ARM + 3 GPU cores)

• Audio: Cirrus Logic

 (1 DSP core + 1 codec)

• Wi-Fi: Broadcom

• Baseband: Qualcomm

• Inertial sensors:

 STMicroelectronics

3Q12 Smart Phone
App Proc Market ($3.8B)

Qualcomm
(Android)
Samsung
(iPhone)
MediaTek
(Android)
Broadcom
(Android)
NVIDIA
(Android)
Others

Source: Cellular News, 11 Jan. 2013

http://www.cellular-news.com/story/58089.php
“iPhone 5 Tear Down”

http://www.ifixit.com/Teardown/iPhone-5-Teardown/10525/

2

2 -5

Market for Application Processors

2012 Tablet App Proc Market
(107M Units)

Apple
(Samsung)
Texas Inst.

Nvidia

Qualcomm

Samsung

Other

Forward Concepts

http://www.fwdconcepts.com/dsp071513.htm

 $2.3B in tablets, $12.4B in smart phones, 2012

 $3.5B in tablets, $16.1B in smart phones, 2013 (est.)

 32% of revenue for all microprocessors sold in 2013 (est.)

[“Tablet and Cellphone Processors Offset PC MPU Weakness,” Aug 2013]

2 -6

Signal Processing Applications

 Embedded system cost & input/output rates

Low-cost, low-throughput: sound cards, 2G cell

phones, MP3 players, car audio, guitar effects

Medium-cost, medium-throughput: printers,

disk drives, 3G cell phones, ADSL modems,

digital cameras, video conferencing

High-cost, high-throughput: high-end printers,

audio mixing boards, wireless basestations,

3-D medical reconstruction from 2-D X-rays

 Embedded processor requirements

 Inexpensive with small area and volume

Predictable input/output (I/O) rates to/from processor

Low power (e.g. smart phone uses 200mW average for

voice and 500mW for video; battery gives 5 W-hours)

Single

DSP

Multiple

multicore

DSPs

Multiple DSP

chips or cores

+ accelerators

2 -7

Type of Digital Signal Processor?

Fixed-Point Floating-Point

Per unit cost $2 and up $2 and up

Prototyping time Long Short

Power

consumption

10 mw - 1 W 1-3 W

Battery-powered

products

Cell phones

Digital cameras

Very few

Other products DSL modems

Cellular basestations

Pro & car audio

Medical imaging

Sales volume High Low

Prototyping Convert floating- to

fixed-point; use non-

standard C extensions;

redesign algorithms

Reuse desktop

simulations; feasibility

check before investing

in fixed-point design
2 -8

Program RAM
Data RAM

or Cache

Internal Buses

Control Regs

R
e

g
s
 (B

0
-B

1
5

)

R
e

g
s
 (A

0
-A

1
5

)

.D1

.M1

.L1

.S1

.D2

.M2

.L2

.S2

CPU

Addr

Data

External
Memory

 -Sync

 -Async

DMA

Serial Port

Host Port

Boot Load

Timers

Pwr Down

Modern Digital Signal Processor Example

TI TMS320C6000 Family, Simplified Architecture

3

2 -9

Modern DSP: TI TMS320C6000 Architecture

 Very long instruction word (VLIW) of 256 bits

Eight 32-bit functional units with one cycle throughput

One instruction cycle per clock cycle

 Data word size and register size are 32 bits

16 (32 on C6400) registers in each of two data paths

40 bits can be stored in adjacent even/odd registers

 Two parallel data paths

Data unit - 32-bit address calculations (modulo, linear)

Multiplier unit - 16 bit  16 bit with 32-bit result

Logical unit - 40-bit (saturation) arithmetic/compares

Shifter unit - 32-bit integer ALU and 40-bit shifter

2 -10

Modern DSP: TI TMS320C6000 Architecture

 Families: All support same C6000 instruction set

C6200 fixed-pt. 150- 300 MHz printers, DSL (obsolete)

C6400 fixed pt. 500-1200 MHz video, DSL

C6600 floating 1000-1250 MHz basestations (8 cores)

C6700 floating 150-1,000 MHz medical imaging, audio

 TMS320C6748 OMAP-L138 Experimenter Kit

375-MHz CPU (750 million MACs/s, 3000 RISC MIPS)

On-chip: 8 kword program, 8 kword data, 64 kword L2

On-board memory: 32 Mword SDRAM, 2 Mword ROM

2 -11

Modern DSP: TMS320C6000 Instruction Set

.S Unit
ADD NEG

ADDK NOT

ADD2 OR

AND SET

B SHL

CLR SHR

EXT SSHL

MV SUB

MVC SUB2
MVK XOR

MVKH ZERO

.L Unit
ABS NOT

ADD OR

AND SADD

CMPEQ SAT

CMPGT SSUB

CMPLT SUB

LMBD SUBC

MV XOR

NEG ZERO

NORM

.M Unit
MPY SMPY

MPYH SMPYH

.D Unit
ADD ST

ADDA SUB

LD SUBA

MV ZERO

NEG

Other

NOP IDLE

C6000 Instruction Set by Functional Unit

Six of the eight functional units can perform integer add,

subtract, and move operations
2 -12

Modern DSP: TMS320C6000 Instruction Set

Arithmetic
ABS

ADD

ADDA

ADDK

ADD2

MPY

MPYH

NEG

SMPY
SMPYH

SADD

SAT

SSUB

SUB

SUBA

SUBC

SUB2

ZERO

Logical

AND

CMPEQ

CMPGT

CMPLT

NOT

OR

SHL

SHR
SSHL

XOR

Bit

Management

CLR

EXT

LMBD

NORM

SET

Data

Management

LD

MV

MVC

MVK

MVKH

ST

Program

Control

B

IDLE

NOP

C6000 Instruction

Set by Category
(un)signed multiplication
saturation/packed arithmetic

4

2 -13

C5000 vs. C6000 Addressing Modes

ADD #0Fh mvk .D1 15, A1

 add .L1 A1, A6, A6

TI C5000 TI C6000

(implied) add .L1 A7, A6, A7

ADD 010h not supported

ADD * ldw .D1 *A5++[8],A1

 Immediate

Operand part of instruction

 Register

Operand specified in a

register

 Direct

Address of operand is part

of the instruction (added

to imply memory page)

 Indirect

Address of operand is

stored in a register

2 -14

C6700 Extensions

.S Unit
ABSDP CMPLTSP

ABSSP RCPDP

CMPEQDP RCPSP

CMPEQSP RSARDP

CMPGTDP RSQRSP

CMPGTSP SPDP

CMPLTDP

.L Unit
ADDDP INTSP

ADDSP SPINT

DPINT SPTRUNC

DPSP SUBDP

DPTRUNC SUBSP

INTDP

.M Unit
MPYDP MPYID

MPYI MPYSP

.D Unit

ADDAD LDDW

C6700 Floating Point Extensions by Unit

Four functional units perform IEEE single-precision (SP) and

double-precision (DP) floating-point add, subtract, and move.

Operations beginning with R are reciprocal (i.e. 1/x) calculations.

2 -15

DS P MHz MIP S Data

(kbits)

P rogram

(kbits)

Le ve l 2

(kbits)

P rice Application s

C6701 150

167

1200

1336

512

512

512

512

0

0

$ 88

$141

C6701 EVM board

C6711 150

250

1200

2000

32 32 512 n /a

$ 18

C6711 DSK board

C6712 150 1200 32 32 512 $ 14

C6713 167

225

300

1336

1800

2400

32

32

32

32

32

32

1000

1000

1000

$ 19

$ 25

$ 33

C6713 DS K boa r d

C6722 250 2000 1000 3072 256 $ 10 P rofe ss ion al a u dio

C6726 266 2128 2000 3072 256 $ 15 P rofe ss ion al a u dio

C6727 300

350

2400

2800

2000

2000

3072

3072

256

256

$ 22

$ 30

C6727 EVM board

P rofe ss ion al au dio

C6748 300 2400 256 256 2048 $ 18 P ro-au dio and v ide o

 375 3000 256 256 2048 $ 20 C6748 XK & EVM boa r d s

200

$

Selected TMS320C6700 Floating-Point DSPs

For more information: http://www.ti.com

Unit price for 100 units. Prices effective February 1, 2009.

DSK: DSP Starter Kit. EVM: Evaluation Module.

2 -16

Selected TMS320C6000 Fixed-Point DSPs

DS P MHz MIP S Data

(kbits)

P rogram

(kbits)

Le ve l 2

(kbits)

P rice Application s

C6202 250

300

2000

2400

1000 2000 $ 66

$ 79

C6203 250

300

2000

2400

4000 3000 $ 84

$ 84

m ode m s ban ks ADSL1

m ode m s

C6204 200 1600 512 512 $ 11

C6416 720

1000

5760

8000

128

128

128

128

8000

8000

$114

$227

ADSL2 m ode m s

3G base station s

C6418 500

600

4000

4800

128

128

128

128

5000

5000

$ 49

$ 49

DM641 500

600

4000

4800

128

128

128

128

1000

1000

$ 28

$ 31

Vide o con fe re n cin g

DM642 500

720

4000

5760

128

128

128

128

2000

2000

$ 37

$ 57

Vide o con fe re n cin g

DM648 900 7200 512 512 4000 $ 64 Vide o con fe re n cin g

200

$

For more information: http://www.ti.com

Unit price is for 100 units. Prices effective February 1, 2009.

C6416 has Viterbi and Turbo decoder coprocessors.

5

2 -17

C6000 Reference Information for Lab Work

 Code Composer Studio v5

http://processors.wiki.ti.com/index.php/CCSv4

 C6000 Optimizing C Compiler 7.4

http://focus.ti.com/lit/ug/spru187u/spru187u.pdf

 C6000 Programmer's Guide

http://www.ti.com/lit/ug/spru198k/spru198k.pdf

 C674x DSP CPU & Instruction Set Ref. Guide

http://focus.ti.com/lit/ug/sprufe8b/sprufe8b.pdf

 C6748 Board

Logic PD’s ZOOM OMAP-L138 Experimenter Kit

http://www.logicpd.com/products/development-kits/zoom-

omap-l138-experimenter-kit

Download them for reference

TI software

development

environment

2 -18

Conventional Digital Signal Processors

 Low cost: as low as $2/processor in volume

 Deterministic interrupt service routine latency

guarantees predictable input/output rates

On-chip direct memory access (DMA) controllers

 Processes streaming input/output separately from CPU

 Sends interrupt to CPU when frame read/written

Ping-pong buffering

 CPU reads/writes buffer 1 as DMA reads/writes buffer 2

 After DMA finishes buffer 2, roles of buffers switch

 Low power consumption: 10-100 mW
 TI TMS320C54: 0.48 mW/MHz  76.8 mW at 160 MHz

 TI TMS320C5504: 0.15 mW/MHz  45.0 mW at 300 MHz

 Based on conventional (pre-1996) architecture

2 -19

Conventional Digital Signal Processors

 Multiply-accumulate in one instruction cycle

 Harvard architecture for fast on-chip I/O

Separate data memory/bus and program memory/bus

1 read from program memory per instruction cycle

2 reads/writes from/to data memory per inst. cycle

 Instructions to keep pipeline (3-6 stages) full

Zero-overhead looping (one pipeline flush to set up)

Delayed branches

 Special addressing modes in hardware

Bit-reversed addressing (fast Fourier transforms)

Modulo addressing for circular buffers (e.g. filters)

2 -20

 Conventional Digital Signal Processors

xN-K+1 xN-K+2 xN-1 xN

Data Shifting Using a Linear Buffer
Time Buffer contents Next sample

xN+1

xN+3

xN+2

n=N

n=N+1

n=N+2 xN-K+3 xN-K+4 xN+1 xN+2

xN-K+2 xN-K+3 xN xN+1

Modulo Addressing Using a Circular Buffer
Time Buffer contents Next sample

n=N

n=N+1

n=N+2

xN-2 xN-1 xN-K+1 xN-K+2

xN-K+4

xN+1

xN+2

xN+3

xN-2 xN-1 xN+1 xN-K+2 xN

xN-2 xN-1 xN+1 xN+2 xN

xN

xN

xN

xN-K+3

xN-K+3 xN-K+4

 Buffers
Used in processing

streaming data

 Linear buffer
Sort by time index

Update: discard
oldest data, copy
old data left, insert
new data

 Circular buffer
Oldest data index

Update: insert new
data at oldest
index, update
oldest index

6

2 -21

 Fixe d-P oin t F loatin g-P oin t

Cost /Un i t $2 - $79 $2 - $381

Ar ch i t ect u r e Accumula tor load-store or

memory-register

R egist er s 2-4 data

8 address

8 or 16 da ta

8 or 16 address

Da t a Wor d s 16 or 24 bit in teger

and fixed-poin t

32 bit in teger and

fixed/floa t ing-poin t

On -Ch ip

Mem or y

2-64 kwords da ta

2-64 kwords program

8-64 kwords da ta

8-64 kwords program

Ad d r ess

S p a ce

16-128 kw da ta

16-64 kw program

16 Mw – 4Gw da ta

16 Mw – 4 Gw program

Com p i ler s C, C++ compilers;

poor code genera t ion

C, C++ compilers;

bet ter code genera t ion

Exa m p les TI TMS320C5000;

Freescale DSP56000

TI TMS320C30;

Analog Devices SHARC

Conventional Digital Signal Processors

2 -22

Conventional Digital Signal Processors

 Different on-chip configurations in each family

Size and map of data and program memory

A/D, input/output buffers, interfaces, timers, and D/A

 Drawbacks to conventional digital signal processors

No byte addressing (needed for images and video)

Limited on-chip memory

Limited addressable memory on fixed-point DSPs

(exceptions include Freescale 56300 and TI C5409)

Non-standard C extensions for fixed-point data type

2 -23

Pipelining

Pipelining

• Process instruction stream in

 stages (as stages of assembly

 in manufacturing line)

• Increase throughput

Managing Pipelines

• Compiler or programmer

• Pipeline interlocking

Sequential (Freescale 56000)

Pipelined (Most conventional DSPs)

Superscalar (Pentium)

Superpipelined (TI C6000)

Fetch Read Execute Decode

Fetch Decode Read Execute

Fetch Read Execute Decode

Fetch Read Execute Decode

2 -24

 Time-stationary pipeline model

Programmer controls each cycle

Example: Freescale DSP56001 (has X/Y

data memories/registers)

 Data-stationary pipeline model

Programmer specifies data operations

Example: TI TMS320C30

 Interlocked pipeline

“Protection” from pipeline effects

May not be reported by simulators:

inner loops may take extra cycles

Pipelining: Operation

MAC X0,Y0,A X:(R0)+,X0 Y:(R4)-,Y0

MPYF *++AR0(1),*++AR1(IR0),R0

D

E

F

G

H

I

J

K

L

L

C

D

E

F

G

H

I

J

K

-

L

B

C

D

E

F

G

H

I

J

K

-

L

A

B

C

D

E

F

G

H

I

J

K

-

L

F D R E

Execute
Read Decode Fetch

MAC means multiplication-accumulation.

7

2 -25

 A control hazard occurs when a

branch instruction is decoded

Processor “flushes” the pipeline, or

Delayed branch (expose pipeline)

 A data hazard occurs because

an operand cannot be read yet

 Intended by programmer, or

 Interlock hardware inserts “bubble”

TI TMS320C5000 (20 CPU & 16 I/O

registers, one accumulator, and one

address pointer ARP implied by *)

Pipelining: Control and Data Hazards

LAR AR2, ADDR ; load address reg.

LACC *- ; load accumulator w/

 ; contents of AR2

D

E

F

br

G

-

-

X

Y

Y

Z

F D R E

Execute
Read Decode Fetch

C

D

E

F

br

-

-

-

X

-

Y

Z

B

C

D

E

F

br

-

-

-

X

-

Y

Z

A

B

C

D

E

F

br

-

-

-

X

-

Y

Z
LAR: 2 cycles to update AR2 & ARP; need NOP after it

2 -26

 A repeat instruction repeats one

instruction or block of

instructions after repeat

 The pipeline is filled with

repeated instruction (or block of

instructions)

 Cost: one pipeline flush only

Pipelining: Avoiding Control Hazards

; repeat TBLR inst. COUNT-1 times

RPT COUNT

TBLR *+

High throughput performance of DSPs is

helped by on-chip dedicated logic for

looping (downcounters/looping registers)
D

E

F

rpt

X

X

X

X

X

X

X

X

F D R E

Execute
Read Decode Fetch

C

D

E

F

rpt

-

-

X

X

X

X

X

B

C

D

E

F

rpt

-

-

X

X

X

X

AB

C

D

E

F

rpt

-

-

X

X

X

2 -27

Pipelining: TI TMS320C6000 DSP

 C6000 has deep pipeline

7-11 stages in C6200: fetch 4, decode 2, execute 1-5

7-16 stages in C6700: fetch 4, decode 2, execute 1-10

Compiler and assembler must prevent pipeline hazards

 Only branch instruction: delayed unconditional

Processor executes next 5 instructions after branch

Conditional branch via conditional execution:

[A2] B loop

Branch instruction in pipeline disables interrupts

Undefined if both shifters take branch on same cycle

Avoid branches by conditionally executing instructions

Pentium IV pipeline

has more than 20 stages

Contributions by Sundararajan Sriram (TI)
2 -28

RISC vs. DSP: Instruction Encoding

 RISC: Superscalar, out-of-order execution

 DSP: Horizontal microcode, in-order execution

Reorder

Load/store

Integer Unit Floating-Point Unit

Load/store

Load/store

Address
Multiplier ALU

Memory

Memory

8

2 -29

RISC vs. DSP: Memory Hierarchy

 RISC

 DSP

Registers

Out
of

order

I/D
Cache

Physical
 memory

TLB

Registers

DMA Controller

I Cache Internal
 memories

External
 memories

TLB: Translation Lookaside Buffer

DMA: Direct Memory Access

2 -30

Concluding Remarks

 Conventional digital signal processors

High performance vs. power consumption/cost/volume

Excel at one-dimensional processing

Per cycle: 1 16  16 MAC & 4 16-bit RISC instructions

 TMS320C6000 VLIW DSP family

High performance vs. cost/volume

Excel at multidimensional signal processing

Per cycle: 2 1616 MACs & 4 32-bit RISC instructions

 Get the best of both worlds

Assembly language for computational kernels

(possibly wrapped in C callable functions)

C for main program (control code, interrupt definition)

2 -31

References

 Unit shipments worldwide
Cars & light trucks: http://www.plunkettresearch.com/automobiles-trucks-

market-research/industry-statistics

Cars & light trucks: http://www.rwbaird.com/docs/yourreports/cruisin.pdf

PCs http://en.wikipedia.org/wiki/Market_share_of_leading_PC_vendors

Mobile handsets http://venturebeat.com/2013/02/13/gartner-samsung-apple-
smartphone-sales-2012/

Game consoles http://www.statista.com/statistics/214670/global-unit-sales-of-
video-game-consoles/

Digital still cameras http://www.cipa.jp/english/data/dizital.html

iPhone5 teardown: http://www.ifixit.com/Teardown/iPhone-5-Teardown/10525/

DSL:http://www.broadbandtrends.com/yahoo_site_admin/assets/docs/BBT_20
12DSLMktShare_131050_TOC.44121205.pdf

 Embedded processor resources
Embedded Microproc. Benchmark Consortium http://www.eembc.org

Embedded processing comparison from 80+ processor and IP vendors:
http://www.embeddedinsights.com/directory.php

Other: http://www.eg3.com

2 -32

Digital Signal Processors

 DSP processor market

~1/3 embedded DSP market

2007 cholesterol lowering

Pzifer Lipitor sales: $13B

 DSP proc. market 2007

 DSP proc. benchmarking

Berkeley Design Technology

Inc. http://www.bdti.com

DSP Processor Market

Source: Forward Concepts

0

10

20

30

40

50

60

70

2004 2005 2006 2007

TI

Freescale

Agere

Analog Dev

Philips

Other

Share

0

1

2

3

4

5

6

7

8

9

1999 2001 2003 2005 2007

Billions of
Dollars

Annual

Revenue

Wireless

Consumer

Video

Automotive

Wireline

ComputerSource: Forward Concepts

Optional

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

1

TRENDS IN MULTI-CORE DSP PLATFORMS

Lina J. Karam

*
 Ismail AlKamal

*
 Alan Gatherer

**
 Gene A. Frantz

**
 David V. Anderson

†
 Brian L. Evans

‡

*
Electrical Engineering Dept., Arizona State University, Tempe, AZ 85287-5706, {ismail.alkamal, karam}@asu.edu

**
Texas Instruments, 12500 TI Boulevard MS 8635, Dallas, TX 75243, {genf, gatherer}@ti.com

†
School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332-0250, dva@ece.gatech.edu

‡
Electrical & Computer Engineering Dept., The University of Texas at Austin, Austin, TX 78712, bevans@ece.utexas.edu

1. INTRODUCTION

ULTI-CORE Digital Signal Processors (DSPs) have

gained significant importance in recent years due to

the emergence of data-intensive applications, such as video

and high-speed Internet browsing on mobile devices, which

demand increased computational performance but lower

cost and power consumption. Multi-core platforms allow

manufacturers to produce smaller boards while simplifying

board layout and routing, lowering power consumption and

cost, and maintaining programmability.

 Embedded processing has been dealing with multi-core

on a board, or in a system, for over a decade. Until recently,

size limitations have kept the number of cores per chip to

one, two, or four but, more recently, the shrink in feature

size from new semiconductor processes has allowed single-

chip DSPs to become multi-core with reasonable on-chip

memory and I/O, while still keeping the die within the size

range required for good yield. Power and yield constraints,

as well as the need for large on-chip memory have further

driven these multi-core DSPs to become systems-on-chip

(SoCs). Beyond the power reduction, SoCs also lead to

overall cost reduction because they simplify board design by

minimizing the number of components required.

The move to multi-core systems in the embedded space

is as much about integration of components to reduce cost

and power as it is about the development of very high

performance systems. While power limitations and the need

for low-power devices may be obvious in mobile and hand-

held devices, there are stringent constraints for non-battery

powered systems as well. Cooling in such systems is

generally restricted to forced air only, and there is a strong

desire to avoid the mechanical liability of a fan if possible.

This puts multi-core devices under a serious hotspot

constraint. Although a fan cooled rack of boards may be

able to dissipate hundreds of Watts (ATCA carrier card can

dissipate up to 200W), the density of parts on the board will

start to suffer when any individual chip power rises above

roughly 10W. Hence, the cheapest solution at the board

level is to restrict the power dissipation to around 10W per

chip and then pack these chips densely on the board.

The introduction of multi-core DSP architectures

presents several challenges in hardware architectures,

memory organization and management, operating systems,

platform software, compiler designs, and tooling for code

development and debug. This article presents an overview

of existing multi-core DSP architectures as well as

programming models, software tools, emerging applications,

challenges and future trends of multi-core DSPs.

2. HISTORICAL PRESPECTIVES: FROM SINGLE-

CORE TO MULTI-CORE

The concept of a Digital Signal Processor came about in the

middle of the 1970s. Its roots were nurtured in the soil of a

growing number of university research centers creating a

body of theory on how to solve real world problems using a

digital computer. This research was academic in nature and

was not considered practical as it required the use of state-

of-the-art computers and was not possible to do in real time.

It was a few years later that a Toy by the name of Speak N

Spell™ was created using a single integrated circuit to

synthesize speech. This device made two bold statements:

-Digital Signal Processing can be done in real time.

-Digital Signal Processors can be cost effective.

This began the era of the Digital Signal Processor. So, what

made a Digital Signal Processor device different from other

microprocessors? Simply put, it was the DSP’s attention to

doing complex math while guaranteeing real-time

processing. Architectural details such as dual/multiple data

buses, logic to prevent over/underflow, single cycle

complex instructions, hardware multiplier, little or no

capability to interrupt, and special instructions to handle

signal processing constructs, gave the DSP its ability to do

the required complex math in real time.

 “If I can’t do it with one DSP, why not use two of

them?” That is the answer obtained from many customers

after the introduction of DSPs with enough performance to

change the designer’s mind set from “how do I squeeze my

algorithm into this device” to “guess what, when I divide the

performance that I need to do this task by the performance

of a DSP, the number is small.” The first encounter with

this was a year or so after TI introduced the TMS320C30 –

the first floating-point DSP. It had significantly more

performance than its fixed-point predecessors. TI took on

the task of seeing what customers were doing with this new

DSP that they weren’t doing with previous ones. The

significant finding was that none of the customers were

using only one device in their system. They were using

multiple DSPs working together to create their solutions.

 As the performance of the DSPs increased, more

sophisticated applications began to be handled in real time.

So, it went from voice to audio to image to video

processing. Fig. 1 depicts this evolution. The four lines in

M

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

2

Fig. 1. Four examples of the increase of instruction cycles per sample

period. It appears that the DSP becomes useful when it can perform a

minimum of 100 instructions per sample period. Note that for a video

system the pixel is used in place of a sample.

Fig. 2. Four generations of DSPs show how multi-processing has more

effect on performance than clock rate. The dotted lines correspond to the

increase in performance due to clock increases within an architecture.

The solid line shows the increase due to both the clock increase and the

parallel processing.

Fig. 1 represent the performance increases of Digital Signal

Processors in terms of instruction cycles per sample period.

For example, the sample rate for voice is 8 kHz. Initial

DSPs allowed for about 625 instructions per sample period,

barely enough for transcoding. As higher performance

devices began to be available, more instruction cycles

became available each sample period to do more

sophisticated tasks. In the case of voice, algorithms such as

noise cancellation, echo cancellation and voice band

modems were able to be added as a result of the increased

performance made available. Fig. 2 depicts how this

increase in performance was more the result of multi-

processing rather than higher performance single processing

elements. Because Digital Signal Processing algorithms are

Multiply-Accumulate (MAC) intensive, this chart shows

how, by adding multipliers to the architecture, the

performance followed an aggressive growth rate. Adding

multiplier units is the simplest form of doing

multiprocessing in a DSP device.

For TI, the obvious next step was to architect the next

generation DSPs with the communications ports necessary

to matrix multiple DSPs together in the same system. That

device was created and introduced as the TMS320C40.

And, as one might suspect, a follow up (fixed-point) device

was created with multiple DSPs on one device under the

management of a RISC processor, the TMS320C80.

The proliferation of computationally demanding

applications drove the need to integrate multiple processing

elements on the same piece of silicon. This lead to a whole

new world of architectural options: homogeneous multi-

processing, heterogeneous multi-processing, processors

versus accelerators, programmable versus fixed function, a

mix of general purpose processors and DSPs, or system in a

package versus System on Chip integration. And then there

is Amdahl’s Law that must be introduced to the mix [1-2].

In addition, one needs to consider how the architecture

differs for high performance applications versus long battery

life portable applications.

3. ARCHITECTURES OF MULTI-CORE DSPs

In 2008, 68% of all shipped DSP processors were used in

the wireless sector, especially in mobile handsets and base

stations; so, naturally, development in wireless

infrastructure and applications is the current driving force

behind the evolution of DSP processors and their

architectures [3]. The emergence of new applications such

as mobile TV and high speed Internet browsing on mobile

devices greatly increased the demand for more processing

power while lowering cost and power consumption.

Therefore, multi-core DSP architectures were established as

a viable solution for high performance applications in packet

telephony, 3G wireless infrastructure and WiMAX [4]. This

shift to multi-core shows significant improvements in

performance, power consumption and space requirements

while lowering costs and clocking frequencies. Fig. 3

illustrates a typical multi-core DSP platform.

Current state-of-the-art multi-core DSP platforms can

be defined by the type of cores available in the chip and

include homogeneous and heterogeneous architectures. A

homogeneous multi-core DSP architecture consists of cores

that are from the same type, meaning that all cores in the die

are DSP processors. In contrast, heterogeneous architectures

contain different types of cores. This can be a collection of

DSPs with general purpose processors (GPPs), graphics

processing units (GPUs) or micro controller units (MCUs).

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

3

Another classification of multi-core DSP processors is by

the type of interconnects between the cores.

More details on the types of interconnect being used in

multi-core DSPs as well as the memory hierarchy of these

multiple cores are presented below, followed by an

overview of the latest multi-core chips. A brief discussion

on performance analysis is also included.

3.1 Interconnect and Memory Organization

As shown in Fig. 4, multiple DSP cores can be connected

together through a hierarchical or mesh topology. In

hierarchical interconnected multi-core DSP platforms, data

transfers between cores are performed through one or more

switching units. In order to scale these architectures, a

hierarchy of switches needs to be planned. CPUs that need

to communicate with low latency and high bandwidth will

be placed close together on a shared switch and will have

low latency access to each others’ memory. Switches will be

connected together to allow more distant CPUs to

communicate with longer latency. Communication is done

by memory transfer between the memories associated with

the CPUs. Memory can be shared between CPUs or be local

to a CPU. The most prominent type of memory architecture

makes use of Level 1 (L1) local memory dedicated to each

core and Level 2 (L2) which can be dedicated or shared

between the cores as well as Level 3 (L3) internal or

external shared memory. If local, data is moved off that

memory to another local memory using a non CPU block in

charge of block memory transfers, usually called a DMA.

The memory map of such a system can become quite

complex and caches are often used to make the memory

look “flat” to the programmer. L1, L2 and even L3 caches

can be used to automatically move data around the memory

hierarchy without explicit knowledge of this movement in

the program. This simplifies and makes more portable the

software written for such systems but comes at the price of

uncertainty in the time a task needs to complete because of

uncertainty in the number of cache misses [5].

In a mesh network [6-7], the DSP processors are

organized in a 2D array of nodes. The nodes are connected

through a network of buses and multiple simple switching

units. The cores are locally connected with their “north”,

“south”, “east” and “west” neighbors. Memory is generally

local, though a single node might have a cache hierarchy.

This architecture allows multi-core DSP processors to scale

to large numbers without increasing the complexity of the

buses or switching units. However, the programmer

generally has to write code that is aware of the local nature

of the CPU. Explicit message passing is often used to

describe data movement.

Multi-core DSP platforms can also be categorized as

Symmetric Multiprocessing (SMP) platforms and

Asymmetric Multiprocessing (AMP) platforms. In an SMP

platform, a given task can be assigned to any of the cores

without affecting the performance in terms of latency. In an

AMP platform, the placement of a task can affect the

latency, giving an opportunity to optimize the performance

by optimizing the placement of tasks. This optimization

comes at the expense of an increased programming

complexity since the programmer has to deal with both

space (task assignment to multiple cores) and time (task

scheduling). For example, the mesh network architecture of

Fig. 4 is AMP since placing dependent tasks that need to

heavily communicate in neighboring processors will

significantly reduce the latency. In contrast, in a hierarchical

interconnected architecture, in which the cores mostly

communicate by means of a shared L2/L3 memory and have

to cache data from the shared memory, the tasks can be

assigned to any of the cores without significantly affecting

the latency. SMP platforms are easy to program but can

result in a much increased latency as compared to AMP

platforms.

Fig.3. Typical multi-core DSP platform.

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

4

Table 1: Multi-core DSP platforms.

 TI [8] Freescale [9] picoChip [10] Tilera [11]
Sandbridge

[12-13]

Processor TNETV3020 MSC8156 PC205 TILE64 SB3500

Architecture Homogeneous Homogeneous Heterogeneous Homogeneous Heterogeneous

No. of Cores 6 DSPs 6 DSPs
248 DSPs

1 GPP
64 DSPs

3 DSPs

1 GPP

Interconnect

Topology
Hierarchical Hierarchical Mesh Mesh Hierarchical

Applications

Wireless

Video

VoIP

Wireless Wireless

Wireless

Networking

Video

Wireless

Fig.4. Interconnect types of multi-core DSP architectures.

Fig.5. Texas Instruments TNETV3020 multi-core DSP processor.

Fig.6. Freescale 8156 multi-core DSP processor.

3.2 Existing Vendor-Specific Multi-Core DSP Platforms

Several vendors manufacture multi-core DSP platforms such

as Texas Instruments (TI) [8], Freescale [9], picoChip [10],

Tilera [11], and Sandbridge [12-13]. Table 1 provides an

overview of a number of these multi-core DSP chips.

Texas Instruments has a number of homogeneous and

heterogeneous multi-core DSP platforms all of which are

based on the hierarchal-interconnect architecture. One of

the latest of these platforms is the TNETV3020 (Fig. 5)

which is optimized for high performance voice and video

applications in wireless communications infrastructure [8].

The platform contains six TMS320C64x+ DSP cores each

capable of running at 500 MHz and consumes 3.8 W of

power. TI also has a number of other homogeneous multi-

core DSPs such as the TMS320TCI6488 which has three

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

5

1 GHz C64x+ cores and the older TNETV3010 which

contains six TMS320C55x cores, as well as the

TMS320VC5420/21/41 DSP platforms with dual and quad

TMS320VC54x DSP cores.

Freescale's multi-core DSP devices are based on the

StarCore 140, 3400 and 3850 DSP subsystems which are

included in the MSC8112 (two SC140 DSP cores),

MSC8144E (four SC3400 DSP cores) and its latest

MSC8156 DSP chip (Fig. 6) which contains six SC3850

DSP cores targeted for 3G-LTE, WiMAX, 3GPP/3GPP2

and TD-SCDMA applications [9]. The device is based on a

homogeneous hierarchical interconnect architecture with

chip level arbitration and switching system (CLASS).

PicoChip manufactures high performance multi-core

DSP devices that are based on both heterogeneous (PC205)

and homogeneous (PC203) mesh interconnect architectures.

The PC205 (Fig. 7) was taken as an example of these multi-

core DSPs [10]. The two building blocks of the PC205

device are an ARM926EJ-S microprocessor and the

picoArray. The picoArray consists of 248 VLIW DSP

processors connected together in a 2D array as shown in

Fig. 8. Each processor has dedicated instruction and data

memory as well as access to on-chip and external memory.

The ARM926EJ-S used for control functions is a 32-bit

RISC processor. Some of the PC205 applications are in

high-speed wireless data communication standards for

metropolitan area networks (WiMAX) and cellular networks

(HSDPA and WCDMA), as well as in the implementation of

advanced wireless protocols.

Tilera manufactures the TILE64, TILEPro36 and

TILEPro64 multi-core DSP processors [11]. These are based

on a highly scalable homogeneous mesh interconnect

architecture.

Fig.7. picoChip PC205 multi-core DSP processor.

Fig. 8. picoChip picoArray.

Fig. 9. Tilera TILE64 multi-core DSP processor.

The TILE64 family features 64 identical processor

cores (tiles) interconnected using a mesh network of buses

(Fig. 9). Each tile contains a processor, L1 and L2 cache

memory and a non-blocking switch that connects each tile to

the mesh. The tiles are organized in an 8 x 8 grid of identical

general processor cores and the device contains 5 MB of on-

chip cache. The operating frequencies of the chip range

from 500 MHz to 866 MHz and its power consumption

ranges from 15 – 22 W. Its main target applications are

advanced networking, digital video and telecom.

SandBridge manufactures multi-core heterogeneous

DSP chips intended for software defined radio applications.

The SB3011 includes four DSPs each running at a minimum

of 600 MHz at 0.9V. It can execute up to 32 independent

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

6

Table 2: BTDI OFDM benchmark results on various processors for the

maximum number of simultaneous OFDM channels processed in real time.

The specific number of simultaneous OFDM channels is given in [17].

 Clock

(MHz)

DSP

cores

OFDM

channels

TI TMS320C6455 1200 1 Lowest

Freescale MSC8144 1000 4 Low

Sandbridge SB3500 500 3 Medium

picoChip PC102 160 344 High

Tilera TILE64 866 64 Highest

instruction streams while issuing vector operations for each

stream using an SIMD datapath. An ARM926EJ-S

processor with speeds up to 300 MHz implements all

necessary I/O devices in a smart phone and runs Linux OS.

The kernel has been designed to use the POSIX pthreads

open standard [14] thus providing a cross platform library

compatible with a number of operating systems (Unix,

Linux and Windows). The platform can be programmed in a

number of high-level languages including C, C++ or Java

[12-13].

3.3 Multi-Core DSP Platform Performance Analysis

Benchmark suites have been typically used to analyze the

performance among architectures [15]. In practice,

benchmarking of multicore architectures has proven to be

significantly more complicated than benchmarking of single

core devices because multicore performance is affected not

only by the choice of CPU but also very heavily by the CPU

interconnect and the connection to memory. There is no

single agreed-upon programming language for multicore

programming and, hence, there is no equivalent of the “out

of the box” benchmark, commonly used in single core

benchmarks. Benchmark performance is heavily dependent

on the amount of tweaking and optimization applied as well

as the suitability of the benchmark for the particular

architecture being evaluated. As a result, it can be seen that

single core benchmarking was already a complicated task

when done well, and multicore benchmarking is proving to

be exponentially more challenging. The topic of benchmark

suites for multicore remains an active field of study [16].

Currently available benchmarks are mainly simplified

benchmarks that were mainly developed for single-core

systems.

One such a benchmark is the Berkeley Design

Technology, Inc (BTDI) OFDM benchmark [17] which was

used to evaluate and compare the performance of some

single- and multi-core DSPs in addition to other processing

engines. The BTDI OFDM benchmark is a simplified digital

signal processing path for an FFT-based orthogonal

frequency division multiplexing (OFDM) receiver [17]. The

path consists of a cascade of a demodulator, finite impulse

response (FIR) filter, FFT, slicer, and Viterbi decoder. The

benchmark does not include interleaving, carrier recovery,

symbol synchronization, and frequency-domain

equalization.

Table 2 shows relative results for maximizing the

number of simultaneous non-overlapping OFDM channels

that can be processed in real time, as would be needed for an

access point or a base station. These results show that the

four considered multi-core DSPs can process in real time a

higher number of OFDM channels as compared to the

considered single-core processor using this specific

simplified benchmark.

However, it should be noted that this application

benchmark does not necessarily fit the use cases for which

the candidate processors were designed. In other words,

different results can be produced using different benchmarks

since single and multi-core embedded processors are

generally developed to solve a particular class of functions

which may or may not match the benchmark in use. At the

end, what matters most is the actual performance achieved

when the chips are tested for the desired customer’s end

solution.

4. SOFTWARE TOOLS FOR MULTI-CORE DSPs

Due to the hard real-time nature of DSP programming, one

of the main requirements that DSP programmers insist on

having is the ability to view low level code, to step through

their programs instruction by instruction, and evaluate their

algorithms and “see” what is happening at every processor

clock cycle. Visibility is one of the main impediments to

multi-core DSP programming and to real-time debugging as

the ability to “see” in real time decreases significantly with

the integration of multiple cores on a single chip. Improved

chip-level debug techniques and hardware-supported

visualization tools are needed for multi-core DSPs. The use

of caches and multiple cores has complicated matters and

forced programmers to speculate about their algorithms

based on worst-case scenarios. Thus, their reluctance to

move to multi-core programming approaches. For

programmers to feel confident about their code, timing

behavior should be predictable and repeatable [5]. Hardware

tracing with Embedded Trace Buffers (ETB) [18] can be

used to partially alleviate the decreased visibility issue by

storing traces that provide a detailed account of code

execution, timing, and data accesses. These traces are

collected internally in real-time and are usually retrieved at

a later time when a program failure occurs or for collecting

useful statistics. Virtual multi-core platforms and

simulators, such as Simics by Virtutech [19] can help

programmers in developing, debugging, and testing their

code before porting it to the real multi-core DSP device.

Operating Systems (OS) provide abstraction layers that

allow tasks on different cores to communicate. Examples of

OS include SMP Linux [20-21], TI’s DSP BIOS [22],

Enea’s OSEck [23]. One main difference between these OS

is in how the communication is performed between tasks

running on different cores. In SMP Linux, a common set of

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

7

tables that reflect the current global state of the system are

shared by the tasks running on different cores. This allows

the processes to share the same global view of the system

state. On the other hand, TI’s DSP/BIOS and Enea’s OSEck

supports a message passing programming model. In this

model, the cores can be viewed as "islands with bridges" as

contrasted with the "global view" that is provided by SMP

Linux. Control and management middleware platforms,

such as Enea’s dSpeed [23], extend the capabilities of the

OS to allow enhanced monitoring, error handling, trace,

diagnostics, and inter-process communications.

As in memory organization, programming models in

multi-core processors include Symmetric Multiprocessing

(SMP) models and Asymmetric Multiprocessing (AMP)

models [24]. In an SMP model, the cores form a shared set

of resources that can be accessed by the OS.

The OS is responsible for assigning processes to

different cores while balancing the load between all the

cores. An example of such OS is SMP Linux [18-19] which

boasts a huge community of developers and lots of

inexpensive software and mature tools. Although SMP

Linux has been used on AMP architectures such as the mesh

interconnected Tilera architecture, SMP Linux is more

suitable for SMP architectures (Section 3.1) because it

provides a shared symmetric view. In comparison, TI’s

DSP/BIOS and Enea's OSE can better support AMP

architectures since they allow the programmer to have more

control over task assignments and execution. The AMP

approach does not balance processes evenly between the

cores and so can restrict which processes get executed on

what cores. This model of multi-core processing includes

classic AMP, processor affinity and virtualization [23].

Classic AMP is the oldest multi-core programming

approach. A separate OS is installed on each core and is

responsible for handling resources on that core only. This

significantly simplifies the programming approach but

makes it extremely difficult to manage shared resources and

I/O. The developer is responsible for ensuring that different

cores do not access the same shared resource as well as be

able to communicate with each other.

In processor affinity, the SMP OS scheduler is modified

to allow programmers to assign a certain process to a

specific core. All other processes are then assigned by the

OS. SMP Linux has features to allow such modifications. A

number of programming languages following this approach

have appeared to extend or replace C in order to better allow

programmers to express parallelism. These include OpenMP

[25], MPI [26], X10 [27], MCAPI [28], GlobalArrays [29],

and Uniform Parallel C [30]. In addition, functional

languages such as Erlang [31] and Haskell [32] as well as

stream languages such as ACOTES [33] and StreamIT [34]

have been introduced. Several of these languages have been

ported to multi-core DSPs. OpenMP is an example of that. It

is a widely-adopted shared memory parallel programming

interface providing high level programming constructs that

enable the user to easily expose an application’s task and

loop level parallelism in an incremental fashion. Its range of

applicability was significantly extended by the addition of

explicit tasking features. The user specifies the

parallelization strategy for a program at a high level by

annotating the program code; the implementation works out

the detailed mapping of the computation to the machine. It

is the user’s responsibility to perform any code

modifications needed prior to the insertion of OpenMP

constructs. In particular, OpenMP requires that

dependencies that might inhibit parallelization are detected

and where possible, removed from the code. The major

features are directives that specify that a well-structured

region of code should be executed by a team of threads, who

share in the work. Such regions may be nested. Work

sharing directives are provided to effect a distribution of

work among the participating threads [35].

Virtualization partitions the software and hardware into

a set of virtual machines (VM) that are assigned to the cores

using a Virtual Machine Manager (VMM). This allows

multiple operating systems to run on single or multiple

cores. Virtualization works as a level of abstraction between

the OS and the hardware. VirtualLogix employs

virtualization technology using its VLX for embedded

systems [36]. VLX announced support for TI single and

multi-core DSPs. It allows TI's real-time OS (DSP/BIOS) to

run concurrently with Linux. Therefore, DSP/BIOS is left to

run critical tasks while other applications run on Linux.

5. APPLICATIONS OF MULTI-CORE DSPs

5.1 Multi-core for mobile application processors

The earliest SoC multi-core in the embedded space was the

two-core heterogeneous DSP+ARM combination introduced

by TI in 1997. These have evolved into the complex OMAP

line of SoC for handset applications. Note that the latest in

the OMAP line has both multi-core ARM (symmetric

multiprocessing) and DSP (for heterogeneous

multiprocessing). The choice and number of cores is based

on the best solution for the problem at hand and many

combinations are possible. The OMAP line of processors is

optimized for portable multimedia applications. The ARM

cores tend to be used for control, user interaction and

protocol processing, whereas the DSPs tend to be signal

processing slaves to the ARMs, performing compute

intensive tasks such as video codecs. Both CPUs have

associated hardware accelerators to help them with these

tasks and a wide array of specialized peripherals allows

glueless connectivity to other devices.

This multi-core is an integration play to reduce cost and

power in the wireless handset. Each core had its own unique

function and the amount of interaction between the cores

was limited. However, the development of a

communications bridge between the cores and a

master/slave programming paradigm were important

developments that allowed this model of processing to

become the most highly used multi-core in the embedded

space today [37].

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

8

Fig.10. The Agere SP2603.

Fig. 11. Texas Instruments TCI6487.

5.2 Multi-core for Core network Transcoding

The next integration play was in the transcoding space. In

this space, the master/slave approach is again taken, with a

host processor, usually servicing multiple DSPs, that is in

charge of load balancing many tasks onto the multi-core

DSP. Each task is independent of the others (except for

sharing program and some static tables) and can run on a

single DSP CPU. Fig. 10 shows the Agere SP2603, a multi-

core device used in transcoding applications.

Therefore, the challenge in this type of multi-core SoC

is not in the partitioning of a program into multiple threads

or the coordination of processing between CPUs, but in the

coordination of CPUs in the access of shared, non CPU,

resources, such as DDR memory, Ethernet ports, shared L2

on chip memory, bus resources, and so on. Heterogeneous

variants also exist with an ARM on chip to control the array

of DSP cores.

Such multi-core chips have reduced the power per

channel and cost per channel by an order of magnitude over

the last decade.

5.3 Multi-core for Base Station Modems

Finally, the last five years have seen many multi-core

entrants into the base station modem business for cellular

infrastructure. The most successful have been DSP based

with a modest number of CPUs and significant shared

resources in memory, acceleration and I/O. An example of

such a device is the Texas Instruments TCI6487 shown in

Fig. 11.

Applications that use these multi-core devices require

very tight latency constraints, and each core often has a

unique functionality on the chip. For instance, one core

might do only transmit while another does receive and

another does symbol rate processing. Again, this is not a

generic programming problem. Each core has a specific and

very well timed set of tasks to perform. The trick is to make

sure that timing and performance issues do not occur due to

the sharing of non CPU resources [38].

However, the base station market also attracted new

multi-core architectures in a way that neither handset (where

the cost constraints and volume tended to favor hardwired

solutions beyond the ARM/DSP platform) nor transcoding

(where the complexity of the software has kept “standard”

DSP multi-core in the forefront) have experienced.

Examples of these new paradigm companies include

Chameleon, PACT, BOPS, Picochip, Morpho, Morphics

and Quicksilver. These companies arose in the late 90s and

mostly died in the fallout of the tech bubble burst. They

suffered from a lack of production quality tooling and no

clear programming model. In general, they came in two

types; arrays of ALUs with a central controller and arrays of

small CPUs, tightly connected and generally intended to

communicate in a very synchronized manner. Fig. 8 shows

the picoArray used by picoChip, a proponent of regular,

meshed arrays of processors. Serious programming

challenges remain with this kind of architecture because it

requires two distinct modes of programming, one for the

CPUs themselves and one for the interconnect between the

CPUs. A single programming language would have to be

able to not only partition the workload, but also comprehend

the memory locality, which is severe in a mesh-based

architecture.

5.4 Next Generation Multi-Core DSP Processors

Current and emerging mobile communications and

networking standards are providing even more challenges to

DSP. The high data-rates for the physical layer processing,

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

9

as well as the requirements for very low power have driven

designers to use ASIC designs. However, these are

becoming increasingly complex with the proliferation of

protocols, driving the need for software solutions.

Software defined radio (SDR) holds the promise of

allowing a single piece of silicon to alternate between

different modem standards. Originally motivated by the

military as a way to allow multinational forces to

communicate [39], it has made its way into the commercial

arena due to a proliferation of different standards on a single

cell phone (for instance GSM, EDGE, WCDMA, Bluetooth,

802.11, FM radio, DVB).

SODA [40] is one multi-core DSP architecture designed

specifically for software-defined radio (SDR) applications.

Some key features of SODA are the lack of cache with

multiple DMA and scratchpad memories used instead for

explicit memory control. Each of the processors has a

32x16bit SIMD datapath and a coupled scalar datapath

designed to handle the basic DSP operations performed on

large frames of data in communication systems.

Another example is the AsAP architecture [41] which

relies on the dataflow nature of DSP algorithms to obtain

power and performance efficiency. Shown in Fig. 12, it is

similar to the Tilera architecture at a superficial glance, but

also takes the mesh network principal to its logical

conclusion, with very small cores (0.17mm
2
) and only a

minimal amount of memory per core (128 word program

and 128 word data).The cores communicate asynchronously

by doubly clocked FIFO buffers and each core has its own

clock generator so that the device is essentially clockless.

When a FIFO is either empty or full, the associated cores

will go into a low power state until they have more data to

process. These and other power savings techniques are used

in a design that is heavily focused on low power

computation. There is also an emphasis on local

communication, with each chip connected to its neighbors,

in a similar manner to the Tilera multi-core. Even within the

core, the connectivity is focused on allowing the core to

absorb data rather than reroute it to other cores. The overall

goal is to optimize for data flow programming with mostly

local interconnect. Data can travel a distance of more than

one core but will require more latency to do so. The AsAP

chip is interesting as a “pure” example of a tiled array of

processors with each processor performing a simple

computation. The programming model for this kind of chip

is however, still a topic of research. Ambric produced an

architecturally similar chip [42] and showed that, for simple

data flow problems, software tooling could be developed.

An example of this data flow approach to multi-core

DSP design can be found in [43], where the concept of

Bulk-Synchronous Processing (BSP), a model of

computation where data is shared between threads mostly at

synchronization barriers, is introduced. This deterministic

approach to the mapping of algorithms to multi-core is in

line with the recommendations made in [44] where it is

argued that adding parallelism in a non deterministic manner

(such as is commonly done with POSIX threads [14]) leads

to systems that are unreasonably hard to test and debug.

Fortunately, the parallelization of DSP algorithms can often

be done in a deterministic manner using data flow diagrams.

Hence, DSP may be a more fruitful space for the

development of multi-core than the general purpose

programming space.

 Sandbridge (see Section 3.2) has also been

producing DSPs designed for the SDR space for several

years.

6. CONCLUSIONS AND FUTURE TRENDS

In the last 2 years, the embedded DSP market has been

swept up by the general increase in interest in multi-core

that has been driven by companies such as Intel and Sun.

One of the reasons for this is that there is now a lot of

focus on tooling in academia and also a willingness on the

part of users to accept new programming paradigms. This

industry wide effort will have an effect on the way multi-

core DSPs are programmed and perhaps architected. But it

is too early to say in what way this will occur. Programming

multi-core DSPs remains very challenging. The problem of

how to take a piece of sequential code and optimally

partition it across multiple cores remains unsolved. Hence,

there will naturally be a lot of variations in the approaches

taken. Equally important is the issue of debug and visibility.

Developing effective and easy-to-use code development and

real-time debug tools is tremendously important as the

opportunity for bugs goes up significantly when one starts to

deal with both time and space.

The markets that DSP plays in have unique features in

their desire for low power, low cost and hard real-time

processing, with an emphasis on mathematical computation.

How well the multi-core research being performed presently

in academia will address these concerns remains to be seen.

Fig.12. The AsAP processor architecture.

7. REFERENCES

[1] G.M. Amdahl, “Validity of the single-processor approach

to achieving large scale computing capabilities,” in AFIPS

Conference Proceedings, vol. 30, pp. 483-485, Apr. 1967.

IEEE Signal Processing Magazine, Special Issue on Signal Processing on Platforms with Multiple Cores, Nov. 2009

10

[2] M.D. Hill and M.R. Marty, “Amdahl’s Law in the

multicore era,” IEEE Computer Magazine, vol.41, no.7,

pp.33-38, July 2008.
[3] W. Strauss, “Wireless/DSP market bulletin,” Forward

Concepts, Feb 2009.

[Online] http://www.fwdconcepts.com/dsp2209.htm.
[4] I. Scheiwe, “The shift to multi-core DSP solutions,” DSP-

FPGA, Nov. 2005

[Online] http://www.dsp-fpga.com/articles/id/?21.
[5] S. Bhattacharyya, J. Bier, W. Gass, R. Krishnamurthy, E.

Lee, and K. Konstantinides, “Advances in hardware design

and implementation of signal processing systems [DSP

Forum],” IEEE Signal Processing Magazine , vol. 25, no.

6, pp. 175-180, Nov. 2008.
[6] Practical Programmable Multi-Core DSP, picoChip, Apr.

2007, [Online] http://www.picochip.com/.
[7] Tile Processor Architecture Technology Brief, Tilera, Aug.

2008, [Online] http://www.tilera.com.
[8] TNETV3020 Carrier Infrastructure Platform, Texas

Instruments, Jan. 2007, [Online]

http://focus.ti.com/lit/ml/spat174a/spat174a.pdf
[9] MSC8156 Product Brief, Freescale, Dec. 2008, [Online]

http://www.freescale.com/webapp/sps/site/prod_summary.j

sp?code=MSC8156&nodeId=0127950E5F5699
[10] PC205 Product Brief, picoChip, Apr. 2008, [Online]

http://www.picochip.com/.
[11] Tile64 Processor Product Brief, Tilera, Aug. 2008, [Online]

http://www.tilera.com.
[12] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar,

M. Schulte, "The Sandbridge SB3011 SDR platform," Joint

IST Workshop on Mobile Future and the Symposium on

Trends in Communications (SympoTIC), pp.ii-v, June 2006.
[13] J. Glossner, M. Moudgill, D. Iancu, G. Nacer, S. Jintukar,

S. Stanley, M. Samori, T. Raja, M. Schulte, "The

Sandbridge Sandblaster Convergence platform,"

Sandbridge Technologies Inc, 2005. [Online]

http://www.sandbridgetech.com/
[14] POSIX, IEEE Std 1003.1, 2004 Edition. [Online]

http://www.unix.org/version3/ieee_std.html
[15]

[16]

G. Frantz and L. Adams, “The three P’s of value in

selecting DSPs,” Embedded Systems Programming, pp. 37-

46, Nov. 2004.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.

Shalf, S. W. Williams, K. A. Yelick, “The landscape of

parallel computing research: a view from Berkeley,”

Technical Report No. UCB/EECS-2006-183,

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-

2006-183.pdf, Dec. 2006.
[17] BDTI, [Online] http://www.bdti.com/bdtimark/ofdm.htm
[18]

Embedded Trace Buffer, Texas Instruments eXpressDSP

Software Wiki, [Online]

http://tiexpressdsp.com/index.php?title=Embedded_Trace_

Buffer
[19] VirtuTech, [Online]

http://www.virtutech.com/datasheets/simics_mpc8641d.ht

ml
[20] H. Dietz, “Linux parallel processing using SMP,” July

1996. [Online]

http://cobweb.ecn.purdue.edu/~pplinux/ppsmp.html
[21] M. T. Jones, “Linux and symmetric multiprocessing:

unblocking the power of Linux SMP systems,” [Online]

http://www.ibm.com/developerworks/library/l-linux-smp/
[22] TI DSP/BIOS, [Online]

http://focus.ti.com/docs/toolsw/folders/print/dspbios.html
[23] Enea, [Online]

http://www.enea.com/
[24] K. Williston, “Multi-core software: strategies for success,”

Embedded Innovator, pp. 10-12, Fall 2008.
[25] OpenMP, [Online] http://openmp.org/wp/
[26] MPI, [Online]

http://www.mcs.anl.gov/research/projects/mpi/
[27] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A.

Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar,

“X10: an object-oriented approach to non-uniform cluster

computing,” in ACM OOPSLA, pp. 519-538, Oct. 2005.
[28] MCAPI, [Online] http://www.multicore-

association.org/workgroup/comapi.php
[29] Global Arrays [Online]

http://www.emsl.pnl.gov/docs/global/
[30] Unified Parallel C, [Online] http://upc.lbl.gov/
[31] Erlang, [Online] http://erlang.org/
[32] Haskell [Online] http://www.haskell.org/
[33] ACOTES, [Online]

http://www.hitech-projects.com/euprojects/ACOTES/
[34] StreamIT, [Online] http://www.cag.lcs.mit.edu/streamit/
[35] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A.

Shrivastava, and A. Gatherer, “Implementing OpenMP on a

high performance embedded multi-core MPSoC,” accepted

and to appear the Proceedings of IEEE International

Parallel & Distributed Processing Symposium, 2009.
[36] VirtualLogix [Online]

http://www.virtuallogix.com/products/vlx-for-embedded-

systems/vlx-for-es-supporting-ti-dsp-processors.html
[37] E. Heikkila and E. Gulliksen, “Embedded processors 2009

global market demand analysis,” VDC Research.
[38] A. Gatherer, “Base station modems: Why multi-core? Why

now?,” ECN Magazine, Aug. 2008. [Online]

http://www.ecnmag.com/supplements-Base-Station-

Modems-Why_Multicore.aspx?menuid=580
[39] Software Communications Architecture, [Online]

http://sca.jpeojtrs.mil/
[40] Y. Lin, H. Lee, M. Who, Y. Harel, S. Mahlke, T. Mudge,

C. Chakrabarti, K. Flautner, "SODA: A high-performance

DSP architecture for Software-Defined Radio," IEEE

Micro, vol.27, no.1, pp.114-123, Jan.-Feb. 2007
[41] D. N. Truong et al., “A 167-Processor computational

platform in 65nm,” IEEE JSSC, vol. 44, No. 4, Apr. 2009.
[42] M. Butts, “Addressing software development challenges for

multicore and massively parallel embedded systems,”

Multicore Expo, 2008.
[43] J. H. Kelm, D. R. Johnson, A. Mahesri, S. S. Lumetta, M.

Frank, and S. Patel, “SChISM: Scalable Cache Incoherent

Shared Memory,“ Tech. Rep. UILU-ENG-08-2212, Univ.

of Illinois at Urbana-Champaign, Aug. 2008. [Online]

http://www.crhc.illinois.edu/TechReports/2008reports/08-

2212-kelm-tr-with-acks.pdf

[44] E. A. Lee, “The problem with threads,” UCB Technical

Report, Jan. 2006 [Online]

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-

2006-1.pdf

1SPRY061

System developers, especially those who are new to digital signal processors (DSPs),
are sometimes uncertain whether they need to use fixed- or floating-point DSPs for
their systems. Both fixed- and floating-point DSPs are designed to perform the high-
speed computations that underlie real-time signal processing. Both feature system-on-
a-chip (SOC) integration with on-chip memory and a variety of high-speed peripherals
to ensure fast throughput and design flexibility. Tradeoffs of cost and ease of use often
heavily influenced the fixed- or floating-point decision in the past. Today, though, select-
ing either type of DSP depends mainly on whether the added computational capabilities
of the floating-point format are required by the application.

Different numeric formats

As the terms fixed- and floating-point indicate, the fundamental difference between the
two types of DSPs is in their respective numeric representations of data. While fixed-
point DSP hardware performs strictly integer arithmetic, floating-point DSPs support
either integer or real arithmetic, the latter normalized in the form of scientific notation.
TI’s TMS320C62x™ fixed-point DSPs have two data paths operating in parallel, each
with a 16-bit word width that provides signed integer values within a range from –2^15 to
2^15. TMS320C64x™ DSPs, double the overall throughput with four 16-bit (or eight 8-
bit or two 32-bit) multipliers. TMS320C5x™ and TMS320C2x™ DSPs, with architec-
tures designed for handheld and control applications, respectively, are based on single
16-bit data pathss.

By contrast, TMS320C67x™ floating-point DSPs divide a 32-bit data path into two
parts: a 24-bit mantissa that can be used for either for integer values or as the base of
a real number, and an 8-bit exponent. The 16M range of precision offered by 24 bits
with the addition of an 8-bit exponent, thus supporting a vastly greater dynamic range
than is available with the fixed-point format. The C67x™ DSP can also perform calcula-
tions using industry-standard double-width precision (64 bits, including a 53-bit mantis-
sa and an 11-bit exponent). Double-width precision achieves much greater precision
and dynamic range at the expense of speed, since it requires multiple cycles for each
operation.

Comparing Fixed- and Floating-Point DSPs
Does your design need a fixed- or floating-point DSP?
The application data set can tell you.

By
Gene Frantz, TI Principal Fellow, Business Development Manager, DSP
Ray Simar, Fellow and Manager of Advanced DSP Architectures

Cost versus ease of use

The much greater computational power offered by floating-point DSPs is normally the
critical element in the fixed- or floating-point design decision. However, in the early
1990s, when TI released its first floating-point DSP products, other factors tended to
obscure the fundamental mathematical issue. Floating-point functions require more
internal circuitry, and the 32-bit data paths were twice as wide as those of fixed-point
DSPs, which at that time integrated only a single 16-bit data path. These factors, plus
the greater number of pins required by the wider data bus, meant a larger die and larg-
er package that resulted in a significant cost premium for the new floating-point
devices. Fixed-point DSPs therefore were favored for high-volume applications like dig-
itized voice and telecom concentration cards, where unit manufacturing costs had to be
kept low.

Offsetting the cost issue at that time was ease of use. TI floating-point DSPs were
among the first DSPs to support the C language, while fixed-point DSPs still needed to
be programmed at the assembly code level. In addition, real arithmetic could be coded
directly into hardware operations with the floating-point format, while fixed-point devices
had to implement real arithmetic indirectly through software routines that added devel-
opment time and extra instructions to the algorithm. Because floating-point DSPs were
easier to program, they were adopted early on for low-volume applications where the
time and cost of software development were of greater concern than unit manufactur-
ing costs. These applications were found in research, development prototyping, military
applications such as radar, image recognition, three-dimensional graphics accelerators
for workstations and other areas.

Today the early differences in cost and ease of use, while not altogether erased, are
considerably less pronounced. Scores of transistors can now fit into the same space
required by a single transistor a decade ago, leading to SOC integration that reduces
the impact of a single DSP core on die size and expense. Many DSP-based products,
such as TI’s broadband, camera imaging, wireless baseband and OMAP™ wireless
application platforms, leverage the advantages of rescaling by integrating more than a
single core in a product targeted at a specific market. Fixed-point DSPs continue to
benefit more from cost reductions of scale in manufacturing, since they are more often
used for high-volume applications; however, the same reductions will apply to floating-
point DSPs when high-volume demand for the devices appears. Today, cost has
increasingly become an issue of SOC integration and volume, rather than a result of
the size of the DSP core itself.

The early gap in ease of use has also been reduced. TI fixed-point DSPs have long
been supported by outstandingly efficient C compilers and exceptional tools that

Cost versus ease of use

2 SPRY061

3SPRY061

Floating-point accuracy

provide visibility into code execution. The advantage of implementing real arithmetic
directly in floating-point hardware still remains; but today advanced mathematical mod-
eling tools, comprehensive libraries of mathematical functions, and off-the-shelf algo-
rithms reduce the difficulty of developing complex applications—with or without real
numbers—for fixed-point devices. Overall, fixed-point DSPs still have an edge in cost
and floating-point DSPs in ease of use, but the edge has narrowed until these factors
should no longer be overriding in the design decision.

Floating-point accuracy

As the cost of floating-point DSPs has continued to fall, Tthe choice of using a fixed- or
floating-point DSP boils down to whether floating-point math is needed by the applica-
tion data set. In general, designers need to resolve two questions: What degree of
accuracy is required by the data set? and How predictable is the data set?

The greater accuracy of the floating-point format results from three factors. First, the
24-bit word width in TI C67x™ floating-point DSPs yields greater precision than the
C62x™ 16-bit fixed-point word width, in integer as well as real values. Second, expo-
nentiation vastly increases the dynamic range available for the application. A wide
dynamic range is important in dealing with extremely large data sets and with data sets
where the range cannot be easily predicted. Third, the internal representations of data
in floating-point DSPs are more exact than in fixed-point, ensuring greater accuracy in
end results.

The final point deserves some explanation. Three data word widths are important to
consider in the internal architecture of a DSP. The first is the I/O signal word width,
already discussed, which is 24 bits for C67x floating-point, 16 bits for C62x fixed-point,
and can be 8, 16, or 32 bits for C64x™ fixed-point DSPs. The second word width is
that of the coefficients used in multiplications. While fixed-point coefficients are 16 bits,
the same as the signal data in C62x DSPs, floating-point coefficients can be 24 bits or
53 bits of precision, depending whether single or double precision is used. The preci-
sion can be extended beyond the 24 and 53 bits in some cases when the exponent
can represent significant zeroes in the coefficient.

Finally, there is the word width for holding the intermediate products of iterated multiply-
accumulate (MAC) operations. For a single 16-bit by 16-bit multiplication, a 32-bit prod-
uct would be needed, or a 48-bit product for a single 24-bit by 24-bit multiplication.
(Exponents have a separate data path and are not included in this discussion.)
However, iterated MACs require additional bits for overflow headroom. In C62x fixed-
point devices, this overflow headroom is 8 bits, making the total intermediate product
word width 40 bits (16 signal + 16 coefficient + 8 overflow). Integrating the same

proportion of overflow headroom in C67x floating-point DSPs would require 64 interme-
diate product bits (24 signal + 24 coefficient + 16 overflow), which would go beyond
most application requirements in accuracy. Fortunately, through exponentiation the
floating-point format enables keeping only the most significant 48 bits for intermediate
products, so that the hardware stays manageable while still providing more bits of inter-
mediate accuracy than the fixed-point format offers. These word widths are summa-
rized in Table 1 for several TI DSP architectures.

Table 1. Word widths for TI DSPs

Video and audio data set requirements

The advantages of using the fixed- and floating-point formats can be illustrated by con-
trasting the data set requirements of two common signal-processing applications: video
and audio. Video has a high sampling rate that can amount to tens or even hundreds
of megabits per second (Mbps) in pixel data, depending on the application. Pixel data
is usually represented in three words, one for each of the red, green and blue (RGB)
planes of the image. In most systems, each color requires 8 to 12 bits, though
advanced applications may use up to 14 bits per color. Key mathematical operations of
the industry-standard MPEG video compression algorithms include discrete cosine
transforms (DCTs) and quantization, and there is limited filtering.

Audio, by contrast, has a more limited data flow of about 1 Mbps that results from 24
bits sampled at 48 kilosamples per second (ksps). A higher sampling rate of 192 ksps
will quadruple this data flow rate in the future, yet it is still significantly less than video.
Operations on audio data include infinite impulse response (IIR) and intensive filtering.

Video and audio data set requirements

4 SPRY061

TI DSP(s) Format

Word Width

Signal I/O Coefficient
Intermediate

result
C25x fixed 16 16 40

C5x™/C62x™ fixed 16 16 40

C64x™ fixed 8/16/32 16 40

C3x™ floating 24 (mantissa) 24 32

C67x™(SP) floating 24 (mantissa) 24 24/53

C67x(DP) floating 53 53 53

Video thus has much more raw data to process than audio. DCTs and quantization are
handled effectively using integer operations, which together with the short data words
make video a natural application for C62x and C64x fixed-point DSPs. The massive
parallelism of the C64x makes it a excellent platform for applications that run multiple
video channels, and some C64x DSP products have been designed with on-chip video
interfaces that provide seamless data throughput.

Video may have a larger data flow, but audio has to process its data more accurately.
While the eye is easily fooled, especially when the image is moving, the ear is hard to
deceive. Although audio has usually been implemented in the past using fixed-point
devices, high-fidelity audio today is transistioning to the greater accuracy of the float-
ing-point format. Some C67x DSP products further this trend by integrating a multi-
channel audio serial port (McASP) in order to make audio system design easier. As the
newest audio innovations become increasingly common in consumer electronics,
demand for floating-point DSPs will also rise, helping to drive costs closer to parity with
fixed-point DSPs.

The wider words (24-bit signal, 24-bit coefficient, 53-bit intermediate product) of C67x
DSPs provide much greater accuracy in audio output, resulting in higher sound quality.
Sampling sound with 24 bits of accuracy yields 144 dB of dynamic range, which pro-
vides more than adequate coverage for the full amplitude range needed in sound
reproduction. Wide coefficients and intermediate products provide a high degree of
accuracy for internal operations, a feature that audio requires for at least two reasons.

First, audio typically use cascaded IIR filters to obtain high performance with minimal
latency., But, in doing so, each filtering stage propagates the errors of previous stages.
So a high degree of precision in both the signal and coefficients are required to mini-
mize the effects of these propagated errors. Second, signal accuracy must be main-
tained, even as it approaches zero (this is necessary because of the sensitivity of the
human ear). The floating-point format by its nature aligns well with the sensitivity of the
human ear and becomes more accurate as floating point numbers approach 0. This is
the result of the exponent’s keeping track of the significant zeros after the binary point
and before the significant data in the mantissa. This is in contrast to a fixed point sys-
tem for very small fractional numbers. All of these aspects of floating-point real arith-
metic are essential to the accurate reproduction of audio signals.

Other application areas

The data sets of other types of applications also lend themselves better to either fixed-
or floating-point computations. Today, one of the heaviest uses of DSPs is in wired and
wireless communications, where most data is transmitted serially in octets that are then

Other application areas

5SPRY061

expanded internally for 16-bit processing based on integer operations. Obviously, this
data set is extremely well-suited for the fixed-point format, and the enormous demand
for DSPs in communications has driven much of fixed-point product development and
manufacturing.

Floating-point applications are those that require greater computational accuracy and
flexibility than fixed-point DSPs offer. For example, image recognition used for medicine
is similar to audio in requiring a high degree of accuracy. Many levels of signal input
from light, x-rays, ultrasound and other sources must be defined and processed to cre-
ate output images that provide useful diagnostic information. The greater precision of
C67x signal data, together with the device’s more accurate internal representations of
data, enable imaging systems to achieve a much higher level of recognition and defini-
tion for the user.

Radar for navigation and guidance is a traditional floating-point application since it
requires a wide dynamic range that cannot be defined ahead of time and either uses
the divide operator or matrix inversions. The radar system may be tracking in a range
from 0 to infinity, but need to use only a small subset of the range for target acquisition
and identification. Since the subset must be determined in real time during system
operation, it would be all but impossible to base the design on a fixed-point DSP with
its narrow dynamic range and quantization effects..

Wide dynamic range also plays a part in robotic design. Normally, a robot functions
within a limited range of motion that might well fit within a fixed-point DSP’s dynamic
range. However, unpredictable events can occur on an assembly line. For instance, the
robot might weld itself to an assembly unit, or something might unexpectedly block its
range of motion. In these cases, feedback is well out of the ordinary operating range,
and a system based on a fixed-point DSP might not offer programmers an effective
means of dealing with the unusual conditions. The wide dynamic range of a floating-
point DSP, however, enables the robot control circuitry to deal with unpredictable cir-
cumstances in a predictable manner.

A data set decision

In recent years, as the world of digital signal processing has become much larger,
DSPs have become application-driven. SOC integration means that, along with applica-
tion-specific peripherals, different cores can be integrated on the same device, enabling
DSP products to be tailored for the requirements of specific markets. In this environ-
ment, floating-point capabilities have become another element in the overall DSP prod-
uct mix.

A data set decision

6 SPRY061

There are still some differences in cost and ease of use between fixed- and floating-
point DSPs, but these have become less significant over time. The critical feature for
designers is the greater mathematical flexibility and accuracy of the floating-point for-
mat. For application data sets that require real arithmetic, greater precision and a wider
dynamic range, floating-point DSPs offer the best solution. Application data sets that do
not require these computational features can normally use fixed-point DSPs. Once the
data set requirements have been determined, it should no longer be difficult to decide
whether to use a fixed- or floating-point DSP.

A data set decision

7SPRY061

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

Lecture 3 http://www.ece.utexas.edu/~bevans/courses/rtdsp

EE 445S Real-Time Digital Signal Processing Lab Spring 2014

Signals and Systems

3 - 2

Outline

• Signals

Continuous-time vs. discrete-time

Analog vs. digital

Unit impulse

• Continuous-Time System Properties

• Sampling

• Discrete-Time System Properties

• Conclusion

3 - 3

Many Faces of Signals

• Function, e.g. cos(t) in continuous time or

cos(p n) in discrete time, useful in analysis

• Sequence of numbers, e.g. {1,2,3,2,1} or a sampled

triangle function, useful in simulation

• Set of properties, e.g. even and causal,

useful in reasoning about behavior

• A piecewise representation, e.g.

 useful in analysis

• A generalized function, e.g. d(t),

 useful in analysis

 



 



















otherwise0

0for 1
][

0for 0

0for
2

1
0for 1

n
nu

t

t

t

tu

Review

3 - 4

Continuous-Time vs. Discrete-Time

• Continuous-time signals can be modeled as

functions of a real argument

x(t) where time, t, can take any real value

x(t) may be 0 for a given range of values of t

• Discrete-time signals can be modeled as functions

of argument that takes values from a discrete set

x[n] where n  {...-3,-2,-1,0,1,2,3...}

Integer time index, e.g. n, for discrete-time systems

• Values for x may be real-valued or complex-valued

Review

2

3 - 5

1

-1

Analog vs. Digital

• Amplitude of analog signal can take any real or

complex value at each time/sample

• Amplitude of digital signal takes values from a

discrete set

Review

3 - 6

Unit Impulse

• Mathematical idealism for
an instantaneous event

• Dirac delta as generalized
function (a.k.a. functional)

• Selected properties

Unit area:

Sifting

 provided g(t) is defined at t = 0

Scaling:

• We will leave d(0) undefined

1
2

2
limArea

0


 









1)(dttd

   tPt 


d
0

lim




  t

2

1














 2
rect

2

1
)(

t
tP

Review

   tPt 


d
0

lim




  t



1














t
tP

1
)(





)0()()(gdtttg d





 0 if

1
)(a

a
dtatd

1limArea
0


 





3 - 7

Unit Impulse

• We will leave d(0) undefined

Some signals and systems textbooks assign d(0) = ∞

• Plot Dirac delta as arrow at origin

Undefined amplitude at origin

Denote area at origin as (area)

Height of arrow is irrelevant

Direction of arrow indicates sign of area

• With d(t) = 0 for t  0, it is tempting to think

f(t) d(t) = f(0) d(t)

f(t) d(t-T) = f(T) d(t-T)

t

 td
(1)

0

Simplify unit impulse

under integration only

3 - 8

Unit Impulse

• Simplifying d(t) under

integration

Assuming f(t) is defined at t=0

• What about?

• What about?

By substitution of variables,

• Other examples

• What about at origin?

     



 0fdf dttt

   





1

?dttt df

   



 ?dtTtt df

     



 TdttTt fdf

 

 

     




































222

 2

0
4

cos 2

1

xtx

tj

edtte

dt
t

t

dtet

d

p
d

d 

 

 

 





















0

0

0

1

0

?

dtt

dtt

dtt

d

d

d

Review

3

3 - 9

 t
dt

du
d 

 tu

t

t

t

d
t
















 

01

0

0

?

0

d

Unit Impulse

• Relationship between unit impulse and unit step

• What happens at the origin for u(t)?

u(0-) = 0 and u(0+) = 1, but u(0) can take any value

Common values for u(0) are 0, ½, and 1

u(0) = ½ is used in impulse invariance filter design:

L. B. Jackson, “A correction to impulse invariance,” IEEE Signal

Processing Letters, vol. 7, no. 10, Oct. 2000, pp. 273-275.

3 - 10

Systems

• Systems operate on signals to produce new signals

or new signal representations

• Continuous-time system examples

y(t) = ½ x(t) + ½ x(t-1)

y(t) = x2(t)

• Discrete-time system examples

y[n] = ½ x[n] + ½ x[n-1]

y[n] = x2[n]

Review

Squaring function can be used

in sinusoidal demodulation

Average of current input and

delayed input is a simple filter

     txTty   ][][nxTny 

T{•} y(t) x(t) T{•} y[n] x[n]

3 - 11

Continuous-Time System Properties

• Let x(t), x1(t), and x2(t) be inputs to a continuous-

time linear system and let y(t), y1(t), and y2(t) be

their corresponding outputs

• A linear system satisfies

Additivity: x1(t) + x2(t)  y1(t) + y2(t)

Homogeneity: a x(t)  a y(t) for any real/complex constant a

• For time-invariant system, shift of input signal by

any real-valued  causes same shift in output

signal, i.e. x(t - )  y(t - ), for all 

• Example: Squaring block

Review

Quick test to identify

some nonlinear systems?

()2 y(t) x(t)

3 - 12

        



0

0

t t

t

t

duuxduuxduuxty

Role of Initial Conditions

• Observe a system starting at time t0

Often use t0 = 0 without loss of generality

• Integrator

• Integrator observed for t  t0

Linear system if initial conditions are zero (C0 = 0)

Time-invariant system if initial conditions are zero (C0 = 0)

 dt
t

  


x(t) y(t)

  0
0

Cdt
t

t


x(t) y(t)  



0

0

t

duuxC

C0 is due

to initial

conditions

4

3 - 13

 )(Ttxty 

Continuous-Time System Properties

• Ideal delay by T seconds. Linear?

• Scale by a constant (a.k.a. gain block)

Two different ways to express it in a block diagram

Linear? Time-invariant?

T
x(t) y(t)

0a
x(t) y(t)

 )(0 txaty 

0a

x(t) y(t)

Review

Role of initial

conditions?

3 - 14

   





1

0

M

m

m Tmtxaty

Each T represents a

delay of T time units

Continuous-Time System Properties

• Tapped delay line

Linear? Time-invariant?

There are M-1 delays  tx
T TT

S

 ty

0a
1Ma2Ma1a …

…

 Ttx 

Coefficients (or taps)

are a0, a1, …aM-1

Role of initial

conditions?

3 - 15

Continuous-Time System Properties

• Amplitude Modulation (AM)

y(t) = A x(t) cos(2p fc t)

fc is the carrier

frequency

(frequency of

radio station)

A is a constant

Linear? Time-invariant?

• AM modulation is AM radio if x(t) = 1 + ka m(t)

where m(t) is message (audio) to be broadcast

and | ka m(t) | < 1 (see lecture 19 for more info)

A x(t)

cos(2 p fc t)

y(t)

3 - 16

Generating Discrete-Time Signals

• Many signals originate in continuous time

Example: Talking on cell phone

• Sample continuous-time signal

at equally-spaced points in time

to obtain a sequence of numbers

s[n] = s(n Ts) for n  {…, -1, 0, 1, …}

How to choose sampling period Ts ?

• Using a formula

x[n] = n2 – 5n + 3 on right for 0 ≤ n ≤ 5

How does x[n] look in continuous time?

Sampled analog waveform

s(t)

t

Ts

Ts

Review

n

5

3 - 17

Discrete-Time System Properties

• Let x[n], x1[n] and x2[n] be inputs to a linear system

• Let y[n], y1[n] and y2[n] be corresponding outputs

• A linear system satisfies

Additivity: x1[n] + x2[n]  y1[n] + y2[n]

Homogeneity: a x[n]  a y[n] for any real/complex constant a

• For a time-invariant system, a shift of input signal

by any integer-valued m causes same shift in output

signal, i.e. x[n - m]  y[n - m], for all m

• Role of initial conditions?

Review

3 - 18







1

0

][][
M

m

m mnxany

Each z-1 represents a

delay of 1 sample

Discrete-Time System Properties

• Tapped delay line in discrete time

• Linear? Time-invariant?

There are M-1 delays

][nx
1z

S

][ny

0a 1Ma
2Ma1a …

…
1z1z

]1[nx

See also slide 5-4

Coefficients (or taps)

are a0, a1, …aM-1

Role of initial

conditions?

3 - 19

Discrete-Time System Properties

• Let d[n] be a discrete-time impulse function, a.k.a.

Kronecker delta function:

• Impulse response is response of discrete-time LTI

system to discrete impulse function

Example: delay by one sample

• Finite impulse response filter

Non-zero extent of impulse response is finite

Can be in continuous time or discrete time

Also called tapped delay line (slides 3-14, 3-18, 5-4)

 









00

01

n

n
nd

1z
d[n] h[n]

]1[][ nnh d

n

d[n]
1

1 -1 2 3 -2 -3

3 - 20

Discrete-Time System Properties

• Continuous time

Linear?

Time-invariant?

• Discrete time

Linear?

Time-invariant?

 
dt

df(t) y(t)

    

   
t

ttftf

tf
dt

d
ty

t 






 0
lim

      

   

   1

lim
0












nfnf

T

TnTfnTf

tf
dt

d
nTyny

s

sss

T

nTt

s

s

s

 
dt

d̂f[n] y[n]

See also

slide 5-18

6

3 - 21

Conclusion

• Continuous-time versus discrete-time:

discrete means quantized in time

• Analog versus digital:

digital means quantized in amplitude

• Digital signal processor

Discrete-time and digital system

Well-suited for implementing LTI digital filters

• Example of discrete-time analog system?

• Example of continuous-time digital system?

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

Lecture 4 http://www.ece.utexas.edu/~bevans/courses/rtdsp

EE 445S Real-Time Digital Signal Processing Lab Spring 2014

Sampling and Aliasing

4 - 2

Outline

• Data conversion

• Sampling

Time and frequency domains

Sampling theorem

• Aliasing

• Bandpass sampling

• Rolling shutter artifacts

• Conclusion

Data Conversion

• Analog-to-Digital Conversion

Lowpass filter has
stopband frequency
less than ½ fs to reduce
aliasing due to sampling
(enforce sampling theorem)

• Digital-to-Analog Conversion

Discrete-to-continuous
conversion could be as
simple as sample and hold

Lowpass filter has stopband
frequency less than ½ fs
reduce artificial high frequencies

Analog

Lowpass

Filter

Discrete to

Continuous

Conversion

fs

Lecture 7

Analog

Lowpass

Filter

Quantizer

Sampler at

sampling

rate of f s

Lecture 8 Lecture 4

4 - 3

Data Conversion

4 - 4

   sTnfnf 

Sampling: Time Domain

• Many signals originate in continuous-time

Talking on cell phone, or playing acoustic music

• By sampling a continuous-time signal at

isolated, equally-spaced points in time, we

obtain a sequence of numbers

n  {…, -2, -1, 0, 1, 2,…}

Ts is the sampling period.

Sampled analog waveform

   





n

ssampled Tnttftf)(

impulse train

f(t)

t

Ts

Ts

 tfsampled

Sampling - Review

2

4 - 5

Sampling: Frequency Domain

• Sampling replicates spectrum of continuous-time

signal at integer multiples of sampling frequency

• Fourier series of impulse train where ws = 2 p fs

   ) (2cos2) (cos2 1
1

)(... 




tt
T

Tntt ss

sn

sTs
ww

 ) (2cos)(2) (cos)(2)(
1

)()()(... ttfttftf
T

ttftg ss

s

Ts
ww

w

G(w)

ws 2ws 2ws ws

w

F(w)

2pfmax -2pfmax

maxmaxmax 2222 ifonly and if gap fffff ss  ppp

Modulation

by cos(2 ws t)
Modulation

by cos(ws t)

How to

recover

F(w)?

Sampling - Review

4 - 6

Sampling Theorem

• Continuous-time signal x(t) with frequencies no

higher than fmax can be reconstructed from its

samples x(n Ts) if samples taken at rate fs > 2 fmax

Nyquist rate = 2 fmax

Nyquist frequency = fs / 2

• Example: Sampling audio signals

Normal human hearing is from about 20 Hz to 20 kHz

Apply lowpass filter before sampling to pass low

frequencies up to 20 kHz and reject high frequencies

Lowpass filter needs 10% of maximum passband frequency

to roll off to zero (2 kHz rolloff in this case)

What happens

if fs = 2 fmax?

Sampling - Review

4 - 7

Sampling Theorem

Assumption

• Continuous-time signal has
absolutely no frequency
content above fmax

• Sampling time is exactly the
same between any two
samples

• Sequence of numbers
obtained by sampling is
represented in exact
precision

• Conversion of sequence to
continuous time is ideal

In Practice

Sampling

4 - 8

Sampling and Oversampling

• As sampling rate increases above Nyquist rate,

sampled waveform looks more like original

• Zero crossings: frequency content of a sinusoid

Distance between two zero crossings: one half period

With sampling theorem satisfied, sampled sinusoid crosses

zero right number of times per period

In some applications, frequency content matters not time-

domain waveform shape

• DSP First, Ch. 4, Sampling/Interpolation demo

For username/password help

Sampling

link

link

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/4samplin/demos/pulses/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/serial_number.html

3

4 - 9

Aliasing

• Continuous-time
sinusoid

x(t) = A cos(2p f0 t + f)

• Sample at Ts = 1/fs

x[n] = x(Tsn) =
A cos(2p f0 Ts n + f)

• Keeping the sampling
period same, sample
y(t) = A cos(2p (f0 + l fs) t + f)

 where l is an integer

y[n] = y(Tsn)

 = A cos(2p(f0 + lfs)Tsn + f)

 = A cos(2pf0Tsn + 2plfsTsn + f)

 = A cos(2pf0Tsn + 2pln + f)

 = A cos(2pf0Tsn + f)

 = x[n]

Here, fsTs = 1

Since l is an integer,
cos(x + 2 p l) = cos(x)

• y[n] indistinguishable
from x[n]

Aliasing

4 - 10

Aliasing

• Since l is any integer, a countable but infinite

number of sinusoids give same sampled sequence

• Frequencies f0 + l fs for l  0

Called aliases of frequency f0 with respect to fs

All aliased frequencies appear same as f0 due to sampling

• Signal Processing First, Continuous to Discrete

Sampling demo (con2dis)

Aliasing

link

4 - 11

Aliasing

• Sinusoid sin(2 p finput t) sampled at fs = 2000

samples/s with finput varied

• Mirror image effect about f input = ½ fs gives rise

to name of folding

A
p
p
ar

en
t

fr
eq

u
en

cy
 (

H
z)

Input frequency, finput (Hz)

1000

1000 2000 3000 4000

fs = 2000 samples/s

Aliasing

4 - 12

Bandpass Sampling

• Reduce sampling rate

Bandwidth: f2 – f1

Sampling rate fs must

be greater than analog

bandwidth fs > f2 – f1

For replica to be centered

at origin after sampling

fcenter = ½(f1 + f2) = k fs

• Practical issues

Sampling clock tolerance: fcenter = k fs

Effects of noise

Ideal Bandpass Spectrum

f1 f2
f –f2 –f1

Sample at fs

Sampled Ideal Bandpass Spectrum

f1 f2
f –f2 –f1

Lowpass filter to

extract baseband

Bandpass Sampling

http://users.ece.gatech.edu/mcclella/SPFirst/Updates/SPFirstMATLAB.html

4

Sampling for Up/Downconversion

• Upconversion method

Sampling plus bandpass

filtering to extract

intermediate frequency

(IF) band with fIF = kIF fs

• Downconversion method

Bandpass sampling plus

bandpass filtering to extract

intermediate frequency (IF)

band with fIF = kIF fs

f

fmax -fmax

f fs fIF fIF fs

f1 f2

f

–f2 –f1

Sample

at fs

f

–f2 –f1 -fIF fIF

Bandpass Sampling

Rolling Shutter Cameras

• Smart phone and point-and-shoot cameras

No (global) hardware shutter to reduce cost, size, weight

Light continuously impinges on sensor array

Artifacts due to relative motion between objects and camera

Rolling Shutter Artifacts

Figure from tutorial by Forssen et al. at 2012 IEEE Conf. on Computer Vision & Pattern Recognition

• Plucked guitar strings – global shutter camera

String vibration is (correctly) damped sinusoid vs. time

• “Guitar Oscillations Captured with iPhone 4”

Rolling shutter (sampling) artifacts but not aliasing effects

• Fast camera motion

Pan camera fast left/right

Pole wobbles and bends

Building skewed

Rolling Shutter Artifacts

Rolling Shutter Artifacts

C. Jia and B. L. Evans, “Probabilistic 3-D Motion Estimation for Rolling

Shutter Video Rectification from Visual and Inertial Measurements,”

IEEE Multimedia Signal Proc. Workshop, 2012. Link to article.

Warped frame Compensated using

gyroscope readings

(i.e. camera rotation)

and video features

video

video

4 - 16

Conclusion

• Sampling replicates spectrum of continuous-time
signal at offsets that are integer multiples of

sampling frequency

• Sampling theorem gives necessary condition to
reconstruct the continuous-time signal from its

samples, but does not say how to do it

• Aliasing occurs due to sampling

Noise present at all frequencies

A/D converter design tradeoffs to control impact of aliasing

• Bandpass sampling reduces sampling rate
significantly by using aliasing to our benefit

Conclusion

http://www.youtube.com/watch?v=j7pwP_aM-4U
http://www.youtube.com/watch?v=TKF6nFzpHBU
http://users.ece.utexas.edu/~bevans/papers/2012/rolling/
http://www.reddit.com/r/reddit.com/comments/in2rc/guitar_string_oscillations_captured_on_video/

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 5 http://www.ece.utexas.edu/~bevans/courses/rtdsp

Finite Impulse Response Filters

5 - 2

Outline

• Many Roles for Filters

• Convolution

• Z-transforms

• Linear time-invariant systems

Transfer functions

Frequency responses

• Finite impulse response filters

Cascading FIR filters demonstration

Symmetric FIR filters

Filter design

5 - 3

Many Roles for Filters

• Noise removal

Signal and noise spectrally separated

Example: bandpass filtering to suppress out-of-band noise

• Analysis, synthesis, and compression

Spectral analysis

Examples: calculating power spectra (slides 14-10 and 14-11)
and polyphase filter banks for pulse shaping (lecture 13)

• Spectral shaping

Data conversion (lectures 10 and 11)

Channel equalization (slides 16-8 to 16-10)

Symbol timing recovery (slides 13-17 to 13-20 and slide 16-7)

Carrier frequency and phase recovery
5 - 4







1

0

][][][
M

m

mnxmhny

Finite Impulse Response (FIR) Filter

• Same as discrete-time tapped delay line (slide 3-18)

• Impulse response h[n] has finite extent n = 0,…, M-1

z-1 z-1 z-1 …

…

x[n]

S y[n]

h[0] h[1] h[2] h[M-1]

x[n-1]

Discrete-time

convolution

2

5 - 5

Discrete-time Convolution Derivation

• Output y[n] for input x[n]

• Any signal can be decomposed

into sum of discrete impulses

• Apply linear properties

• Apply shift-invariance

• Apply change of variables

y[n] = h[0] x[n] + h[1] x[n-1]

 = (x[n] + x[n-1]) / 2 n

h[n]

2

1

Averaging filter

impulse response

0 1 2 3

    nxTny 

     








 


m

mnmxTny 

      mnTmxny
m

 






     mnhmxny
m

 




     mnxmhny
m

 




Review

5 - 6

Convolution Comparison

• Continuous-time convolution of x(t) and h(t)

For each t, compute different (possibly) infinite integral

• In discrete-time, replace integral with summation

For each n, compute different (possibly) infinite summation

• LTI system

Characterized uniquely by its impulse response

Its output is convolution of input and impulse response

             







  dtxhdthxthtxty

         mnxmhmnhmxny
mm

 








Review

5 - 7

Convolution Demos

• The Johns Hopkins University Demonstrations

http://www.jhu.edu/~signals

Convolution applet to animate convolution of simple signals

and hand-sketched signals

Convolving two rectangular pulses of same width gives

triangle with width of twice the width of rectangular pulses

(see Appendix E in course reader for intermediate work)

t

1

x(t)

0 Ts 2Ts

Ts

t

1

h(t)

0 Ts

* = y(t)

Ts

t

What about convolving two pulses of different lengths?
5 - 8

Z-transform Definition

• For discrete-time systems, z-transforms play same

role as Laplace transforms do in continuous-time

Inverse transform requires contour integration over closed

contour (region) R

Contour integration covered in a Complex Analysis course

• Compute forward and inverse transforms using

transform pairs and properties

 





n

nznhzH)(

Bilateral Forward z-transform




R

n dzzzH
j

nh 1)(
 2

1
][



Bilateral Inverse z-transform

Review

http://www.jhu.edu/~signals

3

5 - 9

 Three Common Z-transform Pairs

• h[n] = [n]

Region of convergence: entire

z-plane

• h[n] = [n-1]

Region of convergence: entire

z-plane except z = 0

h[n-1]  z-1 H(z)

      1
0

0

 









n

n

n

n znznzH 

      1
1

1

 1 1 








   zznznzH
n

n

n

n 

   

1 if

1

1

00







































z

a

z

a

z

a
za

znuazH

n

n

n

nn

n

nn

• h[n] = an u[n]

Region of convergence

for summation: |z| > |a|

|z| > |a| is the complement

of a disk

Finite extent sequences Infinite extent sequence

Review

5 - 10

Region of Convergence

• Region of the complex z-

plane for which forward z-

transform converges

 Im{z}

Re{z}

Entire

plane

Im{z}

Re{z}

Complement

of a disk

Im{z}

Re{z}

Disk

Im{z}

Re{z}

Intersection

of a disk and

complement

of a disk

• Four possibilities (z = 0 is

special case that may or

may not be included)

Review

5 - 11

System Transfer Function

• Z-transform of system’s impulse response

Impulse response uniquely represents an LTI system

• Example: FIR filter with M taps (slide 5-4)

Transfer function H(z) is polynomial in powers of z -1

Region of convergence (ROC) is entire z-plane except z = 0

• Since ROC includes unit circle, substitute z = e j w

into transfer function to obtain frequency response

   )1(1
1

0

]1[]1[]0[)(









   M
M

n

n

n

n zMhzhhznhznhzH ...

  wwww
w

)1(
1

0

]1[]1[]0[|)()(







  Mjj

M

n

nj

ez

j eMhehhenhzHeH j ...

Review

5 - 12

Example: Ideal Delay

• Continuous Time

Delay by T seconds

Impulse response

Frequency response

• Discrete Time

Delay by 1 sample

Impulse response

Frequency response

 )(Ttxty 

T
x(t) y(t)

 )(Ttth  

  TjeH 

]1[][ nxny

1z
x[n] y[n]

]1[][ nnh 

  ww jeH 

  1 || H

  TH 

  1 || wH

  ww H

4

5 - 13

Linear Time-Invariant Systems

• Fundamental Theorem of Linear Systems

If a complex sinusoid were input into an LTI system, then
output would be input scaled by frequency response of
LTI system (evaluated at complex sinusoidal frequency)

Scaling may attenuate input signal and shift it in phase

Example in continuous time: see handout F

Example in discrete time. Let x[n] = e j w n,

 H(w) is discrete-time Fourier transform of h[n]
H(w) is also called the frequency response

   wwwww Heemhemheny nj

m

mjnj

m

mnj][][][ 











H(w) x[n] * h[n]

5 - 14

Frequency Response

• Continuous-time

LTI system

• Discrete-time

LTI system

• For real-valued impulse response H(e -j ω) = H*(e j ω)

Input

Output

   

    ww

wwww ww

)()(

 cos 2

jj

njeHjjnjeHjj

eHω neH

eeeHeeeH
jj



 

) cos(2 nee njnj www 

][nh

nje w   njj eeH ww

 n cos w     ww w cos jj eHneH 

)(th

tje    tjejH 

     jHtjH cos  t cos 

          njjnjjnjjnjj eeHeeHeeHeeH * wwwwwwww

5 - 15

Frequency Response

• System response to complex sinusoid e j w n for all

possible frequencies w in radians per sample:

Lowpass filter: passes low and attenuates high frequencies

Linear phase: must be FIR filter with impulse response that is

symmetric or anti-symmetric about its midpoint

• Not all FIR filters exhibit linear phase

w

|H(w)|

w

|H(w)|

wp wstop wstop wp

passband

stopband stopband
Linear

phase

delay)()(kH
d

d
delay  w

w
w

5 - 16

Filter Design

• Specify a desired
piecewise constant

magnitude response

• Lowpass filter example

w  [0, wp], mag  [1-p, 1]

w  [ws, ], mag  [0, s]

Transition band unspecified

• Symmetric FIR filter

design methods

Windowing

Least squares

Remez (Parks-McClellan)

1

s

1p

w

wp ws

Desired Magnitude Response

Passband Stopband Transition

band



Red region

is forbidden

Lowpass Filter Example

p passband ripple

 s stopband ripple

forbidden

forbidden

forbidden

Achtung!

5

5 - 17

Example: Two-Tap Averaging Filter

]1[
2

1
][

2

1
][ nxnxny

]1[
2

1
][

2

1
][ nnnh 

  ww

2

1

2

1 jeH 

  














 www

w 2

1

2

1

2

1

2

1

jjj

eeeH

 
ww

w 2

1

2

cos
j

eH












• Input-output relationship

• Impulse response

• Frequency response

n

h[n] Two-tap averaging filter

½

2 3 1

z-1 x[n]

S y[n]

h[0] h[1]

x[n-1]

5 - 18

Example: First-Order Difference

]1[
2

1
][

2

1
][ nxnxny

]1[
2

1
][

2

1
][ nnnh 

  ww

2

1

2

1 jeH 

  














 www

w 2

1

2

1

2

1

2

1

jjj

eeeH

 






































w


w


w www
w 2

1

22

1

22

1

2

sin
2

sin
2

sin
jjjj

eeeejH

• Input-output relationship

• Impulse response

• Frequency response

n

h[n] First-order difference

½

2 3
- ½

5 - 19

Cascading FIR Filters Demo

• Five-tap discrete-time averaging FIR filter with
input x[n] and output y[n]

Standard averaging filtering scaled by 5

Lowpass filter (smooth/blur input signal)

Impulse response is {1, 1, 1, 1, 1}

• First-order difference FIR filter

Highpass filter (sharpens
input signal)

Impulse response is {1, -1}

 ]4[]3[]2[]1[][ nxnxnxnxnxny

 ]1[][ nxnxny

n

h[n] First-order difference

impulse response

1

-1
2 3

5 - 20

Cascading FIR Filters Demo

• DSP First, Ch. 6, Freq. Response of FIR Filters
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/vis ible/chapters/6firfreq/demos/blockd/index.htm

For username/password help

• From lowpass filter to highpass filter

original image  blurred image  sharpened/blurred image

• From highpass to lowpass filter

original image  sharpened image  blurred/sharpened image

• Frequencies that are zeroed out can never be

recovered (e.g. DC is zeroed out by highpass filter)

• Order of two LTI systems in cascade can be
switched under the assumption that computations

are performed in exact precision

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/6firfreq/demos/blockd/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/serial_number.html

6

5 - 21

Cascading FIR Filters Demo

• Input image is 256 x 256 matrix

Each pixel represented by eight-bit number in [0, 255]

0 is black and 255 is white for monitor display

• Each filter applied along row then column

Averaging filter adds five numbers to create output pixel

Difference filter subtracts two numbers to create output pixel

• Full output precision is 16 bits per pixel

Demonstration uses double-precision floating-point data and

arithmetic (53 bits of mantissa + sign; 11 bits for exponent)

No output precision was harmed in the making of this demo 

5 - 22

Importance of Linear Phase

• Speech signals

Use phase differences in

arrival to locate speaker

Once speaker is located, ears

are relatively insensitive to

phase distortion in speech

from that speaker

Used in speech compression

in cell phones)

• Linear phase crucial

Audio

Images

Communication systems

• Linear phase response

Need FIR filters

Realizable IIR filters

cannot achieve linear

phase response over all

frequencies
 d = c t

Importance of Linear Phase

• For images, vital visual information in phase

• Original image is from Matlab
5 - 23

Take FFT of image

Set phase to zero

Take inverse FFT

Take FFT of image

Set magnitude to one

Take inverse FFT

Keep imaginary part

Take FFT of image

Set magnitude to one

Take inverse FFT

Keep real part

code

http://users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/05_FIR_Filters /Original%20Image.tif 5 - 24

Finite Impulse Response Filters

• Duration of impulse response h[n] is finite, i.e.
zero-valued for n outside interval [0, M-1]:

Output depends on current input and previous M-1 inputs

Summation to compute y[k] reduces to a vector dot product
between M input samples in the vector

 and M values of the impulse response in vector

• What instruction set architecture features would you
add to accelerate FIR filtering?

             









1

0

M

mm

mnxmhmnxmhnhnxny

 )]1([...,],1[],[ Mnxnxnx

 ]1[...,],1[],0[Mhhh

http://users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/05_FIR_Filters/Original Image.tif
http://users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/05_FIR_Filters/ImagePhaseDemo.m

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 6

Infinite Impulse Response Filters

6 - 2

Outline

• Many roles for filters

• Two IIR filter structures

Biquad structure

Direct form implementations

• Stability

• Z and Laplace transforms

• Cascade of biquads

Analog and digital IIR filters

Quality factors

• Conclusion

Many Roles for Filters

• Noise removal

Signal and noise spectrally separated

Example: bandpass filtering to suppress out-of-band noise

• Analysis, synthesis, and compression

Spectral analysis

Examples: calculating power spectra (slides 14-10 and 14-11)
and polyphase filter banks for pulse shaping (lecture 13)

• Spectral shaping

Data conversion (lectures 10 and 11)

Channel equalization (slides 16-8 to 16-10)

Symbol timing recovery (slides 13-17 to 13-20 and slide 16-7)

Carrier frequency and phase recovery
6 - 3 6 - 4

Digital IIR Filters

• Infinite Impulse Response (IIR) filter has impulse

response of infinite duration, e.g.

• How to implement the IIR filter by computer?

Let x[k] be the input signal and y[k] the output signal,

 ][
2

1
nunh

n











1

1

0

1

0

2

1
1

1

2

1
1

2

1

2

1
)(











 


















 

z

zzzzH
n

n

n

n

n

...
Z

)()()(

)(

)(
)(

zXzHzY

zX

zY
zH





][]1[
2

1
][

][]1[
2

1
][

nxnyny

nxnyny





Recursively compute output y[n], n ≥ 0, given y[-1] and x[n]

)()(
2

1
)(

)(

2

1
1

1
)(

1

1

zXzYzzY

zX

z

zY











2

6 - 5

Different Filter Representations

• Difference equation

Recursive computation

needs y[-1] and y[-2]

For the filter to be LTI,

y[-1] = 0 and y[-2] = 0

• Transfer function

Assumes LTI system

• Block diagram

representation

Second-order filter section

(a.k.a. biquad) with 2

poles and 0 zeros

][]2[
8

1
]1[

2

1
][nxnynyny 

 x[n] y[n]

Unit

Delay

Unit

Delay

1/2

1/8

y[n-1]

y[n-2]

21

21

8

1

2

1
1

1

)(

)(
)(

)()(
8

1
)(

2

1
)(











zz
zX

zY
zH

zXzYzzYzzY

Poles at –0.183 and +0.683 6 - 6

Discrete-Time IIR Biquad

• Two poles, and zero, one, or two zeros

• Overall transfer function

Real a1, a2 : poles are conjugate symmetric (  j) or real

Real b0, b1, b2 : zeros are conjugate symmetric or real

2

2

1

1

2

2

1

10

1)(

)(

)(

)(

)(

)(
)(



























zaza

zbzbb

zV

zY

zX

zV

zX

zY
zH

 x[n]

Unit

Delay

Unit

Delay

 v[n-1]

v[n-2]

v[n]

b2

a1

a2

b1

 y[n] b0

Biquad is short for

biquadratic− transfer

function is ratio of two

quadratic polynomials

6 - 7

Discrete-Time IIR Filter Design

• Biquad w/ zeros z0 and z1

and poles p0 and p1

Magnitude response

|a – b| is distance between

complex numbers a and b

|ej – p0| is distance from point

on unit circle ej and pole location p0

• When poles and zeros are separated in angle

Poles near unit circle indicate filter’s passband(s)

Zeros on/near unit circle indicate stopband(s)

  
  10

10)(
pzpz

zzzz
CzH






  
  10

10

)(

pepe

zeze
CeH

jj

jj
j











10

10

)(

pepe

zeze
CeH

jj

jj

j












6 - 8

Discrete-Time IIR Biquad Examples

• Transfer function

• When transfer function coefficients are real-valued

Poles (X) are conjugate symmetric or real-valued

Zeros (O) are conjugate symmetric or real-valued

• Filters below have what magnitude responses?

Re(z)

Im(z)

X O
O X

Re(z)

Im(z)

O

O
X

X

Re(z)

Im(z)
O

O

X

X

  
  

  
  1

1

1

0

1

1

1

0

10

10

11

11
)(















zpzp

zzzz
C

pzpz

zzzz
CzH

lowpass

highpass

bandpass

bandstop

allpass

notch?

Poles have radius r

Zeros have radius 1/r

Zeros are on the unit circle

3

6 - 9

A Direct Form IIR Realization

• IIR filters having rational transfer functions

• Direct form realization

Dot product of vector of N +1
coefficients and vector of current
input and previous N inputs (FIR section)

Dot product of vector of M coefficients and vector of previous
M outputs (“FIR” filtering of previous output values)

Computation: M + N + 1 multiply-accumulates (MACs)

Memory: M + N words for previous inputs/outputs and
M + N + 1 words for coefficients

M

M

N

N

zaza

zbzbb

zA

zB

zX

zY
zH










 1

)(

)(

)(

)(
)(

1

1

1

10



...








 









N

k

k

k

M

m

m

m zbzXzazY
01

)(1)(

][][][
01

knxbmnyany
N

k

k

M

m

m  


6 - 10

Filter Structure As a Block Diagram













M

m

m

N

k

k

mnya

knxbny

1

0

][

][][


x[n] y[n]

y[n-M]

x[n-1]

x[n-2] b2

b1

b0

Unit

Delay

Unit

Delay

Unit

Delay

x[n-N] bN

Feed-

forward

a1

a2

y[n-1]

y[n-2]

Unit

Delay

Unit

Delay

Unit

Delay

aM

Feedback

M and N may

be different

Full Precision

Wordlength of

y[0] is 2 words.

Wordlength of

y[n] increases

with n for n > 0.

6 - 11

Yet Another Direct Form IIR

• Rearrange transfer function to be cascade of an
all-pole IIR filter followed by an FIR filter

Here, v[n] is the output of an all-pole filter applied to x[n]:

• Implementation complexity (assuming M  N)

Computation: M + N + 1 MACs

Memory: M double words for past values of v[n] and
M + N + 1 words for coefficients

)(

)(
)(where)()(

)(

)()(
)(

zA

zX
zVzBzV

zA

zBzX
zY 













N

k

k

M

m

m

knvbny

mnvanxnv

0

1

][][

][][][

6 - 12

Filter Structure As Block Diagram

 x[n]

Unit

Delay

Unit

Delay

 v[n-1]

v[n-2]

v[n]

b2

a1

a2

b1

 y[n] b0

Unit

Delay

v[n-M]
bN aM

Feed-

forward
Feedback

M=2 yields

a biquad













N

k

k

M

m

m

knvbny

mnvanxnv

0

1

][][

][][][

M and N may

be different

Full Precision

Wordlength of y[0] is

2 words and wordlength

of v[0] is 1 word.

Wordlength of v[n] and

y[n] increases with n.

4

6 - 13

Demonstrations

• Signal Processing First, PEZ Pole Zero Plotter

(pezdemo)

• DSP First demonstrations, Chapter 8

IIR Filtering Tutorial (Link)

Connection Betweeen the Z and Frequency Domains (Link)

Time/Frequency/Z Domain Movies for IIR Filters (Link)

For username/password help
link

link

link

6 - 14

Stability

• A discrete-time LTI system is bounded-input
bounded-output (BIBO) stable if for any bounded

input x[n] such that | x[n] |  B1 < , then the filter
response y[n] is also bounded | y[n] |  B2 < 

• Proposition: A discrete-time filter with an impulse

response of h[n] is BIBO stable if and only if

Every finite impulse response LTI system (even after
implementation) is BIBO stable

A causal infinite impulse response LTI system is BIBO stable
if and only if its poles lie inside the unit circle






 |][| nh
n

Review

6 - 15

  az
za

nua
Z

n 





for
 1

1

1

BIBO Stability

• Rule #1: For a causal sequence, poles are inside the

unit circle (applies to z-transform functions that

are ratios of two polynomials) OR

• Rule #2: Unit circle is in the region of convergence.

(In continuous-time, imaginary axis would be in

region of convergence of Laplace transform.)

• Example:

Stable if |a| < 1 by rule #1 or equivalently

Stable if |a| < 1 by rule #2 because |z|>|a| and |a|<1

Review

6 - 16

Z and Laplace Transforms

• Transform difference/differential equations into

algebraic equations that are easier to solve

• Are complex-valued functions of a complex

frequency variable

Laplace: s =  + j 2  f

Z: z = r e j 

• Transform kernels are complex exponentials:

eigenfunctions of linear time-invariant systems

Laplace: e–s t = e– t – j 2  f t = e – t e – j 2  f t

Z: z –n = (r e j ) –n = r – n e – j  n

dampening factor oscillation term

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/recur/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/z2freq/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/3_domain/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/overview.htm
http://users.ece.gatech.edu/mcclella/SPFirst/Updates/SPFirstMATLAB.html
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/serial_number.html

5

6 - 17

Z and Laplace Transforms

• No unique mapping from Z to Laplace domain

or from Laplace to Z domain

Mapping one complex domain to another is not unique

• One possible mapping is impulse invariance

Make impulse response of a discrete-time linear time-

invariant (LTI) system be a sampled version of the

impulse response for the continuous-time LTI system

H(z) y[n] f[n]

Z

H(s)  tf
~  ty~

Laplace

Tsez
zHsH |)()(




6 - 18

Impulse Invariance Mapping

• Mapping is z = e s T where T is sampling time Ts

Laplace Domain Z Domain

Left-hand plane Inside unit circle

Imaginary axis Unit circle

Right-hand plane Outside unit circle

1

Im{z}

Re{z}

Poles: s = -1  j  z = 0.198  j 0.31 (T = 1 s)

Zeros: s = 1  j  z = 1.469  j 2.287 (T = 1 s)



1

2

1
1 maxmax  sffω

1

1

-1

-1

Im{s}

Re{s}

fjs 2 
lowpass, highpass

bandpass, bandstop

allpass or notch?

Let fs = 1 Hz

6 - 19

Continuous-Time IIR Biquad

• Second-order filter section with 2 poles & 0-2 zeros

Transfer function is a ratio of two real-valued polynomials

Poles and zeros occur in conjugate symmetric pairs

• Quality factor: technology independent measure of

sensitivity of pole locations to perturbations

For an analog biquad with poles at a ± j b, where a < 0,

Real poles: b = 0 so Q = ½ (exponential decay response)

Imaginary poles: a = 0 so Q =  (oscillatory response)





 Q

a

ba
Q

2

1
 where

2

22

6 - 20

Continuous-Time IIR Biquad

• Impulse response with biquad with poles a ± j b
with a < 0 but no zeroes:

Pure sinusoid when a = 0 and pure decay when b = 0

• Breadboard implementation

Consider a single pole at –1/(R C). With 1% tolerance on
breadboard R and C values, tolerance of pole location is 2%

How many decimal digits correspond to 2% tolerance?

How many bits correspond to 2% tolerance?

Maximum quality factor is about 25 for implementation of
analog filters using breadboard resistors and capacitors.

Switched capacitor filters: Qmax  40 (tolerance  0.2%)

Integrated circuit implementations can achieve Qmax  80

) cos()( tbeCth ta

6

6 - 21

Discrete-Time IIR Biquad

• For poles at a ± j b = r e ± j , where is

the pole radius (r < 1 for stability), with y = –2 a:

Real poles: b = 0 and 1 < a < 1, so r = |a| and y = 2 a and

Q = ½ (impulse response is C0 a
n u[n] + C1 n a

n u[n])

Poles on unit circle: r = 1 so Q =  (oscillatory response)

Imaginary poles: a = 0 so

r = |b| and y = 0, and

16-bit fixed-point digital signal processors with 40-bit

accumulators: Qmax  40





 Q

r

yr
Q

2

1
 where

)1(2

)1(
2

222

 22 bar 

2

2

2

2

1

1

2

1

1

1

2

1

b

b

r

r
Q











Filter design programs often use r as approximation of quality factor 6 - 22

IIR Filter Implementation

• Same approach in discrete and continuous time

• Classical IIR filter designs

Filter of order n will have n/2 conjugate roots if n is even or
one real root and (n-1)/2 conjugate roots if n is odd

Response is very sensitive to perturbations in pole locations

• Rule-of-thumb for implementing IIR filter

Decompose IIR filter into second-order sections (biquads)

Cascade biquads from input to output in order of ascending
quality factors

For each pair of conjugate symmetric poles in a biquad,
conjugate zeroes should be chosen as those closest in
Euclidean distance to the conjugate poles

6 - 23

Classical IIR Filter Design

• Classical IIR filter designs differ in the shape of
their magnitude responses

Butterworth: monotonically decreases in passband and
stopband (no ripple)

Chebyshev type I: monotonically decreases in passband but
has ripples in the stopband

Chebyshev type II: has ripples in passband but monotonically
decreases in the stopband

Elliptic: has ripples in passband and stopband

• Classical IIR filters have poles and zeros, except

Continuous-time lowpass Butterworth filters only have poles

• Classical filters have biquads with high Q factors
6 - 24

Analog IIR Filter Optimization

• Start with an existing (e.g. classical) filter design

• IIR filter optimization packages from UT Austin

(in Matlab) simultaneously optimize

Magnitude response

Linear phase in passband

Peak overshoot in step response

Quality factors

7

Analog IIR Filter Optimization

• Analog lowpass IIR filter design specification

dpass= 0.21 at pass= 20 rad/s and dstop= 0.31 at stop= 30 rad/s

Minimized deviation from linear phase in passband

Minimized peak overshoot in step response

Maximum quality factor per second-order section is 10

Linearized
phase in

passband

Minimized
peak

overshoot

Elliptic

Optimized

Q poles zeros

1.7 -5.3533±j16.9547 0.0±j20.2479

61.0 -0.1636±j19.9899 0.0±j28.0184 el
li

p
ti

c Q poles zeros

0.68 -11.4343±j10.5092 -3.4232±j28.6856

10.00 -1.0926±j21.8241 -1.2725±j35.5476 o
p
ti

m
iz

ed

Elliptic

Optimized

MATLAB Demos Using fdatool #1

• Filter design/analysis

• Lowpass filter design

specification (all demos)

fpass = 9600 Hz

fstop = 12000 Hz

fsampling = 48000 Hz

Apass = 1 dB

Astop = 80 dB

• Under analysis menu

Show magnitude response

• FIR filter – equiripple

Also called Remez Exchange or

Parks-McClellan design

Minimum order is 50

Change Wstop to 80

Order 100 gives Astop 100 dB

Order 200 gives Astop 175 dB

Order 300 does not converge –

how to get higher order filter?

• FIR filter – Kaiser window

Minimum order 101 meets spec

MATLAB Demos Using fdatool #2

• IIR filter – elliptic

Use second-order sections

Filter order of 8 meets spec

Achieved Astop of ~80 dB

Poles/zeros separated in angle

– Zeros on or near unit circle

indicate stopband

– Poles near unit circle

indicate passband

– Two poles very close to

unit circle

• IIR filter – elliptic

Use second-order sections

Increase filter order to 9

Eight complex symmetric

poles and one real pole:

Same observations on left

 6 - 27

MATLAB Demos Using fdatool #3

• IIR filter – elliptic

Use second-order sections

Increase filter order to 20

Two poles very close to unit

circle but BIBO stable

Use single section (Edit menu)

– Oscillation frequency ~9

kHz appears in passband

– BIBO unstable: two pairs of

poles outside unit circle

IIR filter design algorithms return poles-zeroes-gain (PZK format):

Impact on response when expanding polynomials in transfer

function from factored to unfactored form

8

MATLAB Demos Using fdatool #4

• IIR filter - constrained

least pth-norm design

Use second-order sections

Limit pole radii ≤ 0.95

Increase weighting in

stopband (Wstop) to 10

Filter order 8 does not meet

stopband specification

Filter order 10 does meet

stopband specification

Filter order might increase but worth it

for more robust implementation 6 - 29 6 - 30

Conclusion

FIR Filters IIR Filters

Implementation

complexity (1)

Higher Lower (sometimes by

factor of four)

Minimum order

design

Parks-McClellan (Remez

exchange) algorithm (2)

Elliptic design algorithm

Stable? Always May become unstable

when implemented (3)

Linear phase If impulse response is

symmetric or anti-

symmetric about midpoint

No, but phase may made

approximately linear over

passband (or other band)

(1) For same piecewise constant magnitude specification

(2) Algorithm to estimate minimum order for Parks-McClellan algorithm by

 Kaiser may be off by 10%. Search for minimum order is often needed.

(3) Algorithms can tune design to implementation target to minimize risk

6 - 31

Conclusion

• Choice of IIR filter structure matters for both

analysis and implementation

• Keep roots computed by filter design algorithms

Polynomial deflation (rooting) reliable in floating-point

Polynomial inflation (expansion) may degrade roots

• More than 20 IIR filter structures in use

Direct forms and cascade of biquads are very common choices

• Direct form IIR structures expand zeros and poles

May become unstable for large order filters (order > 12) due

to degradation in pole locations from polynomial expansion

6 - 32

Conclusion

• Cascade of biquads (second-order sections)

Only poles and zeros of second-order sections expanded

Biquads placed in order of ascending quality factors

Optimal ordering of biquads requires exhaustive search

• When filter order is fixed, there exists no solution,

one solution or an infinite number of solutions

• Minimum order design not always most efficient

Efficiency depends on target implementation

Consider power-of-two coefficient design

Efficient designs may require search of infinite design space

EE 445S Real-Time DSP Lab Prof. Brian L. Evans Spring 2014

EE 445S Real-Time DSP Lab Prof. Brian L. Evans Spring 2014

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 7

Interpolation and Pulse Shaping

7 - 2

Outline

• Discrete-to-continuous conversion

• Interpolation

• Pulse shapes

Rectangular

Triangular

Sinc

Raised cosine

• Sampling and interpolation demonstration

• Conclusion

7 - 3

Data Conversion

• Analog-to-Digital Conversion

Lowpass filter has
stopband frequency
less than ½ fs to reduce
aliasing due to sampling
(enforce sampling theorem)

• Digital-to-Analog Conversion

Discrete-to-continuous
conversion could be as
simple as sample and hold

Lowpass filter has stopband
frequency less than ½ fs to
reduce artificial high frequencies

Analog

Lowpass

Filter

Discrete to

Continuous

Conversion

fs

Lecture 7

Analog

Lowpass

Filter

Quantizer

Sampler at

sampling

rate of f s

Lecture 8 Lecture 4

7 - 4

Discrete-to-Continuous Conversion

• Input: sequence of samples y[n]

• Output: smooth continuous-time function obtained
through interpolation (by “connecting the dots”)

If f0 < ½ fs , then

would be converted to

Otherwise, aliasing has occurred, and the converter would
reconstruct a cosine wave whose frequency is equal to the
aliased positive frequency that is less than ½ fs

  2cos][0  nTfA ny s

  2cos)(~
0  tfA ty

1 2

3 4 5 6 7
n

)(~ ty

][ny

2

7 - 5

Discrete-to-Continuous Conversion

• General form of interpolation is sum of weighted

pulses

Sequence y[n] converted into continuous-time signal that is an

approximation of y(t)

Pulse function p(t) could be rectangular, triangular, parabolic,

sinc, truncated sinc, raised cosine, etc.

Pulses overlap in time domain when pulse duration is greater

than or equal to sampling period Ts

Pulses generally have unit amplitude and/or unit area

Above formula is related to discrete-time convolution







n

s nTtpnyty) (][)(~

7 - 6

Interpolation From Tables

• Using mathematical tables of

numeric values of functions to

compute a value of the function

• Estimate f(1.5) from table

Zero-order hold: take value to be f(1)

to make f(1.5) = 1.0 (“stairsteps”)

Linear interpolation: average values of

nearest two neighbors to get f(1.5) = 2.5

Curve fitting: fit four points in table to

polynomal a0 + a1 x + a2 x
2 + a3 x

3

which gives f(1.5) = x2 = 2.25

x f(x)

0 0.0

1 1.0

2 4.0

3 9.0

x

0 1 2 3

1

4

9)(
~

xf

7 - 7

Rectangular Pulse

• Zero-order hold

Easy to implement in hardware or software

The Fourier transform is

In time domain, no overlap between p(t) and adjacent pulses
p(t - Ts) and p(t + Ts)

In frequency domain, sinc has infinite two-sided extent; hence,
the spectrum is not bandlimited



















otherwise0
2

1

2

1
 if1

rect)(ss

s

TtT

T

t
tp

 
 
x

x
x

Tf

Tf
TTfTfP

s

s
sss

sin
)(sinc where

) sin(
 sinc)(






t

1

p(t)

-½ Ts ½ Ts

7 - 8

Sinc Function

Even function (symmetric at origin)

Zero crossings at

Amplitude decreases proportionally to 1/x

 
 

it? handle toHow 0. to

goingboth arer denominato

and numerator 0, As

sinc(0)? compute toHow

sin
sinc





x

x

x
x

0

1

x

sinc(x)

  2 3 2 3

... ,3 ,2 ,  x

3

7 - 9

Triangular Pulse

• Linear interpolation

It is relatively easy to implement in hardware or software,
although not as easy as zero-order hold

Overlap between p(t) and its adjacent pulses p(t - Ts) and
p(t + Ts) but with no others

• Fourier transform is

How to compute this? Hint: Triangular pulse is equal to 1 / Ts
times the convolution of rectangular pulse with itself

In frequency domain, sinc2(f Ts) has infinite two-sided extent;
hence, the spectrum is not bandlimited



















otherwise0

 if
||

1
)(ss

s
s

TtT
T

t

T

t
tp

 ss TfTfP sinc)(2

t

1

p(t)

-Ts Ts

7 - 10

Sinc Pulse

• Ideal bandlimited interpolation

In time domain, infinite overlap between other pulses

Fourier transform has extent f  [-W, W], where

P(f) is ideal lowpass frequency response with bandwidth W

In frequency domain, sinc pulse is bandlimited

• Interpolate with infinite extent pulse in time?

Truncate sinc pulse by multiplying it by rectangular pulse

Causes smearing in frequency domain (multiplication in time
domain is convolution in frequency domain)

t
T

t
T

t
T

tp

s

s

s




 




















sin

sinc)(









ss T

f

T
fP

rect

1
)(

sT
W

 2

1


7 - 11

Raised Cosine Pulse: Time Domain

• Pulse shaping used in communication systems

W is bandwidth of an
ideal lowpass response

  [0, 1] rolloff factor

Zero crossings at
t =  Ts ,  2 Ts , …

• See handout G in reader on raised cosine pulse

 
222 161

 2cos

sinc)(

tW

tW

T

t
tp

s 















ideal lowpass filter

impulse response

Attenuation by 1/t2 for

large t to reduce tail

7 - 12

Raised Cosine Pulse Spectra

• Pulse shaping used in communication systems

Bandwidth increased

by factor of (1 + ):

(1 + ) W = 2 W – f1

f1 marks transition from

passband to stopband

Bandwidth generally scarce in communication systems

 
















































otherwise0

2 || if
2 2

 ||
sin1

4W

1

|| 0 if
2W

1

)(11

1

1

fWff
fW

Wf

ff

fP


sT
W

 2

1


W

f11

4

7 - 13

Sampling and Interpolation Demo

• DSP First, Ch. 4, Sampling and interpolation,
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/

Sample sinusoid y(t) to form y[n]

Reconstruct sinusoid using

rectangular, triangular, or

truncated sinc pulse p(t)

• Which pulse gives the best reconstruction?

• Sinc pulse is truncated to be four sampling periods

long. Why is the sinc pulse truncated?

• What happens as the sampling rate is increased?







n

s nTtpnyty) (][)(~

7 - 14

Conclusion

• Discrete-to-continuous time conversion involves

interpolating between known discrete-time samples

y[n] using pulse shape p(t)

• Common pulse shapes

Rectangular for same-and-hold interpolation

Triangular for linear interpolation

Sinc for optimal bandlimited linear interpolation but impractical

Truncated raised cosine for practical bandlimited interpolation

• Truncation causes smearing in frequency domain







n

s nTtpnyty) (][)(~

1 2

3 4 5 6 7
n

)(~ ty

][ny

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/4samplin/demos/pulses/index.htm

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 8

Quantization

8 - 2

Outline

• Introduction

• Uniform amplitude quantization

• Audio

• Quantization error (noise) analysis

• Noise immunity in communication systems

• Conclusion

• Digital vs. analog audio (optional)

8 - 3

Resolution

• Human eyes

Sample received light on 2-D grid

Photoreceptor density in retina

falls off exponentially away

from fovea (point of focus)

Respond logarithmically to

intensity (amplitude) of light

• Human ears

Respond to frequencies in 20 Hz to 20 kHz range

Respond logarithmically in both intensity (amplitude) of

sound (pressure waves) and frequency (octaves)

Log-log plot for hearing response vs. frequency

Foveated grid:

point of focus in middle

Data Conversion

• Analog-to-Digital Conversion

Lowpass filter has
stopband frequency
less than ½ fs to reduce
aliasing due to sampling
(enforce sampling theorem)

System properties: Linearity

 Time-Invariance

 Causality

 Memory

• Quantization is an interpretation of a continuous

quantity by a finite set of discrete values

Analog

Lowpass

Filter

Quantizer

Sampler at

sampling

rate of f s

Lecture 8 Lecture 4

8 - 4

2

8 - 5

Uniform Amplitude Quantization

• Round to nearest integer (midtread)

Quantize amplitude to levels {-2, -1, 0, 1}

Step size D for linear region of operation

Represent levels by {00, 01, 10, 11} or

{10, 11, 00, 01} …

Latter is two's complement representation

• Rounding with offset (midrise)

Quantize to levels {-3/2, -1/2, 1/2, 3/2}

Represent levels by {11, 10, 00, 01} …

Step size

1
3

3

12

2

3

2

3

2














D

1
3

3

12

)2(1
2





D

x

Q[x]

1 -2

-2

1

x

Q[x]

1 -2 -1

1

2
Used in

slide 8-10
8 - 6

Handling Overflow

• Example: Consider set of integers {-2, -1, 0, 1}

Represented in two's complement system {10, 11, 00, 01}.

Add (–1) + (–1) + (–1) + 1 + 1

Intermediate computations are – 2, 1, –2, –1 for wraparound
arithmetic and –2, –2, –1, 0 for saturation arithmetic

• Saturation: When to use it?

If input value greater than maximum,
set it to maximum; if less than minimum, set it to minimum

Used in quantizers, filtering, other signal processing operators

• Wraparound: When to use it?

Addition performed modulo set of integers

Used in address calculations, array indexing

Native support in

MMX and DSPs

Standard two’s

complement

behavior

8 - 7

Audio Compact Discs (CDs)

• Analog lowpass filter

Passband 0–20 kHz

Transition band 20–22 kHz

Stopband frequency at 22 kHz (i.e. 10% rolloff)

Designed to control amount of aliasing that occurs

(and hence called an anti-aliasing filter)

• Signal-to-noise ratio when quantizing to B bits

1.76 dB + 6.02 dB/bit * B = 98.08 dB

This loose upper bound is derived later in slides 8-10 to 8-14

In practice, audio CDs have dynamic range of about 95 dB

Analog

Lowpass

Filter

Quantizer

Sample at

44.1 kHz

16

8 - 8

Dynamic Range

• Signal-to-noise ratio in dB

• For linear systems,

dynamic range equals SNR

• Lowpass anti-aliasing filter for audio CD format

Ideal magnitude response of 0 dB over passband

Astopband = 0 dB  Noise Power in dB = -98.08 dB

Power Noiselog 10

 Power Signallog 10

Power Noise

Power Signal
log 10SNR

10

10

10dB





Why 10 log10 ?

For amplitude A,

|A|dB = 20 log10 |A|

With power P  |A|2 ,

PdB = 10 log10 |A|2

PdB = 20 log10 |A|

3

8 - 9

Dynamic Range in Audio

• Sound Pressure Level (SPL)

Reference in dB SPL is 20 Pa
(threshold of hearing)

 40 dB SPL noise in typical living room

120 dB SPL threshold of pain

 80 dB SPL resulting dynamic range

• Estimating dynamic range

(a) Find maximum RMS output of the linear system with some
specified amount of distortion, typically 1%

(b)Find RMS output of system with small input signal (e.g.
-60 dB of full scale) with input signal removed from output

(c) Divide (b) into (a) to find the dynamic range

Anechoic room 10 dB

Whisper 30 dB

Rainfall 50 dB

Dishwasher 60 dB

City Traffic 85 dB

Leaf Blower 110 dB

Siren 120 dB

Slide by Dr. Thomas D.

Kite, Audio Precision

8 - 10

Quantization Error (Noise) Analysis

• Quantization output

Input signal plus noise

Noise is difference of

output and input signals

• Signal-to-noise ratio

(SNR) derivation

Quantize to B bits

Quantization error

• Assumptions

m  (-mmax, mmax)

Uniform midrise quantizer

Input does not overload

quantizer

Quantization error (noise)

is uniformly distributed

Number of quantization

levels L = 2B is large

enough

so that

QB[·] m v

mvmmQq B ][

LL

1

1

1




8 - 11

Quantization Error (Noise) Analysis

• Deterministic signal x(t)

w/ Fourier transform X(f)

Power spectrum is square of

absolute value of magnitude

response (phase is ignored)

Multiplication in Fourier domain

is convolution in time domain

Conjugation in Fourier domain is

reversal & conjugation in time

• Autocorrelation of x(t)

Maximum value (when it

exists) is at Rx(0)

Rx(t) is even symmetric,

i.e. Rx(t) = Rx(-t)

)()()()(*2
fXfXfXfPx 

 )(*)()()(** tt  xxFfXfX

)(*)()(* ttt  xxRx

t

1

x(t)

0 Ts

t

Rx(t)

-Ts Ts

Ts

8 - 12

Quantization Error (Noise) Analysis

• Two-sided random signal n(t)

Fourier transform may not exist, but power spectrum exists

For zero-mean Gaussian random process n(t) with variance s2

• Estimate noise power

spectrum in Matlab

 )()()()(2* tstt  tntnERn

 )()(tnn RFfP 

N = 16384; % finite no. of samples

gaussianNoise = randn(N,1);

plot(abs(fft(gaussianNoise)) .^ 2);

approximate

noise floor

  



 dttntntntnERn)()()()()(** ttt

 )(*)()()()()()(*** ttttt  



nndttntntntnERn

  0 when 0)()()(*  ttt tntnERn

2)(sfPn

4

8 - 13

Quantization Error (Noise) Analysis

• Quantizer step size

• Quantization error

q is sample of zero-mean

random process Q

q is uniformly distributed

• Input power: Paverage,m

SNR exponential in B

Adding 1 bit increases SNR

by factor of 4

• Derivation of SNR in

deciBels on next slide

L

m

L

m maxmax 2

1

 2



D

22

D


D
 q

 


B

Q

zero

QQ

m

QE

22

max

2
2

222

2
3

1

12


D





s

s

B

Q m

PP
2

2

max

maverage,

2

maverage,
2

3
SNR

 PowerNoise

 PowerSignal
SNR













s

8 - 14

Quantization Error (Noise) Analysis

• SNR in dB = constant + 6.02 dB/bit * B

• What is maximum number of bits of resolution for

Audio CD signal with SNR of 95 dB

TI TLV320AIC23B stereo codec used on TI DSP board

– ADC 90 dB SNR (14.6 bits) and 80 dB THD (13 bits) page 2-2

– DAC has 100 dB SNR (16 bits) and 88 dB THD (14.3 bits) page 2-3

   

    BmP

mP

m

P
B

 02.6log 20log 10477.0

)2(logB 20log 20log 103log 10

 2
3

log 10SNR log 10

max10maverage,10

10max10maverage,1010

2

2

max

maverage,

1010































1.76 and 1.17 are common constants used in audio

Loose

upper

bound

Total Harmonic Distortion (THD)

• A measure of nonlinear distortion in a system

Input is a sinusoidal signal of a single fixed frequency

From output of system, the input sinusoid signal is subtracted

SNR measure is then taken

• In audio, sinusoidal signal is often at 1 kHz

“Sweet spot” for human hearing – strongest response

• Example

“System” is ADC

Calibrated DAC

Signal is x(t)

“Noise” is n(t)

A/D

Converter ~

1 kHz

D/A

Converter

~

f s

+

−

Delay

x(t) n(t)

+

8 - 16

Noise Immunity at Receiver Output

• Depends on modulation, average transmit power,
transmission bandwidth and channel noise

• Analog communications (receiver output SNR)

“When the carrier to noise ratio is high, an increase in the
transmission bandwidth BT provides a corresponding
quadratic increase in the output signal-to-noise ratio or
figure of merit of the [wideband] FM system.”
 – Simon Haykin, Communication Systems, 4th ed., p. 147.

• Digital communications (receiver symbol error rate)

“For code division multiple access (CDMA) spread spectrum
communications, probability of symbol error decreases
exponentially with transmission bandwidth BT”
 – Andrew Viterbi, CDMA: Principles of Spread
Spectrum Communications, 1995, pp. 34-36.

http://www.ti.com/lit/ds/symlink/tlv320aic23b.pdf

5

8 - 17

Conclusion

• Amplitude quantization approximates its input by

a discrete amplitude taken from finite set of values

• Loose upper bound in signal-to-noise ratio of a

uniform amplitude quantizer with output of B bits

Best case: 6 dB of SNR gained for each bit added to quantizer

Key limitation: assumes large number of levels L = 2B

• Best case improvement in noise immunity for

communication systems

Analog: improvement quadratic in transmission bandwidth

Digital: improvement exponential in transmission bandwidth

8 - 18

Digital vs. Analog Audio

• An audio engineer claims to notice differences

between analog vinyl master recording and the

remixed CD version. Is this possible?

When digitizing an analog recording, the maximum voltage

level for the quantizer is the maximum volume in the track

Samples are uniformly quantized (to 216 levels in this case

although early CDs circa 1982 were recorded at 14 bits)

Problem on a track with both loud and quiet portions, which

occurs often in classical pieces

When track is quiet, relative error in quantizing samples grows

Contrast this with analog media such as vinyl which responds

linearly to quiet portions

Optional

8 - 19

Digital vs. Analog Audio

• Analog and digital media response to voltage v

• For a large dynamic range

Analog media: records voltages above V0 with distortion

Digital media: clips voltages above V0 to V0

• Audio CDs use delta-sigma modulation

Effective dynamic range of 19 bits for lower frequencies but

lower than 16 bits for higher frequencies

Human hearing is more sensitive at lower frequencies

 

 















0

3/1

00

00

0

3/1

00

for

for

for

)(

VvvVV

VvVv

VvVvV

vA
















00

00

00

for

for

for

)(

VvV

VvVv

VvV

vD

Optional

6

1

INTRODUCTION TO

THE TMS320C6000

VLIW DSP

Prof. Brian L. Evans

in collaboration with

Dr. Niranjan Damera-Venkata and

Mr. Magesh Valliappan

Embedded Signal Processing Laboratory

The University of Texas at Austin

Austin, TX 78712-1084

http://signal.ece.utexas.edu/

Accumulator architecture

Load-store architecture

Memory-register architecture

9-2

Outline

 C6000 instruction set architecture review

 Vector dot product example

 Pipelining

 Finite impulse response filtering

 Vector dot product example

 Conclusion

9-3

Program RAM
Data RAM

or Cache

Internal Buses

Control Regs

R
e

g
s
 (B

0
-B

1
5

)

R
e

g
s
 (A

0
-A

1
5

)

.D1

.M1

.L1

.S1

.D2

.M2

.L2

.S2

CPU

Addr

Data

External
Memory

 -Sync

 -Async

DMA

Serial Port

Host Port

Boot Load

Timers

Pwr Down

 TI TMS320C6000 DSP Architecture (Review)

Simplified

Architecture

C6200 fixed point
C6400 fixed point

C6700 floating point

9-4

TI TMS320C6000 DSP Architecture (Review)

 Address 8/16/32 bit data + 64-bit data on C67x

 Load-store RISC architecture with 2 data paths

16 32-bit registers per data path (A0-A15 and B0-B15)

48 instructions (C6200) and 79 instructions (C6700)

 Two parallel data paths with 32-bit RISC units

Data unit - 32-bit address calculations (modulo, linear)

Multiplier unit - 16 bit x 16 bit with 32-bit result

Logical unit - 40-bit (saturation) arithmetic & compares

Shifter unit - 32-bit integer ALU and 40-bit shifter

Conditionally executed based on registers A1-2 & B0-2

Can work with two 16-bit halfwords packed into 32 bits

2

9-5

TI TMS320C6000 DSP Architecture (Review)

 .M multiplication unit

16 bit x 16 bit signed/unsigned packed/unpacked

 .L arithmetic logic unit

Comparisons and logic operations (and, or, and xor)

Saturation arithmetic and absolute value calculation

 .S shifter unit

Bit manipulation (set, get, shift, rotate) and branching

Addition and packed addition

 .D data unit

Load/store to memory

Addition and pointer arithmetic

9-6

C6000 Restrictions on Register Accesses

 Function unit access to register files

Data path 1 (2) units read/write A (B) registers

Data path 2 (1) can read one A (B) register per instruction

cycle with one-cycle latency

Two simultaneous memory accesses cannot use registers

of same register file as address pointers

Limit of four 32-bit reads per register per inst. cycle

 40-bit longs stored in adjacent even/odd registers

Extended precision accumulation of 32-bit numbers

Only one 40-bit result can be written per cycle

40-bit read cannot occur in same cycle as 40-bit write

4:1 performance penalty using 40-bit mode

9-7

Other C6000 Disadvantages

 No ALU acceleration for bit stream manipulation

50% computation in MPEG-2 decoder spent on variable

length decoding on C6200 in C

C6400 direct memory access controllers shred bit streams

(for video conferencing & wireless basestations)

 Branch in pipeline disables interrupts:

Avoid branches by using conditional execution

 No hardware protection against pipeline hazards:

Programmer and tools must guard against it

 Must emulate many conventional DSP features

No hardware looping: use register/conditional branch

No bit-reversed addressing: use fast algorithm by Elster

No status register: only saturation bit given by .L units

9-8

FIR Filter

 Difference equation (vector dot product)

y(n) = 2 x(n) + 3 x(n - 1) + 4 x(n - 2) + 5 x(n - 3)

y(n)

x(n)

3 4 2 5

 Dot product of inputs vector and coefficient vector

 Store input in circular buffer, coefficients in array

Tapped

delay line







1

0

)()()(
N

i

inxiany Signal flow graph

z
-1

 z
-1

 z
-1

3

9-9

FIR Filter

 Each tap requires

Fetching data sample

Fetching coefficient

Fetching operand

Multiplying two numbers

Accumulating multiplication result

Possibly updating delay line (see below)

 Computing an FIR tap in one instruction cycle

Two data memory and one program memory accesses

Auto-increment or auto-decrement addressing modes

Modulo addressing to implement delay line as circular buffer

z-1 z-1 z-1

One

tap

9-10

Example: Vector Dot Product (Unoptimized)

 A vector dot product is common in filtering

Store a(n) and x(n) into an array of N elements

 C6000 peaks at 8 RISC instructions/cycle

For 300-MHz C6000, RISC instructions per sample

300,000 for speech (sampling rate 8 kHz)

 54,421 for audio CD (sampling rate 44.1 kHz)

 230 for luminance NTSC digital video

 (sampling rate 10,368 kHz)

Generally requires hand coding for peak performance





N

n

nxnaY
1

)()(

9-11

Example: Vector Dot Product (Unoptimized)

 Prologue

 Initialize pointers: A5 for a(n), A6 for x(n), and A7 for Y

Move number of times to loop (N) into A2

Set accumulator (A4) to zero

 Inner loop

Put a(n) into A0 and x(n) into A1

Multiply a(n) and x(n)

Accumulate multiplication result into A4

Decrement loop counter (A2)

Continue inner loop if counter is not zero

 Epilogue

Store the result into Y

Reg Meaning

A0

A1
a(n)

x(n)

A2

A3

N - n

a(n) x(n)

A4

A5

Y

&a

A6

A7
&x

&Y

Assuming

coefficients &

data are 16

bits wide

9-12

Example: Vector Dot Product (Unoptimized)

; clear A4 and initialize pointers A5, A6, and A7

 MVK .S1 40,A2 ; A2 = 40 (loop counter)

loop LDH .D1 *A5++,A0 ; A0 = a(n), H = halfword

 LDH .D1 *A6++,A1 ; A1 = x(n), H = halfword

 MPY .M1 A0,A1,A3 ; A3 = a(n) * x(n)

 ADD .L1 A3,A4,A4 ; Y = Y + A3

 SUB .L1 A2,1,A2 ; decrement loop counter

[A2] B .S1 loop ; if A2 != 0, then branch

 STH .D1 A4,*A7 ; *A7 = Y

Coefficients a(n)

Data x(n)

Using A data path only

Reg Meaning

A0

A1
a(n)

x(n)

A2

A3

N - n

a(n) x(n)

A4

A5

Y

&a

A6

A7
&x

&Y

4

9-13

Example: Vector Dot Product (Unoptimized)

 MoVeKonstant

MVK .S 40,A2 ; A2 = 40

Lower 16 bits of A2 are loaded

 Conditional branch

 [condition] B .S loop

 [A2] means to execute instruction if A2 != 0 (same as C

language)

Only A1, A2, B0, B1, and B2 can be used (not symmetric)

 Loading registers

LDH .D *A5, A0 ;Loads half-word into A0 from memory

 Registers may be used as pointers (*A1++)

 Implementation not efficient due to pipeline effects
9-14

Pipelining

 CPU operations

Fetch instruction from (on-chip) program memory

Decode instruction

Execute instruction including reading data values

 Overlap operations to increase performance

Pipeline CPU operations to increase clock speed over a

sequential implementation

Separate parallel functional units

Peripheral interfaces for I/O do not burden CPU

9-15

Pipelining

Managing Pipelines

•compiler or programmer

 (TMS320C6000)

•pipeline interlocking

 in processor (TMS320C30)

•hardware instruction

 scheduling

Sequential (Motorola 56000)

Pipelined (Most conventional DSP processors)

Superscalar (Pentium, MIPS)

Superpipelined (TMS320C6000)

Fetch Read Execute Decode

Fetch Decode Execute

Fetch Read Execute Decode

Fetch Read Execute Decode

9-16

TMS320C6000 Pipeline

 One instruction cycle every clock cycle

 Deep pipeline

7-11 stages in C62x: fetch 4, decode 2, execute 1-5

7-16 stages in C67x: fetch 4, decode 2, execute 1-10

 If a branch is in the pipeline, interrupts are disabled

Avoid branches by using conditional execution

 No hardware protection against pipeline hazards

Compiler and assembler must prevent pipeline hazards

 Dispatches instructions in packets

5

9-17

Program Fetch (F)

 Program fetching consists of 4 phases

Generate fetch address (FG)

Send address to memory (FS)

Wait for data ready (FW)

Read opcode (FR)

 Fetch packet consists of 8 32-bit instructions

C6000

Memory FG
FS

FW

FR

9-18

Decode Stage (D)

 Decode stage consists of two phases

Dispatch instruction to functional unit (DP)

 Instruction decoded at functional unit (DC)

C6000

Memory FG
FS

FW

FR DC DP

9-19

Execute Stage (E)

Type Description # Instr Delay

ISC Single cycle 38 0

IMPY Multiply 2 1

LDx Load 3 4

B Branch 1 5

Execute

Phase
Description

E1 ISC instructions completed

E2 Int. mult. instructions completed

E3

E4

E5 Load memory value into register

E6 Branch to destination complete

9-20

Vector Dot Product with Pipeline Effects

pipeline

; clear A4 and initialize pointers A5, A6, and A7

 MVK .S1 40,A2 ; A2 = 40 (loop counter)

loop LDH .D1 *A5++,A0 ; A0 = a(n), H = halfword

 LDH .D1 *A6++,A1 ; A1 = x(n), H = halfword

 MPY .M1 A0,A1,A3 ; A3 = a(n) * x(n)

 ADD .L1 A3,A4,A4 ; Y = Y + A3

 SUB .L1 A2,1,A2 ; decrement loop counter

[A2] B .S1 loop ; if A2 != 0, then branch

 STH .D1 A4,*A7 ; *A7 = Y

Load has a

delay of four cycles

Multiplication has a

delay of 1 cycle

6

9-21

Fetch packet

MVK

LDH

LDH

MPY

ADD

SUB

B

STH

(F1-4)

F DP E1

DC

E2 E3 E4 E5 E6

Time (t) = 4 clock cycles
9-22

Dispatch

F(2-5)

F DP E1

MVK

LDH

LDH

MPY

ADD

SUB

B

STH

DC

E2 E3 E4 E5 E6

Time (t) = 5 clock cycles

9-23

Decode

F(2-5)

F DP E1

LDH

LDH

MPY

ADD

SUB

B

STH

DC

MVK

E2 E3 E4 E5 E6

Time (t) = 6 clock cycles
9-24

Execute (E1)

F(2-5)

F DP E1

LDH

MPY

ADD

SUB

B

STH

DC

LDH

E2 E3 E4 E5 E6

MVK

Time (t) = 7 clock cycles

7

9-25

Execute (MVK done LDH in E1)

F(2-5)

F DP E1

MPY

ADD

SUB

B

STH

DC

LDH

E2 E3 E4 E5 E6

LDH

Time (t) = 8 clock cycles

MVK Done

9-26

Vector Dot Product with Pipeline Effects

; clear A4 and initialize pointers A5, A6, and A7

 MVK .S1 40,A2 ; A2 = 40 (loop counter)

loop LDH .D1 *A5++,A0 ; A0 = a(n)

 LDH .D1 *A6++,A1 ; A1 = x(n)

 NOP 4

 MPY .M1 A0,A1,A3 ; A3 = a(n) * x(n)

 NOP

 ADD .L1 A3,A4,A4 ; Y = Y + A3

 SUB .L1 A2,1,A2 ; decrement loop counter

[A2] B .S1 loop ; if A2 != 0, then branch

 NOP 5

 STH .D1 A4,*A7 ; *A7 = Y

Assembler will automatically insert NOP instructions

Assembler can also make sequential code parallel

9-27

Optimized Vector Dot Product on the C6000

 Split summation into two summations

 Prologue

 Initialize pointers: A5 for a(n), B6 for x(n), A7 for y(n)

Move number of times to loop (N) divided by 2 into A2

 Inner loop

Put a(n) and a(n+1) in A0 and

x(n) and x(n+1) in A1 (packed data)

Multiply a(n) x(n) and a(n+1) x(n+1)

Accumulate even (odd) indexed

terms in A4 (B4)

Decrement loop counter (A2)

 Store result

Reg Meaning

A0

B1
a(n) ||a(n+1)

x(n) || x(n+1)

A2 (N – n)/2

A3

B3

a(n) x(n)

a(n+1) x(n+1)

A4

B4

yeven(n)

yodd(n)

A5

B6

A7

&a

&x

&Y

16-bit data/

coefficients

9-28

 FIR Filter Implementation on the C6000

 MVK .S1 0x0001,AMR ; modulo block size 2^2

 MVKH .S1 0x4000,AMR ; modulo addr register B6

 MVK .S2 2,A2 ; A2 = 2 (four-tap filter)

 ZERO .L1 A4 ; initialize accumulators

 ZERO .L2 B4

; initialize pointers A5, B6, and A7

fir LDW .D1 *A5++,A0 ; load a(n) and a(n+1)

 LDW .D2 *B6++,B1 ; load x(n) and x(n+1)

 MPY .M1X A0,B1,A3 ; A3 = a(n) * x(n)

 MPYH .M2X A0,B1,B3 ; B3 = a(n+1) * x(n+1)

 ADD .L1 A3,A4,A4 ; yeven(n) += A3

 ADD .L2 B3,B4,B4 ; yodd(n) += B3

[A2] SUB .S1 A2,1,A2 ; decrement loop counter

[A2] B .S2 fir ; if A2 != 0, then branch

 ADD .L1 A4,B4,A4 ; Y = Yodd + Yeven

 STH .D1 A4,*A7 ; *A7 = Y

Throughput of two multiply-accumulates per instruction cycle

8

9-29

Conclusion

 Conventional digital signal processors

High performance vs. power consumption/cost/volume

Excel at one-dimensional processing

Have instructions tailored to specific applications

 TMS320C6000 VLIW DSP

High performance vs. cost/volume

Excel at multidimensional signal processing

Maximum of 8 RISC instructions per cycle

9-30

Conclusion

 Web resources

comp.dsp news group: FAQ

www.bdti.com/faq/dsp_faq.html

embedded processors and systems: www.eg3.com

on-line courses and DSP boards: www.techonline.com

 References
R. Bhargava, R. Radhakrishnan, B. L. Evans, and L. K. John,

“Evaluating MMX Technology Using DSP and Multimedia

Applications,” Proc. IEEE Sym. Microarchitecture, pp. 37-46,

1998.http://www.ece.utexas.edu/~ravib/mmxdsp/

B. L. Evans, “EE345S Real-Time DSP Laboratory,” UT Austin.
http://www.ece.utexas.edu/~bevans/courses/realtime/

B. L. Evans, “EE382C Embedded Software Systems,” UT

Austin.http://www.ece.utexas.edu/~bevans/courses/ee382c/

9-31

FIR Filter on a TMS320C5000

COEFFP .set 02000h ; Program mem address

X .set 037Fh ; Newest data sample

LASTAP .set 037FH ; Oldest data sample

 …

 LAR AR3, #LASTAP ; Point to oldest sample

 RPT #127 ; Repeat next inst. 126 times

 MACD COEFFP, *- ; Compute one tap of FIR

 APAC

 SACH Y,1 ; Store result -- note shift

Coefficients

Data

Supplemental Slides

9-32

TMS320C6200 vs. StarCore S140

Feature C6200 S140

Functional Units

 multipliers

 adders

 other

8

2

6

--

16

4

4

8

Instructions/cycle

 RISC instructions *

 conditionals

8

8

8

6 + branch

11

2

Instruction width (bits) 256 128

Total instructions 48 180

Number of registers 32 51

Register size (bits) 32 40

Accumulation precision (bits) ** 32 or 40 40

Pipeline depth (cycle) 7-11 5

* Does not count equivalent RISC operations for modulo addressing

** On the C6200, there is a performance penalty for 40-bit accumulation

Supplemental Slides

1

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 10

Data Conversion

Slides by Prof. Brian L. Evans, Dept. of ECE, UT Austin, and

Dr. Thomas D. Kite, Audio Precision, Beaverton, OR

tomk@audioprecision.com

Dr. Ming Ding, when he was at the Dept. of ECE, UT Austin,

converted slides by Dr. Kite to PowerPoint format

Some figures are from Ken C. Pohlmann, Principles of Digital

Audio, McGraw-Hill, 1995.

10 - 2

Image Halftoning

• Handout J on noise-shaped feedback coding

Different ways to perform one-bit quantization (halftoning)

Original image has 8 bits per pixel original image (pixel values
range from 0 to 255 inclusive)

• Pixel thresholding: Same threshold at each pixel

Gray levels from 128-255 become 1 (white)

Gray levels from 0-127 become 0 (black)

• Ordered dither: Periodic space-varying thresholding

Equivalent to adding spatially-varying dither (noise)
at input to threshold operation (quantizer)

Example uses 16 different thresholds in a 4  4 mask

Periodic artifacts appear as if screen has been overlaid

No noise

shaping

No noise

shaping

10 - 3

Image Halftoning

• Error diffusion: Noise-shaping feedback coding

Contains sharpened original plus high-frequency noise

Human visual system less sensitive to high-frequency noise
(as is the auditory system)

Example uses four-tap Floyd-Steinberg noise-shaping
(i.e. a four-tap IIR filter)

• Image quality of halftones

Thresholding (low): error spread equally over all freq.

Ordered dither (medium): resampling causes aliasing

Error diffusion (high): error placed into higher frequencies

• Noise-shaped feedback coding is a key principle in

modern A/D and D/A converters
10 - 4

Digital Halftoning Methods

Clustered Dot Screening

AM Halftoning

Blue-noise Mask

FM Halftoning 1993

Dispersed Dot Screening

FM Halftoning

Green-noise Halftoning

AM-FM Halftoning 1992

Error Diffusion

FM Halftoning 1975

Direct Binary Search

FM Halftoning 1992

mailto:tomk@audioprecision.com

2

10 - 5

Screening (Masking) Methods

• Periodic array of thresholds smaller than image

Spatial resampling leads to aliasing (gridding effect)

Clustered dot screening produces a coarse image that is more
resistant to printer defects such as ink spread

Dispersed dot screening has higher spatial resolution

256*
32

31
,

32

29
,

32

27
,

32

25
,

32

23
,

32

21
,

32

19
,

32

17
,

32

15
,

32

13
,

32

11
,

32

9
,

32

7
,

32

5
,

32

3
,

32

1

Thresholds











10 - 6

Error Diffusion

Halftone

Grayscale Error Diffusion

• Shapes quantization error (noise)

into high frequencies

• Type of sigma-delta modulation

• Error filter h(m) is lowpass

current pixel

weights

3/16

7/16

5/16 1/16

b(m)
+

_

_

+ e(m)

x(m)

difference threshold

compute

error (noise)

shape

error (noise)

u(m)

)(mh

Floyd-Steinberg filter h(m)

Spectrum

10 - 7

Old-Style A/D and D/A Converters

• Used discrete components (before mid-1980s)

• A/D Converter

Lowpass filter has
stopband frequency
of ½ fs

• D/A Converter

Lowpass filter has
stopband frequency
of ½ fs

Discrete-to-continuous
conversion could be as
simple as sample and hold

Analog

Lowpass

Filter

Quantizer

Sampler at

sampling

rate of f s

Analog

Lowpass

Filter

Discrete to

Continuous

Conversion

fs

10 - 8

A B

C D
Pohlmann Fig. 3-5 Two examples of passive Chebyshev lowpass filters and their

frequency responses. A. A passive low-order filter schematic. B. Low-order filter

frequency response. C. Attenuation to -90 dB is obtained by adding sections to

increase the filter’s order. D. Steepness of slope and depth of attenuation are improved.

Cost of Multibit Conversion Part I:

Brickwall Analog Filters

3

10 - 9

Pohlmann Fig. 4-3 An example of a low-level linearity measurement of a

D/A converter showing increasing non-linearity with decreasing amplitude.

Cost of Multibit Conversion Part II:

Low- Level Linearity

10 - 10

Solutions

• Oversampling eases analog filter design

Also creates spectrum to put noise at inaudible frequencies

• Add dither (noise) at quantizer input

Breaks up harmonics (idle tones) caused by quantization

• Shape quantization noise into high frequencies

Auditory system is less sensitive at higher frequencies

• State-of-the-art in 20-bit/24-bit audio converters

Oversampling 64x 256x 512x

Quantization 8 bits 6 bits 5 bits

Additive dither 2-bit  PDF 2-bit  PDF 2-bit  PDF

Noise shaping 5th / 7th order 5th / 7th order 5th / 7th order

Dynamic range 110 dB 120 dB 120 dB

10 - 11

A. A brick-wall filter must

sharply bandlimit the

output spectra.

B. With four-times

oversampling, images

appear only at the

oversampling frequency.

C. The output sample/hold

(S/H) circuit can be used to

further suppress the

oversampling spectra.

Solution 1: Oversampling

Pohlmann Fig. 4-15 Image spectra of nonoversampled and oversampled reconstruction.

Four times oversampling simplifies reconstruction filter.

10 - 12

Pohlmann Fig. 2-8 Adding dither at quantizer input alleviates effects of quantization error.

A. An undithered input signal with amplitude on the order of one LSB.

B. Quantization results in a coarse coding over two levels. C. Dithered input signal.

D. Quantization yields a PWM waveform that codes information below the LSB.

Solution 2: Add Dither

4

10 - 13

A A 1 kHz sinewave with amplitude of

one-half LSB without dither produces a

square wave.

C Modulation carries the encoded

sinewave information, as can be seen

after 32 averagings.

B Dither of one-third LSB rms amplitude is

added to the sinewave before quantization,

resulting in a PWM waveform.

D Modulation carries the encoded

sinewave information, as can be seen after

960 averagings.

Pohlmann Fig. 2-9 Dither permits encoding of information below the least significant bit.
Vanderkooy and Lipshitz.

Time Domain Effect of Dither

10 - 14

undithered dithered undithered dithered

Pohlmann Fig. 2-10 Computer-simulated quantization of a low-level 1- kHz sinewave

without, and with dither. A. Input signal. B. Output signal (no dither). C. Total error signal

(no dither). D. Power spectrum of output signal (no dither). E. Input signal. F. Output signal

(triangualr pdf dither). G. Total error signal (triangular pdf dither). H. Power spectrum of

output signal (triangular pdf dither) Lipshitz, Wannamaker, and Vanderkooy

Frequency Domain Effect of Dither

10 - 15

We have a two-bit DAC and four-bit input signal words. Both are unsigned.

1 sample

delay

Input

signal

words

To

DAC

4 2

2 2

Assume input = 1001 constant

 Adder Inputs Output

Time Upper Lower Sum to DAC

 1 1001 00 1001 10

 2 1001 01 1010 10

 3 1001 10 1011 10

 4 1001 11 1100 11
Periodic

Average output = 1/4(10+10+10+11)=1001

4-bit resolution at DC!

Going from 4 bits down to 2 bits increases

noise by ~ 12 dB. However, the shaping

eliminates noise at DC at the expense of

increased noise at high frequency.

added

noise

f

12 dB

(2 bits)

If signal is in

this band, you are

better off!

Let’s hope this is

above the passband!

(oversample)

Solution 3: Noise Shaping Putting It All Together

• A/D converter samples at fs and quantizes to B bits

• Sigma delta modulator implementation

Internal clock runs at M fs

FIR filter expands wordlength of b[m] to B bits

b[m] +

_

_

+ e[m]

v[m]

][mh

dither

quantizer

x[m]
FIR

Filter

x(t)
Sample

and hold

 M

M fs

10 - 16

1

EE 445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 11

Data Conversion

Slides by Prof. Brian L. Evans, Dept. of ECE, UT Austin, and

Dr. Thomas D. Kite (Audio Precision, Beaverton, OR

tomk@audioprecision.com)

Dr. Ming Ding, when he was at the Dept. of ECE, UT Austin,

converted slides by Dr. Kite to PowerPoint format

Some figures are from Ken C. Pohlmann, Principles of Digital

Audio, McGraw-Hill, 1995.

11 - 2

Solutions

• Oversampling eases analog filter design

Also creates spectrum to put noise at inaudible frequencies

• Add dither (noise) at quantizer input

Breaks up harmonics (idle tones) caused by quantization

• Shape quantization noise into high frequencies

Auditory system is less sensitive at higher frequencies

• State-of-the-art in 20-bit/24-bit audio converters

Oversampling 64x 256x 512x

Quantization 8 bits 6 bits 5 bits

Additive dither 2-bit  PDF 2-bit  PDF 2-bit  PDF

Noise shaping 5th / 7th order 5th / 7th order 5th / 7th order

Dynamic range 110 dB 120 dB 120 dB

11 - 3

Digital 4x Oversampling Filter

• Upsampling by 4 (denoted by 4)

For each input sample, output the input

sample followed by three zeros

Four times the samples on output as input

Increases sampling rate by factor of 4

• FIR filter performs interpolation

Multiplying 16-bit data and 8-bit coefficient: 24-bit result

Adding two 24-bit numbers: 25-bit result

Adding 16 24-bit numbers: 28-bit result

Digital 4x Oversampling Filter

16 bits

44.1 kHz

28 bits

176.4 kHz 4 FIR Filter 16 bits

176.4 kHz

1 2

Input to Upsampler by 4

n

n’

Output of Upsampler by 4

1 2 3 4 5 6 7 8

1 2

Output of FIR Filter

3 4 5 6 7 8

n’

11 - 4

Pohlmann Fig. 4-17 Noise shaping following oversampling decreases in-band quantization

error. A. Simple noise-shaping loop. B. Noise shaping suppresses noise in the audio band;

boosted noise outside the audio band is filtered out.

Oversampling Plus Noise Shaping

176 kHz

mailto:tomk@audioprecision.com

2

11 - 5

Pohlmann Fig. 16-4 With 1-bit conversion, quantization noise is quite high.

In-band noise is reduced with oversampling. With noise shaping, quantization

noise is shifted away from the audio band, further reducing in-band noise.

Oversampling and Noise Shaping

11 - 6

Pohlmann Fig. 16- 6 Higher orders of noise shaping result

in more pronounced shifts in requantization noise.

Oversampling and Noise Shaping

11 - 7

Discrete time: 11

1


 z

+

_

+ x y 
Assume quantizer adds

uncorrelated white noise n

(model nonlinearity as

additive noise)

)(
1

1
))()(()(

1
zN

z
zYzXzY 






)(

2

1
1

1

2

1
)(

2

1
1

2

1

)(
1

1

1

zN

z

z
zX

z

zY




 








Higher-order modulators

• Add more integrators

• Stability is a major issue

First-Order Delta-Sigma Modulator

Continuous time:
s

1


)(
)()(

)(sN
s

sYsX
sY 




)(
1

)(
1

1
)(sN

s

s
sX

s
sY







 

1 1

Lowpass Highpass

Lowpass Highpass

STF NTF

signal transfer

function (STF)
noise transfer

function (NTF)
signal transfer

function (STF)

noise transfer

function (NTF)

11 - 8

Noise-Shaped Feedback Coder

• Type of sigma-delta modulator (see slide 9-6)

• Model quantizer as LTI [Ardalan & Paulos, 1988]

Scales input signal by a gain by K (where K > 1)

Adds uncorrelated noise n(m)

K

us(m)

Signal Path

K us(m)

un(m)

+

n(m)

un(m) + n(m)

 Noise Path

 
)(1

)(
zH

zN

zB
NTF n 

 
   zHK

K

zX

zB
STF s

 11)(


Q[·]

u(m) b(m) {
NTF is highpass H(z) is lowpass STF passes

low frequencies and amplifies high frequencies

 

3

11 - 9

Pohlmann Fig. 16-13 Reproduction of a 20 kHz waveform showing

the effect of third-order noise shaping. Matsushita Electric

Third-order Noise Shaper Results

11 - 10

19-Bit Resolution from a CD: Part I

Poh1man Fig. 6-27 An

example of noise shaping

showing a 1 kHz sinewave

with -90 dB amplitude;

measurements are made with

a 16 kHz lowpass filter.

A. Original 20 bit recording.

B. Truncated 16 bit signal.

C. Dithered 16 bit signal.

D. Noise shaping preserves

information in lower 4 bits.

11 - 11

19-Bit Resolution from a CD: Part II

Pohlmann Fig. 16-28 An

example of noise shaping

showing the spectrum of a 1

kHz, -90 dB sinewave (from

Fig. 16-27).

A. Original 20-bit recording

B. Truncated 16-bit signal

C. Dithered 16-bit signal

D. Noise shaping reduces low

and medium frequency noise.

Sony’s Super Bit Mapping

uses psycho-acoustic noise

shaping (instead of sigma-

delta modulation) to convert

studio masters recorded at 20-

24 bits/sample into CD audio

at 16 bits/sample. All Dire

Straits albums are available in

this format.
11 - 12

Open Issues in Audio CD Converters

• Oversampling systems used in 44.1 kHz converters

Digital anti-imaging filters (anti-aliasing filters in the case of
A/D converters) can be improved (from paper by J. Dunn)

• Ripple: Near-sinusoidal ripple of passband can be

interpreted as due to sum of original signal and
smaller pre- and post-echoes of original signal

Ripple magnitude and no. of cycles in passband correspond to
echoes up to 0.8 ms either side of direct signal and between -
120 and -50 dB in amplitude relative to direct

Post-echo masked by signal, but pre-echo is not masked

Solution is to reduce passband ripple. Human hearing is no
better than 0.1 dB at its most sensitive, but associated pre-
echo from 0.1 dB passband ripple is audible.

4

11 - 13

Open Issues in Audio CD Converters

• Stopband rejection (A/D Converter)

Anti-aliasing filters are often half-band type with only 6 dB
attenuation at 1/2 of sampling rate.

Do not adequately reject frequencies that will alias.

Ideal filter rolls off at 20 kHz and attenuates below the noise
floor by 22.05 kHz, but many converter designs do not
achieve this

• Stopband rejection (D/A Converter)

Same as for A/D converters

Additional problem: intermodulation products in passband.
Signal from the D/A converter fed to a (power) amplifier
which may have nonlinearity, especially at high frequencies
where the open loop gain is falling.

11 - 14

Audio-Only DVDs

• Sampling rate of 96 kHz with resolution of 24 bits

Dynamic range of 6.02 B + 1.17 = 145.17 dB

Marketing ploy to get people to buy more disks

• Cannot provide better performance than CD

Hearing limited to 20 kHz: sampling rates > 40 kHz wasted

Dynamic range in typical living room is 70 dB SPL
Noise floor 40 dB Sound Pressure Level (SPL)

Most loudspeakers will not produce even 110 dB SPL

Dynamic range in a quiet room less than 80 dB SPL

No audio A/D or D/A converter has true 24-bit performance

• Why not release a tiny DVD with the same capacity

as a CD, with CD format audio on it?

11 - 15

Super Audio CD (SACD) Format

• One-bit digital audio bitstream

Being promoted by Sony and Philips (CD patents expired)

SACD player uses a green laser (rather than CD's infrared)

Dual-layer format for play on an ordinary CD player

• Direct Stream Digital (DSD) bitstream

Produced by 1-bit 5th-order sigma-delta converter operating at
2.8224 MHz (oversampling ratio of 64 vs. CD sampling)

Problems with 1-bit converters: distortion, noise modulation,
and high out-of-band noise power.

• Problems with 1-bit stream (S. Lipshitz, AES 2000)

Cannot properly add dither without overloading quantizer

Suffers from distortion, noise modulation, and idle tones
11 - 16

Conclusion on Audio Formats

• Audio CD format

Fine as a delivery format

Converters have some room for improvement

• Audio DVD format

Not justified from audio perspective

Appears to be a marketing ploy

• Super Audio CD format

Good specifications on paper

Not needed: conventional audio CD is more than adequate

1-bit quantization cannot be made to work correctly

Another marketing ploy (17-year patents expiring)

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 12 http://courses.utexas.edu/

Channel Impairments

12 - 2

Outline

• Analog communication systems

• Channel impairments

• Hybrid communication systems

• Analog pulse amplitude modulation

12 - 3

Communication System Structure

• Information sources

Voice, music, images, video, and data (baseband signals)

• Transmitter

Signal processing block lowpass filters message signal

Carrier circuits block upconverts baseband signal and bandpass

filters to enforce transmission band

m(t)

Signal

Processing

Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Signal

Processing

TRANSMITTER RECEIVER
s(t) r(t)

)(ˆ tm

CHANNEL

Communication Systems

baseband baseband bandpass bandpass baseband baseband

12 - 4

Communication Channel

• Transmission medium

Wireline (twisted pair, coaxial, fiber optics)

Wireless (indoor/air, outdoor/air, underwater, space)

• Propagating signals degrade over distance

• Repeaters can strengthen signal and reduce noise

m(t)

Signal

Processing

Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Signal

Processing

TRANSMITTER RECEIVER
s(t) r(t)

)(ˆ tm

CHANNEL

Review

baseband baseband bandpass bandpass baseband baseband

2

12 - 5

Wireline Channel Impairments

• Linear time-invariant effects

Attenuation: dependent on channel frequency response

Spreading: finite extent of each transmitted pulse increases

Th t

)(th

1

Tb t

)(1 tx

A

Tb

)(0 tx

-A

Model channel as

LTI system with

impulse response

h(t)

Communication

Channel

input output

x(t) y(t) t

)(0 ty

-A Th

t
Th+Tb Th

Assume that Th < Tb

t

)(1 ty

Th+Tb Th

A Th

Bit of ‘0’ or ‘1’

Wireline Channel Impairments

• Linear time-varying effects

Phase jitter: sinusoid at same fixed frequency experiences
different phase shifts when passing through channel

Visualize phase jitter in periodic waveform by plotting it over
one period, superimposing second period on the first, etc.

• Nonlinear effects

Harmonics: due to quantization, voltage rectifiers, squaring
devices, power amplifiers, etc.

Additive noise: arises from many sources in transmitter,
channel, and receiver (e.g. thermal noise)

Additive interference: arises from other systems operating in
transmission band (e.g. microwave oven in 2.4 GHz band)

12 - 6

12 - 7

0 10 20 30 40 50 60 70 80 90

-125

-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

Frequency (kHz)

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Power Spectral Density Estimate

Home Power Line Noise/Interference

Measurement taken on a wall power plug in an

apartment in Austin, Texas, on March 20, 2011
12 - 8

0 10 20 30 40 50 60 70 80 90

-125

-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

Frequency (kHz)

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Power Spectral Density Estimate

Spectrally-Shaped

Background Noise

Home Power Line Noise/Interference

Measurement taken on a wall power plug in an

apartment in Austin, Texas, on March 20, 2011

3

12 - 9

0 10 20 30 40 50 60 70 80 90

-125

-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

Frequency (kHz)

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Power Spectral Density Estimate

Spectrally-Shaped

Background Noise

Narrowband Interference

Home Power Line Noise/Interference

Measurement taken on a wall power plug in an

apartment in Austin, Texas, on March 20, 2011
12 - 10

0 10 20 30 40 50 60 70 80 90

-125

-120

-115

-110

-105

-100

-95

-90

-85

-80

-75

Frequency (kHz)

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Power Spectral Density Estimate

Spectrally-Shaped

Background Noise

Narrowband Interference

Periodic and

Asynchronous

Interference

Home Power Line Noise/Interference

Measurement taken on a wall power plug in an

apartment in Austin, Texas, on March 20, 2011

12 - 11

Wireless Channel Impairments

• Same as wireline channel impairments plus others

• Fading: multiplicative noise

Talking on a mobile phone and reception fades in and out

Represented as time-varying gain that follows a particular

probability distribution

• Simplified channel model for fading, LTI effects

and additive noise

0a FIR +

noise

12 - 12

Hybrid Communication Systems

• Mixed analog and digital signal processing in the

transmitter and receiver

Example: message signal is digital but broadcast over an

analog channel (compressed speech in digital cell phones)

• Signal processing in the transmitter

• Signal processing in the receiver

m(t)

A/D

Converter

Error

Correcting

Codes

Digital

Signaling

Decoder

Waveform

Generator

Equalizer

Detection

digital

sequence

digital

sequence

code

baseband signal

D/A

Converter

A/D

D/A

4

12 - 13

Pulse Amplitude Modulation (PAM)

• Amplitude of periodic pulse train is varied with a

sampled message signal m(t)

Digital PAM: coded pulses of the sampled and quantized

message signal are transmitted (lectures 13 and 14)

Analog PAM: periodic pulse train with period Ts is the carrier

(below)

t

Ts T T+Ts 2Ts

p(t)

m(t) s(t) = p(t) m(t)

Optional

12 - 14

Analog PAM

• Pulse amplitude varied

with amplitude of

sampled message

Sample message every Ts

Hold sample for T seconds

(T < Ts)

Bandwidth  1/T

• Transmitted signal

h(t) is a rectangular pulse

of duration T units

)() ()(nTthnTmts s

n

s  


















otherwise0

 ,0for 2/1

0for 1

)(Ttt

Tt

th

t

m(t)

Ts T T+Ts 2Ts

s(t)

m(0)
m(Ts)

T

t

h(t)

1
)()(

1

 ,0 As

tth
T

T





sample hold

Optional

12 - 15

Analog PAM

• Transmitted signal

• Fourier transform

• Equalization of sample

and hold distortion

added in transmitter

H(f) causes amplitude

distortion and delay of T/2

Equalize amplitude

distortion by post-filtering

with magnitude response

Negligible distortion

(less than 0.5%) if

 

)(*) () (

)(*) () (

) () ()(

thnTtnTm

thnTtnTm

nTthnTmts

n

ss

n

ss

n

ss





































)() (

)()()(sampled

fHkffMf

fHfMfS

k

ss 








Tfj

Tfj

eTfT

eTfTfH

2/ 2

) (sinc

) (sinc)(
















) (sin

) (sinc

1

)(

1

Tf

f

TfTfH 






1.0
sT

T

m sampled(t)

Optional

12 - 16

Analog PAM

• Requires transmitted pulses to

Not be significantly corrupted in amplitude

Experience roughly uniform delay

• Useful in time-division multiplexing

public switched telephone network T1 (E1) line
time-division multiplexes 24 (32) voice channels

Bit rate of 1.544 (2.048) Mbps for duty cycle < 10%

• Other analog pulse modulation methods

Pulse-duration modulation (PDM),
a.k.a. pulse width modulation (PWM)

Pulse-position modulation (PPM): used
in some optical pulse modulation systems.

Optional

1

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 13

Digital Pulse Amplitude

Modulation (PAM)

13 - 2

Outline

• Introduction

• Pulse shaping

• Pulse shaping filter bank

• Design tradeoffs

• Symbol recovery

13 - 3

Introduction

• Convert bit stream into pulse stream

Group stream of bits into symbols of J bits

Represent symbol of bits by unique amplitude

Scale pulse shape by amplitude

• M-level PAM or simply M-PAM (M = 2J)

Symbol period is Tsym and bit rate is J fsym

Impulse train has impulses separated by Tsym

Pulse shape may last one or more symbol periods

4-PAM

Constellation

Map

d

d

3 d

3 d

00

01

10

11

input output

Serial/

Parallel

Map to PAM

constellation an 1 J

bit

stream

J bits per

symbol

Pulse

shaper

gTsym(t) s*(t)

symbol

amplitude

baseband

waveform

Impulse

modulator

impulse

train 13 - 4

Pulse Shaping

• Without pulse shaping

One impulse per symbol period

Infinite bandwidth used (not practical)

• Limit bandwidth by pulse shaping (FIR filtering)

Convolution of discrete-time signal ak

and continuous-time pulse shape

For a pulse shape lasting Ng Tsym seconds, Ng pulses overlap in

each symbol period

 
symT

k

k Tktgats
sym

)(*  




) ()(*

sym

k

k Tktats  






k is a symbol index

Serial/

Parallel

Map to PAM

constellation an 1 J

bit

stream

J bits per

symbol

Pulse

shaper

gTsym(t) s*(t)

symbol

amplitude

baseband

waveform

Impulse

modulator

impulse

train

2

2-PAM Transmission

• 2-PAM example (right)

Raised cosine pulse with

peak value of 1

What are d and Tsym ?

How does maximum

amplitude relate to d?

• Highest frequency ½ fsym

Alternating symbol amplitudes +d, -d, +d, …

13 - 5

Serial/

Parallel

Map to PAM

constellation an 1 J

bit

stream

J bits per

symbol

Pulse

shaper

gTsym(t) s*(t)

symbol

amplitude

baseband

waveform

Impulse

modulator

impulse

train

time (ms)

PAM Transmission

• Transmitted signal

• Sample at sampling time Ts : let t = (n L + m) Ts

L samples per symbol period Tsym i.e. Tsym = L Ts

n is the index of the current symbol period being transmitted

m is a sample index within nth symbol (i.e., m = 0, 1, …, L-1)

])([] [* mknLgamLns
symT

k

k  




 
symT

k

k Tktgats
sym

)(*  




 L Serial/

Parallel

Map to PAM

constellation an 1 J

bit

stream

J bits per

symbol

Pulse

shaper

gTsym[m] s*(t)

symbol

amplitude

baseband

waveform

impulse

train

D/A

baseband

waveform

13 - 7

Pulse Shaping Block Diagram

• Upsampling by L denoted as L

Outputs input sample followed by L-1 zeros

Upsampling by L converts symbol rate to sampling rate

• Pulse shaping (FIR) filter gTsym[m]

Fills in zero values generated by upsampler

Multiplies by zero most of time (L-1 out of every L times)

D/A
Transmit

Filter

an
gTsym[m] L

symbol

rate

sampling

rate

sampling

rate

cont.

time

cont.

time

s*(t)

13 - 8

Digital Interpolation Example

• Upsampling by 4 (denoted by 4)

Output input sample followed by 3 zeros

Four times the samples on output as input

Increases sampling rate by factor of 4

• FIR filter performs interpolation

Lowpass filter with stopband frequency wstopband  p / 4

For fsampling = 176.4 kHz, w = p / 4 corresponds to 22.05 kHz

Digital 4x Oversampling Filter

16 bits

44.1 kHz

28 bits

176.4 kHz 4 FIR Filter 16 bits

176.4 kHz

1 2

Input to Upsampler by 4

n

0

n’

Output of Upsampler by 4

1 2 3 4 5 6 7 8 0

1 2

Output of FIR Filter

3 4 5 6 7 8

n’

0

3

13 - 9

Pulse Shaping Filter Bank Example

• L = 4 samples per symbol

• Pulse shape g[m] lasts for 2 symbols (8 samples)

encoding ↑4 g[m]
bits …a2a1a0 …000a1000a0

s[m] x[m]

s[m] = x[m] * g[m] s[0] = a0 g[0]

s[1] = a0 g[1]

s[2] = a0 g[2]

s[3] = a0 g[3]

s[4] = a0 g[4] + a1 g[0]

s[5] = a0 g[5] + a1 g[1]

s[6] = a0 g[6] + a1 g[2]

s[7] = a0 g[7] + a1 g[3]
L polyphase filters

{g[0],g[4]}

{g[1],g[5]}

{g[2],g[6]}

{g[3],g[7]}

s[m]

…,s[4],s[0]

…,s[5],s[1]

…,s[6],s[2]

…,s[7],s[3]

…,a1,a0

m=0

Commutator

(Periodic)

Filter

Bank

13 - 10

Pulse Shaping Filter Bank

• Simplify by avoiding multiplication by zero

Split long pulse shaping filter into L short polyphase filters

operating at symbol rate

gTsym,0[n]

gTsym,1[n]

gTsym,L-1[n]

an
D/A

Transmit

Filter

s(Ln)

s(Ln+1)

s(Ln+(L-1))

Filter Bank

Implementation

D/A
Transmit

Filter

an
gTsym[m] L

symbol

rate

sampling

rate

sampling

rate

cont.

time

cont.

time

13 - 11

Pulse Shaping Filter Bank Example

• Pulse length 24 samples and L = 4 samples/symbol

• Derivation: let t = (n + m/L) Tsym

• Define mth polyphase filter

• Four six-tap polyphase filters (next slide)


















 





symsymsymT

n

nk

ksymsym kTT
L

m
nTgaT

L

m
nTs

sym

3

2

* 1,...,1 ,0  Lm









 symsymTmT T

L

m
nTgng

symsym
][,

 kngaT
L

m
nTs mT

n

nk

ksymsym sym









 





,

3

2

*

])([] [
3

2

* mknLgamnLs
symT

n

nk

k  




Six pulses contribute

to each output sample

1,...,1 ,0  Lm

13 - 12

Pulse Shaping Filter Bank Example

24 samples

in pulse

x marks

samples of

polyphase

filter

4 samples

per symbol

Polyphase filter 0 response

is the first sample of the

pulse shape plus every

fourth sample after that

Polyphase filter 0 has only one non-zero sample.

gTsym,0[n]

4

13 - 13

Pulse Shaping Filter Bank Example

24 samples

in pulse

x marks

samples of

polyphase

filter

4 samples

per symbol

Polyphase filter 1 response

is the second sample of the

pulse shape plus every

fourth sample after that

gTsym,1[n]

13 - 14

Pulse Shaping Filter Bank Example

24 samples

in pulse

x marks

samples of

polyphase

filter

4 samples

per symbol

Polyphase filter 2 response

is the third sample of the

pulse shape plus every

fourth sample after that

gTsym,2[n]

13 - 15

Pulse Shaping Filter Bank Example

24 samples

in pulse

x marks

samples of

polyphase

filter

4 samples

per symbol

Polyphase filter 3 response

is the fourth sample of the

pulse shape plus every

fourth sample after that

gTsym,3[n]

13 - 16

Pulse Shaping Design Tradeoffs

Computation

in MACs/s

Memory

size in

words

Memory

reads in

words/s

Memory

writes in

words/s

Direct

structure

(slide 13-7)

(L Ng)(L fsym)

Filter bank

structure

(slide 13-10)

L Ng fsym

fsym symbol rate

L samples/symbol

Ng duration of pulse shape in symbol periods

5

13 - 17

Symbol Clock Recovery

• Transmitter and receiver normally have different

oscillator circuits

• Critical for receiver to sample at correct time

instances to have max signal power and min ISI

• Receiver should try to synchronize with

transmitter clock (symbol frequency and phase)

First extract clock information from received signal

Then either adjust analog-to-digital converter or interpolate

• Next slides develop adjustment to A/D converter

• Also, see Handout M in the reader

Optional

13 - 18

Symbol Clock Recovery

• g1(t) is impulse response of LTI composite channel

of pulse shaper, noise-free channel, receive filter

)()()()(11

*

sym

k

k kTtgatgtstq  




 









k m

symsymmk mTtgkTtgaatqtp)()()()(11

2

)(

)()(} {)}({

2

1

2

11

sym

k

sym

k

sym

m

mk

kTtga

mTtgkTtgaaEtpE







 












Optional

Receive

B(w)
Squarer

BPF

H(w)
PLL x(t)

q(t) q2(t)

p(t)

z(t)

E{ak am} = a2 [k-m]

g1(t) is

deterministic

s*(t) is transmitted signal

Periodic with period Tsym

13 - 19

Symbol Clock Recovery

• Fourier series representation of E{ p(t) }

• In terms of g1(t) and using Parseval’s relation

• Fourier series representation of E{ z(t) }

tkj

k

k
symeptpE

)}({

w






 



sym

sym
T tkj

sym

k dtetpE
T

p
0

)}({

1 w
where

Optional

     









 wwww

p

w
dkGG

T

a
dtetg

T

a
p sym

sym

tjk

sym

k
sym

11

2
2

1

2

 2

Receive

B(w)
Squarer

BPF

H(w)
PLL x(t)

q(t) q2(t)

p(t)

z(t)

       




 wwww
p

ww dkGG
T

a
kHkHpz sym

sym

symsymkk 11

2

2

13 - 20

Symbol Clock Recovery

• With G1(w) = X(w) B(w)

Choose B(w) to pass  ½wsym  pk = 0 except k = -1, 0, 1

Choose H(w) to pass wsym  Zk = 0 except k = -1, 1

• B(w) is lowpass filter with w passband = ½ w sym

• H(w) is bandpass filter with center frequency w sym

Optional

  )cos(2 teeeZtzE sym

tjtj

k

tjk

k
symsymsym w

www






       




 wwww
p

ww dkGG
T

a
kHkHpZ sym

sym

symsymkk 11

2

 2

Receive

B(w)
Squarer

BPF

H(w)
PLL x(t)

q(t) q2(t)

p(t)

z(t)

6

1

Slides by Prof. Brian L. Evans and Dr. Serene Banerjee

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 14

Matched Filtering and Digital

Pulse Amplitude Modulation (PAM)

14 - 2

Outline

• Transmitting one bit at a time

• Matched filtering

• PAM system

• Intersymbol interference

• Communication performance

Bit error probability for binary signals

Symbol error probability for M-ary (multilevel) signals

• Eye diagram

14 - 3

Transmitting One Bit

• Transmission on communication channels is analog

• One way to transmit digital information is called

2-level digital pulse amplitude modulation (PAM)

Tb t

)(1 tx

A

‘1’ bit

Additive Noise

Channel

input output

x(t) y(t)

Tb

)(0 tx

-A

‘0’ bit

t

How does the

receiver decide

which bit was sent?

receive

‘1’ bit

Tb t

)(1 ty

A

receive

‘0’ bit

)(0 ty

Tb

-A

t

14 - 4

Transmitting One Bit

• Two-level digital pulse amplitude modulation over

channel that has memory but does not add noise

Th t

)(tc

1

Tb t

)(1 tx

A

‘1’ bit

Tb

)(0 tx

-A

‘0’ bit

Model channel as

LTI system with

impulse response

c(t)

LTI

Channel

input output

x(t) y(t) t

)(0 ty

-A Th

receive

‘0’ bit

t
Th+Tb Th

Assume that Th < Tb

t

)(1 ty
receive

‘1’ bit

Th+Tb Th

A Th

2

14 - 5

Transmitting Two Bits (Interference)

• Transmitting two bits (pulses) back-to-back

will cause overlap (interference) at the receiver

• Sample y(t) at Tb, 2 Tb, …, and

threshold with threshold of zero

• How do we prevent intersymbol

interference (ISI) at the receiver?

Th t

)(tc

1

Assume that Th < Tb

t Tb

)(tx

A

‘1’ bit ‘0’ bit

2Tb

* =
)(ty

-A Th

t Tb

‘1’ bit ‘0’ bit

Th+Tb

Intersymbol

interference

14 - 6

Preventing ISI at Receiver

• Option #1: wait Th seconds between pulses in
transmitter (called guard period or guard interval)

Disadvantages?

• Option #2: use channel equalizer in receiver

FIR filter designed via training sequences sent by transmitter

Design goal: cascade of channel memory and channel
equalizer should give all-pass frequency response

Th t

)(tc

1

Assume that Th < Tb

* =

t Tb

)(tx

A

‘1’ bit ‘0’ bit

Th+Tb

t

)(ty

-A Th

Tb

‘1’ bit ‘0’ bit

Th+Tb

Th

14 - 7

 
k

bk Tktgats) ()(

Digital 2-level PAM System

• Transmitted signal

• Requires synchronization of clocks

between transmitter and receiver

Transmitter Channel Receiver

bi

Clock Tb

PAM g(t) c(t) h(t)
1

0


ak{-A,A} s(t) x(t) y(t) y(ti)

AWGN
w(t)

Decision

Maker

Threshold l

Sample at

t=iTb

bits

Clock Tb

pulse

shaper

matched

filter











1

00 ln
4 p

p

AT

N

b

optl
N(0, N0/2)

p0 is the

probability

bit ‘0’ sent

bits

14 - 8

Matched Filter

• Detection of pulse in presence of additive noise

Receiver knows what pulse shape it is looking for

Channel memory ignored (assumed compensated by other

means, e.g. channel equalizer in receiver)

Additive white Gaussian

noise (AWGN) with zero

mean and variance N0 /2

g(t)

Pulse

signal
w(t)

x(t) h(t) y(t)

t = T

y(T)

Matched

filter

)()(

)(*)()(*)()(

0 tntg

thtwthtgty





T is the

symbol

period

3

14 - 9

power average

power ousinstantane

)}({

|)(|

SNR pulsepeak is where,max

2

2

0 
tnE

Tg




Matched Filter Derivation

• Design of matched filter

Maximize signal power i.e. power of at t = T

Minimize noise i.e. power of

• Combine design criteria

g(t)

Pulse

signal
w(t)

x(t) h(t) y(t)

t = T

y(T)

Matched

filter

)(*)()(thtwtn 

)(*)()(0 thtgtg 

T is the

symbol

period

14 - 10

Power Spectra

• Deterministic signal x(t)

w/ Fourier transform X(f)

Power spectrum is square of

absolute value of magnitude

response (phase is ignored)

Multiplication in Fourier domain

is convolution in time domain

Conjugation in Fourier domain is

reversal & conjugation in time

• Autocorrelation of x(t)

Maximum value (when it

exists) is at Rx(0)

Rx(t) is even symmetric,

i.e. Rx(t) = Rx(-t)

)()()()(*2
fXfXfXfPx 

 )(*)()()(** tt  xxFfXfX

)(*)()(* ttt  xxRx

t

1

x(t)

0 Ts

t

Rx(t)

-Ts Ts

Ts

Power Spectra

• Two-sided random signal n(t)

Fourier transform may not exist, but power spectrum exists

For zero-mean Gaussian random process n(t) with variance s2

• Estimate noise power

spectrum in Matlab

 )()()()(2* tstt  tntnERn

 )()(tnn RFfP 

N = 16384; % finite no. of samples

gaussianNoise = randn(N,1);

plot(abs(fft(gaussianNoise)) .^ 2);

approximate

noise floor

  



 dttntntntnERn)()()()()(** ttt

 )(*)()()()()()(*** ttttt  



nndttntntntnERn

  0 when 0)()()(*  ttt tntnERn

2)(sfPn

14 - 11 14 - 12
2 2 2

0 |)()(| |)(| 




 dfefGfHTg Tfj 

Matched Filter Derivation

• Noise

• Signal










 dffH
N

dffStnE N

202 |)(|
2

)(})({

f

2

0N

Noise power

spectrum SW(f)

)()()(0 fGfHfG 






 dfefGfHtg tfj)()()(2

0



20 |)(|
2

)()()(fH
N

fSfSfS HWN 

g(t)

Pulse

signal w(t)

x(t) h(t) y(t)

t = T

y(T)

Matched filter

)(*)()(0 thtgtg 

)(*)()(thtwtn 

AWGN Matched

filter

T is the

symbol

period

4

14 - 13












dffH
N

dfefGfH Tfj

20

2 2

|)(|
2

|)()(| 



Matched Filter Derivation

• Find h(t) that maximizes pulse peak SNR 

• Schwartz’s inequality

For vectors:

For functions:

upper bound reached iff

|||| ||||
cos |||| |||| | | *

ba

ba
baba

T
T  

Rkxkx )()(21 















-

2

2

-

2

1

2

*

2

-

1)()()()(dxxdxxdxxx 



a

b

14 - 14
)()(Hence,

 inequality s' Schwartzby)()(

 whenoccurs which , |)(|
2

|)(|
2

|)(|
2

|)()(

|)(| |)(| |)()(

)()(and)()(Let

*

 2 *

2

0

max

2

020

2 2

222 2

 2 *

21

tTgkth

kefGkfH

dffG
N

dffG
N

dffH
N

dfefGfH|

dffGdffHdfefGfH|

efGffHf

opt

Tfj

opt

-

Tfj

-

Tfj

Tfj




































































Matched Filter Derivation

T is the

symbol

period

14 - 15

Matched Filter

• Impulse response is hopt(t) = k g*(T - t)

Symbol period T, transmitter pulse shape g(t) and gain k

Scaled, conjugated, time-reversed, and shifted version of g(t)

Duration and shape determined by pulse shape g(t)

• Maximizes peak pulse SNR

Does not depend on pulse shape g(t)

Proportional to signal energy (energy per bit) Eb

Inversely proportional to power spectral density of noise

SNR
2

|)(|
2

 |)(|
2

0

2

0

2

0

max  







N

E
dttg

N
dffG

N

b

14 - 16

t=nT T

Matched Filter for Rectangular Pulse

• Matched filter for causal rectangular pulse shape

Impulse response is causal rectangular pulse of same duration

• Convolve input with rectangular pulse of duration

T sec and sample result at T sec is same as

First, integrate for T sec

Second, sample at symbol period T sec

Third, reset integration for next time period

• Integrate and dump circuit

 

Sample and dump

h(t) = ___

5

14 - 17

 
k

bk Tktgats) ()(

Digital 2-level PAM System

• Transmitted signal

• Requires synchronization of clocks

between transmitter and receiver

Transmitter Channel Receiver

bi

Clock Tb

PAM g(t) c(t) h(t)
1

0


ak{-A,A} s(t) x(t) y(t) y(ti)

AWGN
w(t)

Decision

Maker

Threshold l

Sample at

t=iTb

bits

Clock Tb

pulse

shaper

matched

filter











1

00 ln
4 p

p

AT

N

b

optl
N(0, N0/2)

p0 is the

probability

bit ‘0’ sent

bits

14 - 18

 )()()()(

)(*)()(where)()()(

,

i

ikk

bkbiii

k

bk

tnTkipaiTtpaty

thtwtntnkTtpaty















 
k

bk Tktats) ()(

Digital 2-level PAM System

• Why is g(t) a pulse and not an impulse?

Otherwise, s(t) would require infinite bandwidth

We limit its bandwidth by using a pulse shaping filter

• Neglecting noise, would like y(t) = g(t) * c(t) * h(t)

to be a pulse, i.e. y(t) =  p(t) , to eliminate ISI

actual value

(note that ti = i Tb)

intersymbol

interference (ISI)
noise

p(t) is

centered

at origin

14 - 19

)
 2

(rect
 2

1
)(

||,0

,
 2

1

)(

W

f

W
fP

Wf

WfW
WfP
















Eliminating ISI in PAM

• One choice for P(f) is a
rectangular pulse

W is the bandwidth of the
system

Inverse Fourier transform
of a rectangular pulse is
is a sinc function

• This is called the Ideal Nyquist Channel

• It is not realizable because pulse shape is not
causal and is infinite in duration

) 2(sinc)(tWtp 

14 - 20


















































WffW

fWff
fW

Wf

W

ff
W

fP

2 || 20

2 ||
22

)|(|
sin1

4

1

 || 0
 2

1

)(

1

11

1

1



Eliminating ISI in PAM

• Another choice for P(f) is a raised cosine spectrum

• Roll-off factor gives bandwidth in excess

of bandwidth W for ideal Nyquist channel

• Raised cosine pulse

has zero ISI when

sampled correctly

• Let g(t) and h(t) be square root raised cosine pulses

W

f11

 
222 161

 2cos

sinc)(

tW

tW

T

t
tp

s 















ideal Nyquist channel

impulse response

dampening adjusted by

rolloff factor 

6

14 - 21

Bit Error Probability for 2-PAM

• Tb is bit period (bit rate is fb = 1/Tb)

w(t) is AWGN with zero mean and variance s2

• Lowpass filtering a Gaussian random process

produces another Gaussian random process

Mean scaled by H(0)

Variance scaled by twice lowpass filter’s bandwidth

• Matched filter’s bandwidth is ½ fb

h(t) 
s(t)

Sample at

t = nTb Matched

filter w(t)

r(t) r(t) rn  
k

bk Tktgats) ()(

)()()(twtstr 

r(t) = h(t) * r(t)

Bit Error Probability for 2-PAM

• Noise power at matched filter output

14 - 22

ttt dnTwhnTv 




)()()(

 












  





2
2)()()(ttt dnTwhEnTvE

})()()()({ 212211 








 tttttt ddnTwgnTwgE TT

 








 212121)}()({)()(tttttt ddnTwnTwEgg TT

T
dHdh

sym

sym

22/

2/

2222)(
2

1
)(

s



stts





 






Noise power

T = Tsym Filtered noise

s 2 (t1–t2)

14 - 23

Bit Error Probability for 2-PAM

• Symbol amplitudes of +A and -A

• Rectangular pulse shape with amplitude 1

• Bit duration (Tb) of 1 second

• Matched filtering with gain of one (see slide 14-15)

Integrate received signal over nth bit period and sample

n

n

n

n

n

n

vA

dttwA

dttrr














)(

)(

1

1

0 -

A

nr

)(nr rP
n

A

Probability density function (PDF)

14 - 24











ss

Av
PAvPvAPAnTsP n

nnb)()0())(|error(

Bit Error Probability for 2-PAM

• Probability of error given that

transmitted pulse has amplitude –A

• Random variable

 is Gaussian with

zero mean and

variance of one























 sss
s

A
Qdve

Av
PAnTsP

v

A

n
2

1
))(|error(2

2

s

nv

Q function on next slide

PDF for

N(0, 1)

0 s/A

s/ nvforPDF

Tb = 1

7

14 - 25

Q Function

• Q function

• Complementary error

 function erfc

• Relationship






x

y dyexQ 2/2

2

1
)(








x

t dtexerfc
22

)(












22

1
)(

x
erfcxQ

Erfc[x] in Mathematica

erfc(x) in Matlab

14 - 26

 

2

2

SNR where,

2

1

2

1

))(|error()())(|error()(error)(

s




A

Q
σ

A
Q

σ

A
Q

σ

A
Q

AnTsPAPAnTsPAPP bb

































Bit Error Probability for 2-PAM

• Probability of error given that
transmitted pulse has amplitude A

• Assume that 0 and 1 are equally likely bits

• Probability of error exponentially

decreases with SNR (see slide 8-16)

)/())(|error(sAQAnTsP b 

 




2

1
)(

2



e

Q

 positive largefor

Tb = 1

14 - 27

PAM Symbol Error Probability

• Set symbol time (Tsym) to 1 second

• Average transmitted signal power

GT() square root raised cosine spectrum

• M-level PAM symbol amplitudes

• With each symbol equally likely

}{|)(|
2

1
 }{ 222

nTnSignal aEdGaEP  







 
3

)1()12(
2

1 2

2
2

1

2
2

1
2

2 d
Mid

M
l

M
P

M

i

M

M
i

iSignal  




2
, ,0 , ,1

2
),12(

MM
iidli

2-PAM

d

-d

4-PAM

Constellation points

with receiver

decision boundaries

d

d

3 d

3 d

14 - 28

2

2

2

1
 0

2/

2/

0 N
d

N
P

sym

sym

Noise  









nnn var 

PAM Symbol Error Probability

• Noise power and SNR

• Assume ideal channel,

i.e. one without ISI

• Consider M-2 inner

levels in constellation

Error only if

where

Probability of error is

• Consider two outer

levels in constellation

dvn ||











s

d
QdvP n 2)|(|

2/0

2 Ns











s

d
QdvP n)(

two-sided power spectral

density of AWGN

channel noise after matched

filtering and sampling

0

22

3

)1(2
 SNR

N

dM

P

P

Noise

Signal





8

14 - 29





































sss

d
Q

M

Md
Q

M

d
Q

M

M
Pe

)1(2

2
 2

2

PAM Symbol Error Probability

• Assuming that each symbol is equally likely,

symbol error probability for M-level PAM

• Symbol error probability in terms of SNR

 1
3

 SNR since SNR
1

3

1
2 2

2

2
2

1

2






























 M

d

P

P

M
Q

M

M
P

Noise

Signal

e
s

M-2 interior points 2 exterior points

14 - 30

Visualizing ISI

• Eye diagram is empirical measure of signal quality

• Intersymbol interference (ISI):

Raised cosine filter has zero

ISI when correctly sampled

 







 


















k

nk
k

symsym

knsymsymk
g

kTnTg
aagTkTnganx

)0(

)(
)0() ()(














nkk

sym

nkk

symsym

g

kTg
dM

g

kTnTg
dMD

,,)0(

)(
)1(

)0(

)(
)1(

14 - 31

Eye Diagram for 2-PAM

• Useful for PAM transmitter and receiver analysis
and troubleshooting

• The more open the eye, the better the reception

M=2

t - Tsym

Sampling instant

Interval over which it can be sampled

Slope indicates

sensitivity to

timing error

Distortion over

zero crossing

Margin over noise

t + Tsym t

14 - 32

Eye Diagram for 4-PAM

3d

d

-d

-3d

Due to

startup

transients.

Fix is to

discard first

few symbols

equal to

number of

symbol

periods in

pulse shape.

1

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 15

Quadrature Amplitude Modulation

(QAM) Transmitter

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

15 - 2

Introduction

• Digital Pulse Amplitude Modulation (PAM)

Modulates digital information onto amplitude of pulse

May be later upconverted (e.g. to radio frequency)

• Digital Quadrature Amplitude Modulation (QAM)

Two-dimensional extension of digital PAM

Baseband signal requires sinusoidal amplitude modulation

May be later upconverted (e.g. to radio frequency)

• Digital QAM modulates digital information onto
pulses that are modulated onto

Amplitudes of a sine and a cosine, or equivalently

Amplitude and phase of single sinusoid

Amplitude Modulation by Cosine

• y1(t) = x1(t) cos(wc t)

Assume x1(t) is an ideal lowpass signal with bandwidth w1

Assume w1 << wc

Y1(w) is real-valued if X1(w) is real-valued

• Demodulation: modulation then lowpass filtering

w
0

1

w1 -w1

X1(w)

w

0

Y1(w)

½

-wc - w1 -wc + w1
-wc

wc - w1 wc + w1
wc

½X1(w - wc) ½X1(w + wc)

Review

() () ()cc XXY wwwww -++ 111
2

1

2

1

Baseband signal Upconverted signal

15 - 3

Amplitude Modulation by Sine

• y2(t) = x2(t) sin(wc t)

Assume x2(t) is an ideal lowpass signal with bandwidth w2

Assume w2 << wc

Y2(w) is imaginary-valued if X2(w) is real-valued

• Demodulation: modulation then lowpass filtering

w

Y2(w)

j ½

-wc – w2 -wc + w2
-wc

wc – w2 wc + w2
wc

-j ½X2(w - wc) j ½X2(w + wc)

-j ½

w
0

1

w2 -w2

X2(w)

Review

() () ()cc X
j

X
j

Y wwwww --+ 222
22

Baseband signal Upconverted signal

15 - 4

2

Baseband Digital QAM Transmitter

• Continuous-time filtering and upconversion

15 - 5

i[n] gT(t)

+

q[n]
gT(t)

Serial/

parallel

converter 1

Bits
Map to 2-D

constellation J

Pulse shapers

(FIR filters)

Index

Impulse

modulator

Impulse

modulator

s(t)

Local

Oscillator
90o

Delay

Delay matches delay through 90o phase shifter

Delay required but often omitted in diagrams

4-level QAM

Constellation

I

Q

d

d

-d

-d

15 - 6

Phase Shift by 90 Degrees

• 90o phase shift performed by Hilbert transformer

cosine => sine

sine => – cosine

• Frequency response

)(
2

1
)(

2

1
) 2cos(000 fffftf -++ 

)(
2

)(
2

) 2sin(000 ff
j

ff
j

tf --+ 

)sgn()(fjfH -

f

)(fH

-90o

90o

f

|)(| fH

Magnitude Response Phase Response

All-pass except at origin

15 - 7

Hilbert Transformer

• Continuous-time ideal

Hilbert transformer

• Discrete-time ideal

Hilbert transformer

h(t) =

1/( t) if t  0

0 if t = 0

h[n] =

if n0

0 if n=0

n

n)2/(sin2 2 



Even-indexed

samples are zero

t

h(t)

)sgn()(fjfH -)sgn()(ww jH -

n

h[n]

15 - 8

Discrete-Time Hilbert Transformer

• Approximate by odd-length linear phase FIR filter

Truncate response to 2 L + 1 samples: L samples left of

origin, L samples right of origin, and origin

Shift truncated impulse response by L samples to right to

make it causal

L is odd because every other sample of impulse response is 0

• Linear phase FIR filter of length N has same phase

response as an ideal delay of length (N-1)/2

(N-1)/2 is an integer when N is odd (here N = 2 L + 1)

• Matched delay block on slide 15-5 would be an

ideal delay of L samples

3

15 - 9

Baseband Digital QAM Transmitter

i[n] gT(t)

+

q[n]
gT(t)

Serial/

parallel

converter 1

Bits
Map to 2-D

constellation J

Pulse shapers

(FIR filters)

Index

Impulse

modulator

Impulse

modulator

s(t)

Local

Oscillator
90o

Delay

i[n]
gT[m] L

+
cos(w0 m)

q[n] gT[m] L

sin(w0 m)

Serial/

parallel

converter 1

Bits
Map to 2-D

constellation J

L samples/symbol

(upsampling factor)

Pulse shapers

(FIR filters)

Index
s[m]

D/A

s(t)

100% discrete time

15 - 10

Performance Analysis of PAM

• If we sample matched filter output at correct time

instances, nTsym, without any ISI, received signal

where transmitted signal is

v(t) output of matched filter Gr(w) for input of

channel additive white Gaussian noise N(0; 2)

Gr(w) passes frequencies from -wsym/2 to wsym/2 ,

where wsym = 2  fsym = 2 / Tsym

• Matched filter has impulse response gr(t)

)()()(symsymsym nTvnTsnTx +

dianTs nsym)12()(- for i = -M/2+1, …, M/2

v(nT) ~ N(0; 2/Tsym)

4-level PAM

Constellation

d

-d

-3 d

 3 d

15 - 11

Performance Analysis of PAM

• Decision error

for inner points

• Decision error

for outer points

• Symbol error probability

-7d -5d -3d -d d 3d 5d 7d

O- I I I I I I O+









 symsymI T

d
QdnTvPeP


 2))(()(











- symsymO T
d

QdnTvPeP


))(()(









-

+ symsymsymO T
d

QdnTvPdnTvPeP


))(())(()(








-
++

-


-+ symOOI T
d

Q
M

M
eP

M
eP

M
eP

M

M
eP



)1(2
)(

1
)(

1
)(

2
)(

8-level PAM

Constellation

15 - 12

Performance Analysis of QAM

• If we sample matched filter outputs at correct time

instances, nTsym, without any ISI, received signal

• Transmitted signal

where i,k  { -1, 0, 1, 2 } for 16-QAM

• Noise

For error probability analysis, assume noise terms independent

and each term is Gaussian random variable ~ N(0; 2/Tsym)

In reality, noise terms have common source of additive noise in

channel

)()()(symsymsym nTvnTsnTx +

dkjdibjanTs nnsym)12()12()(-+-+

)()()(symQsymIsym nTvjnTvnTv +
4-level QAM

Constellation

I

Q

d

d

-d

-d

4

15 - 13

Performance Analysis of 16-QAM

• Type 1 correct detection

))(&)(()(1 dnTvdnTvPcP symQsymI 

() ()dnTvPdnTvP symQsymI )()(

()() ()()dnTvPdnTvP symQsymI --)(1)(1

2

21 















- symT

d
Q



)(2 T
d

Q


)(2 T
d

Q


3

3

3

3

2 2

2

2

2 2

2

2

1 1

1 1

I

Q

16-QAM

1 - interior decision region

2 - edge region but not corner

3 - corner region 15 - 14

Performance Analysis of 16-QAM

• Type 2 correct detection

• Type 3 correct detection

))(&)(()(2 dnTvdnTvPcP symQsymI 

))(())((dnTvPdnTvP symQsymI 

















-
















- symsym T

d
QT

d
Q


211

))(&)(()(3 dnTvdnTvPcP symQsymI -

))(())((dnTvPdnTvP symQsymI -
2

1 















- symT

d
Q



3

3

3

3

2 2

2

2

2 2

2

2

1 1

1 1

I

Q

16-QAM

1 - interior decision region

2 - edge region but not corner

3 - corner region

15 - 15

Performance Analysis of 16-QAM

• Probability of correct detection

• Symbol error probability (lower bound)

• What about other QAM constellations?

22

1
16

4
21

16

4
)(
















-+
















- symsym T

d
QT

d
QcP



 211
16

8
















-
















-+ symsym T

d
QT

d
Q











+








- symsym T

d
QT

d
Q



2

4

9
31









-








- symsym T

d
QT

d
QcPeP



2

4

9
3)(1)(

15 - 16

Average Power Analysis

• Assume each symbol is equally likely

• Assume energy in pulse shape is 1

• 4-PAM constellation

Amplitudes are in set { -3d, -d, d, 3d }

Total power 9 d2 + d2 + d2 + 9 d2 = 20 d2

Average power per symbol 5 d2

• 4-QAM constellation points

Points are in set { -d – jd, -d + jd, d + jd, d – jd }

Total power 2d2 + 2d2 + 2d2 + 2d2 = 8d2

Average power per symbol 2d2

4-level PAM

Constellation

d

-d

-3 d

 3 d

4-level QAM

Constellation

I

Q

d

d

-d

-d

1

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 16

Quadrature Amplitude Modulation

(QAM) Receiver

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

16 - 2

Outline

• Introduction

• Automatic gain control

• Carrier detection

• Symbol clock recovery

• Channel equalization

• QAM demodulation

16 - 3

Introduction

• Channel impairments

Linear and nonlinear distortion of transmitted signal

Additive noise (often assumed to be Gaussian)

• Mismatch in transmitter/receiver analog front ends

• Receiver subsystems to compensate for impairments

Fading Automatic gain control (AGC)

Additive noise Matched filters

Linear distortion Channel equalizer

Carrier mismatch Carrier recovery

Symbol timing mismatch Symbol clock recovery

 16 - 4

Baseband QAM

Receive

Filter
A/D

Symbol

Clock

Recovery

LPF

LPF

Carrier

Detect
AGC

X

X

r0(t) r1(t) r(t) r[m] Channel

Equalizer

L

L

L samples/symbol

m sample index

n symbol index

QAM Demodulation c(t)

2 cos(c m)

-2 sin(c m)

Receiver

i[n]
gT[m] L

+
cos(c m)

q[n] gT[m] L

sin(c m)

Serial/

parallel

converter 1

Bits
Map to 2-D

constellation J

Pulse shapers

(FIR filters)

Index
s[m]

D/A

s(t)

Transmitter

fs

Carrier recovery

is not shown

][̂mi

][ˆ mq

][̂ni

][ˆ nq

i[m]

q[m]

2

Automatic Gain Control

• Scales input voltage to A/D converter

Increase gain for low signal level

Decrease gain for high signal level

• Consider A/D converter with 8-bit signed output

When c(t) is zero, A/D output is 0

When c(t) is infinity, A/D output is -128 or 127

Let f-128, f0 and f127 represent how frequently outputs -128, 0

and 127 occur over a window of previous samples

Each frequency value is between 0 and 1, inclusive

Update: c(t) = (1 + 2 f0 – f-128 – f127) c(t – t)

Initial values: f-128 = f0 = f127 = 1 / 256. Zero also works.

16 - 5

A/D

AGC

r1(t) r(t) r[m]

c(t)

16 - 6

Carrier Detection

• Detect energy of received signal (always running)

c is a constant where 0 < c < 1 and r[m] is received signal

Let x[m] = r2[m]. What is the transfer function?

What values of c to use?

• If receiver is not currently receiving a signal

If energy detector output is larger than a large threshold,
assume receiving transmission

• If receiver is currently receiving signal, then it
detects when transmission has stopped

If energy detector output is smaller than a smaller threshold,
assume transmission has stopped

][)1(]1[][2 mrcmpcmp 

16 - 7

Symbol Clock Recovery

• Two single-pole bandpass filters in parallel

One tuned to upper Nyquist frequency u = c + 0.5 sym

Other tuned to lower Nyquist frequency l = c – 0.5 sym

Bandwidth is B/2 (100 Hz for 2400 baud modem)

• A recovery method

Multiply upper bandpass filter output with conjugate of lower

bandpass filter output and take the imaginary value

Sample at symbol rate to estimate timing error t

Smooth timing error estimate to compute phase advancement

tt) sin(][symsymnv  1 tsymwhen

][]1[][nvnpnp   Lowpass

IIR filter

Pole

locations?

See Reader

handout M

Channel Equalizer

• Mitigates linear distortion in channel

• When placed after A/D converter

Time domain: shortens channel impulse response

Frequency domain: compensates channel distortion over entire

discrete-time frequency band instead of transmission band

• Ideal channel

Cascade of delay D and gain g

Impulse response: impulse delayed by D with amplitude g

Frequency response: allpass and linear phase (no distortion)

Undo effects by discarding D samples and scaling by 1/g

16 - 8

z-D g

3

Channel Equalizer

• IIR equalizer

Ignore noise nm

Set error em to zero

H(z) W(z) = g z-D

W(z) = g z-D / H(z)

Issues?

• FIR equalizer

Adapt equalizer coefficients when transmitter sends training

sequence to reduce measure of error, e.g. square of em

16 - 9

Discrete-Time Baseband System

z-D

h + w

-

xm ym em rm

nm

+

Equalizer Channel

g

Ideal Channel

+

Receiver

generates

xm

Training

sequence

Adaptive FIR Channel Equalizer

• Simplest case: w[m] = d[m] + w1 d[m-1]

Two real-valued coefficients w/ first coefficient fixed at one

• Derive update equation for w1 during training

Using least mean squares (LMS)

Step size 0 < m < 1]1[][][]1[

][
2

1
][

][
][]1[

11

2

][1

11

11












mymemwmw

memJ

w

mJ
mwmw

LMS

mww

LMS

m

m

]1[][][

][][

][][][

1 

D



mywmymr

mxgms

msmrme

z-D

h + w

-

xm ym em rm

nm

+

Equalizer Channel

g

Ideal Channel

+

Receiver

generates

xm

Training

sequence

sm

Baseband QAM Demodulation

• Recovers baseband in-phase/quadrature signals

• Assumes perfect AGC, equalizer, symbol recovery

• QAM modulation followed by lowpass filtering

Receiver fmax = 2 fc + B and fs > 2 fmax

• Lowpass filter has other roles

Matched filter

Anti-aliasing filter

• Matched filters

Maximize SNR at downsampler output

Hence minimize symbol error at downsampler output

 16 - 11

LPF

LPF

X

X

2 cos(c m)

-2 sin(c m)

x[m]

][̂mi

][ˆ mq

16 - 12

Baseband QAM Demodulation

• QAM baseband signal

• QAM demodulation

Modulate and lowpass filter to obtain baseband signals

) sin(][) cos(][][mmqmmimx cc  

)cos(][2][̂ mmxmi c)cos()sin(][2)(cos][2 2 mmmqtmi ccc  

)2sin(][)2cos(][][mmqmmimi cc  

)sin(][2][ˆ mmxmq c)(sin][2)sin()cos(][2 2 mmqmmmi ccc  

)2cos(][)2sin(][][mmqmmimq cc  

)2cos1(
2

1
cos2    2sinsincos2 )2cos1(

2

1
sin2  

baseband high frequency component centered at 2 c

baseband high frequency component centered at 2 c

4

1

EE445S Real-Time Digital Signal Processing Lab Spring 2014

Lecture 17

Fast Fourier Transform

Prof. Brian L. Evans

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

17 - 2

Discrete-Time Fourier Transform

• Forward transform of discrete-time signal x[n]

Assumes that x[n] is two-sided and infinite in duration

Produces X(w) that is periodic in w (in units of rad/sample)
with period 2 p due to exponential term

• Inverse discrete-time
Fourier transform

• Basic

transform
pairs







n

njenxX][)(ww




p

p

w ww
p

deXnx nj)(
2

1
][

1)(][][ w Xnnx







k

kXnx)2()(1][pww

17 - 3

Discrete Fourier Transform (DFT)

• Discrete Fourier transform (DFT) of a discrete-

time signal x[n] with finite extent n  [0, N-1]

X[k] periodic with period N due to exponential

Also assumes x[n] periodic with period N

• Inverse discrete

Fourier transform

• Twiddle factor

k
N

N

n

nk
N

j

XenxkX p
w

p

w 2

1

0

2

)(][][








  for k = 0, 1, …, N-1







1

0

2

][
1

][
N

k

nk
N

j

ekX
N

nx

p







1

0

2

][
1

][
N

k

nk

N
N

j

N WkX
N

nxeW

p

Two-Point DFT

]1[]0[]0[xxX 

]1[]0[]1[xxX 

17 - 4

Discrete Fourier Transform (con’t)

• Forward transform

for k = 0, 1, …, N-1

Exponent of WN has period N

• Memory usage

x[n]: N complex words of RAM

X[k]: N complex words of RAM

WN : N complex words of ROM

• Halve memory usage
Allow output array X[k] to write

over input array x[n]

Exploit twiddle factors symmetry

• Computation

N2 complex multiplications

N (N –1) complex additions

N2 integer multiplications

N2 modulo indexes into lookup

table of twiddle factors

• Inverse transform

for n = 0, 1, …, N-1

Memory usage?

Computational complexity?







1

0

][][
N

n

nk

NWnxkX







1

0

][
1

][
N

k

nk

NWkX
N

nx

2

17 - 5

Fast Fourier Transform Algorithms

• Communication system application: multicarrier

modulation using harmonically related carriers

Discrete multitone modulation in ADSL & VDSL modems

OFDM in IEEE 802.11a/g Wi-Fi and cellular LTE

• Efficient divide-and-conquer algorithm

Compute discrete Fourier transform of length N = 2n

½ N log2 N complex multiplications and additions

How many real complex multiplications and additions?

• Derivation: Assume N is even and power of two

 













111

0

][][][][
N

oddn

nk

N

N

evenn

nk

N

N

n

nk

N WnxWnxWnxkX

17 - 6

Fast Fourier Transform (cont’d)

• Substitute n = 2r for n even and n = 2r+1 for odd

• Using the property

One FFT length N => two FFTs length N/2

Repeat process until two-point FFTs remain

Computational complexity of two-point FFT?

l

N
N

l
j

N

l
j

l

N WeeW 2/
2/

22
2

2 


p
p











12/

0

2/

12/

0

2/]12[]2[][
N

r

rk

N

k

N

N

r

rk

N WrxWWrxkX][][kHWkG k

N












12/

0

)12(
12/

0

2]12[]2[][
N

r

kr

N

N

r

rk

N WrxWrxkX

   









12/

0

22
12/

0

]12[]2[
N

r

rk

N

k

N

rk

N

N

r

WrxWWrx

Two-Point FFT

]1[]0[]0[xxX 

]1[]0[]1[xxX 

17 - 7

Linear Convolution by FFT

• Linear convolution

x[n] has length Nx and h[n] has length Nh

y[n] has length Nx+Nh-1

• Linear convolution requires NxNh real-valued
multiplications and 2Nx + 2Nh - 1 words of memory

• Linear convolution by FFT of length N = Nx+Nh - 1

Zero pad x[n] and h[n] to make each N samples long

Compute forward DFTs of length N to obtain X[k] and H[k]

Y[k] = H[k] X[k] for k = 0…N-1: may overwrite X[k] with Y[k]

Take inverse DFT of length N of Y[k] to obtain y[n]

• If h[n] is fixed, then precompute and store H[k]

 
m

mnxmhny][][][

17 - 8

Linear Convolution by FFT

• Implementation complexity using N-length FFTs

3 N log2 N complex multiplications and additions

2 N complex words of memory if Y[k] overwrites X[k]

• FFT approach requires fewer computations if

• Disadvantages of FFT approach

Uses twice the memory: 2(Nx +Nh -1)
complex words vs. 2Nx + 2Nh - 1 words

Often requires floating-point arithmetic

Adds delay of Nx samples to buffer x[n]
whereas linear convolution is computed sample-by-sample

Creates discontinuities at boundaries of blocks of input data:
use overlapping blocks and windowing

hxhxhx NNNNNN )1(log)1(12 2

FFT under fixed-

point arithmetic?

1/9/2014

1

Review for Midterm #2

Wireless Networking and Communications Group

9 January 2014

Prof. Brian L. Evans

EE 445S Real-Time Digital Signal Processing Laboratory

2

Outline

 Introduction

 Signal processing building blocks

Filters

Data conversion

Rate changers

 Communication systems

Design tradeoffs in signal quality vs. implementation complexity

3

Introduction

 Signal processing algorithms

 Multirate processing: e.g. interpolation

 Local feedback: e.g. IIR filters

 Iteration: e.g. phase locked loops

 Signal representations

 Bits, symbols

 Real-valued symbol amplitudes

 Complex-valued symbol amplitudes (I-Q)

 Vectors/matrices of scalar data types

 Algorithm implementation

 Dominated by multiplication/addition

 High-throughput input/output

Do not need

recursion

Often iterative

Bit error rate vs. Signal-
to-noise ratio (Eb/No)

Communication

signal quality plot

4

Finite Impulse Response Filters

 Pointwise arithmetic operations (addition, etc.)

 Delay by m samples

 Finite impulse
response filter

 Always stable

 Each input sample
produces one
output sample

 DSP processor
architecture

0a

op

0a

mz







1

0

][][
M

m

m mkxaky

][kx

1z

S
][ky

0a 1Ma
2Ma1a

…

…
1z1z

FIR

1/9/2014

2

5

Infinite Impulse Response Filters





M

m

m

N

n

n mkyankxbky
10

][][][

S
x[k] y[k]

y[k-M]

x[k-1]

x[k-2] b2

b1

b0

Unit

Delay

Unit

Delay

Unit

Delay

x[k-N] bN

Feed-

forward

 a1

a2

y[k-1]

y[k-2]

Unit

Delay

Unit

Delay

Unit

Delay

aM

Feedback

IIR

 Each input
sample produces
one output sample

 Pole locations
perturbed when
expanding transfer
function into
unfactored form

 20+ filter
structures

 Direct form

 Cascade biquads

 Lattice

6

Data Conversion

 Analog-to-Digital

 Quantize to B bits

Quantization error = noise

SNRdB  C0 + 6.02 B

Dynamic range  SNR

 Digital-to-Analog

 A/D and D/A lowpass filter

fstop < ½ fs fpass  0.9 fstop

Astop = SNRdB Apass = dB

dB = 20 log10 (2mmax / (2B-1))

 is quantization step size

mmax is max quantizer voltage

Analog

Lowpass

Filter

Discrete to

Continuous

Conversion

f s

Analog

Lowpass

Filter

Quantizer

Sample at

rate of f s

noise

dB

signal

dBdB

noisesignal

dB

dB

PP

PP







SNR

log10log10SNR

Power Noise

Power Signal
log10SNR

1010

10

B B

7

7

Increasing Sampling Rate

 Upsampling by L denoted as L

Outputs input sample followed by L-1 zeros

Increases sampling rate by factor of L

 Finite impulse response (FIR) filter g[m]

Fills in zero values generated by upsampler

Multiplies by zero most of time
(L-1 out of every L times)

 Sometimes combined into
rate changing FIR block

m

Output of Upsampler by 4

1 2 3 4 5 6 7 8 0

1 2

Output of FIR Filter

3 4 5 6 7 8

m

0

1 2

Input to Upsampler by 4

n

0

g[m] 4

1 4 1 1

FIR

1 4

8

8

Polyphase Filter Bank Form

 Filter bank (right) avoids multiplication by zero

Split filter g[m] into L shorter polyphase filters operating at the
lower sampling rate (no loss in output precision)

Saves factor of L in multiplications and previous inputs stored
and increases parallelism by factor of L

g0[n]

g1[n]

gL-1[n]

s(Ln)

s(Ln+1)

s(Ln+(L-1))

g[m] L

Oversampling filter a.k.a.

sampler + pulse shaper a.k.a.

linear interpolator

Multiplies by zero

(L-1)/L of the time

1 L

L 1

1/9/2014

3

9

Decreasing Sampling Rate

 Finite impulse response (FIR) filter g[m]

Typically a lowpass filter

Enforces sampling theorem

 Downsampling by L denoted as L

Inputs L samples

Outputs first sample and discards L-1 samples

Decreases sampling rate by factor of L

 Sometimes combined into
rate changing FIR block

 4

4 1

g[m]
1 1

1 2

Input to Downsampler

3 4 5 6 7 8

m

0

1 2

Output of Downsampler

n

0

FIR

4 1

10

10

Polyphase Filter Bank Form

y[1] = v[L] = h[0] s[L] + h[1] s[L-1] + … + h[L-1] s[1] + h[L] s[0]

 Filter bank only computes values output by downsampler

Split filter h[m] into L shorter polyphase filters operating at the
lower sampling rate (no loss in output precision)

Reduces multiplications and increases parallelism by factor of L

h0[n]

h1[n]

hL-1[n]

h[m] L

s(Ln)

s(Ln+1)

s(Ln+(L-1))

Undersampling filter a.k.a.

Matched filter + sampling a.k.a.

linear decimator

Outputs discarded

(L-1)/L of the time

1

1

L

M

s[m] s[m] y[n]

y[n]

v[m]

11

11

Communication Systems

 Message signal m[k] is information to be sent

Information may be voice, music, images, video, data

Low frequency (baseband) signal centered at DC

 Transmitter baseband processing includes lowpass filtering
to enforce transmission band

 Transmitter carrier circuits include digital-to-analog
converter, analog/RF upconverter, and transmit filter

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

][ˆ km

CHANNEL

][km

12

12

Communication Systems

 Propagating signals experience
attenuation & spreading w/ distance

 Receiver carrier circuits include receive filter, carrier
recovery, analog/RF downconverter, automatic gain control
and analog-to-digital converter

 Receiver baseband processing extracts/enhances baseband
signal

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

][ˆ km

CHANNEL

][km

Model the

environment

1/9/2014

4

13

13

Quadrature Amplitude Modulation

i[n] gT[m] L

+ cos(0 m)

q[n] gT[m] L

sin(0 m)

Serial/

parallel

converter 1

Bits
Map to 2-D

constellation J

L samples per

symbol (upsampling)

Transmitter

Baseband

Processing

Pulse

shaper

(FIR filter)

Index

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

][ˆ km

CHANNEL

][km

14

14

Quad. Amplitude Demodulation

iest[n] hopt[m] L

cos(0 m)

hopt[m] L

sin(0 m)
L samples per symbol

(downsampling)

Matched

filter

(FIR filter)

qest[n]

Parallel/

serial

converter
J

Bits

Decision

Device 1

Symbol

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

][ˆ km

CHANNEL

][km

heq[m]

Channel

equalizer

(FIR filter)

Receiver

Baseband

Processing

15

Modeling of Points In-Between

 Baseband discrete-time channel model

 Combines transmitter carrier circuits, physical channel and
receiver carrier circuits

 One model uses cascade
of gain, FIR filter, and
additive noise

Baseband

Processing
Carrier

Circuits

Transmission

Medium

Carrier

Circuits

Baseband

Processing

TRANSMITTER RECEIVER
s(t) r(t)

][ˆ km

CHANNEL

][km

0a FIR +

noise

16

QAM Signal Quality

 Assumptions

 Each symbol is equally likely

 Channel only consists of additive noise

White Gaussian noise with zero mean
and variance 2 in in-phase and
quadrature components

 Total noise power of 22

 Carrier frequency and phase recovery

 Symbol timing recovery

 Probability of symbol error

 Constellation spacing of 2d

 Symbol duration of Tsym

3

3

3

3

2 2

2

2

2 2

2

2

1 1

1 1

I

Q

16-QAM

SNR toalproportion is

4

9
3)(2

sym

symsym

T
d

T
d

QT
d

QeP























EE445S Real-Time Digital Signal Processing Lab (Spring 2014)

Lecture: MWF 11:00am{12:00pm in ETC 5.148

Instructor: Prof. Brian L. Evans, ENS 433B, 512-232-1457, bevans@ece.utexas.edu

OÆce Hours: MW 12:00{12:30pm and TH 12:30{2:30pm

Lab Sections: M 6:30{9:30pm (Sinno), T 6:30{9:30pm (Sinno),

(ENS 252B) W 6:30{9:30pm (Jia), F 1:00{4:00pm (Jia)

TA OÆce Hours: Ms. Zeina Sinno, W 3:00{4:30pm and TH 5:30{7:00pm, zeina@utexas.edu

(ENS 137) Mr. Chao Jia, TH 3:30{5:30pm and F 9:30{10:30am, kurtjc@gmail.com

Course Web Page: http://users.ece.utexas.edu/~bevans/courses/rtdsp

This course covers basic discrete-time signal processing concepts and gives hands-on experi-

ence in translating these concepts into real-time digital communications software. The goal

is to understand design tradeo�s in signal quality vs. implementation complexity.

Prerequisites

EE 312 and 319K with a grade of at least C- in each; BME 343 or EE 313 with a grade of

at least C-; credit with a grade of at least C- or registration for BME 333T or EE 333T; and

credit with a grade of at least C- or registration for BME 335 or EE 351K.

Topical Outline

System-level design tradeo�s in signal quality vs. implementation complexity; prototyping

of baseband transceivers in real-time embedded software; addressing nodes, parallel instruc-

tions, pipelining, and interfacing in digital signal processors; sampling, �ltering, quantization,

and data conversion; modulation, pulse shaping, pseudo-noise sequences, carrier recovery,

and equalization; and desktop simulation of digital communication systems.

Required Texts

1. C. R. Johnson Jr., W. A. Sethares and A. G. Klein, Software Receiver Design, Cambridge

University Press, Oct. 2011, ISBN 978-0521189446. Paperback. Matlab code.

2. T. B. Welch, C. H. G. Wright and M. G. Morrow, Real-Time Digital Signal Processing

from MATLAB to C with the TMS320C6x DSPs, CRC Press, 2nd ed., Dec. 2011, ISBN

978-1439883037.

3. B. L. Evans, EE 445S Real-Time DSP Lab Course Reader. Available on course Web page

and on-demand from the HKN OÆce (ENS 129).

Supplemental Texts

4. B. P. Lathi, Linear Systems and Signals, 2nd ed., Oxford, ISBN 0-19-515833-4, 2005.

5. M. J. Roberts, Signals and Systems, McGraw-Hill, ISBN 978-0072930443, June 2003.

6. A. O. Oppenhiem and R. W. Schafer, Signals and Systems, 2nd ed., Prentice Hall, 1999.

7. J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach,

Prentice-Hall, ISBN 0-13-243171-8, 1998. On-line Multimedia CD ROM.

Grading

14% Homework, 21% Midterm #1, 21% Midterm #2, 5% Pre-lab quizzes, 39% Laboratory.

Midterms will be held during lecture, with midterm #1 on Friday, Mar. 7th, and midterm #2

on Friday, May 2nd. Attendance/participation in laboratory is mandatory and graded. Lec-

ture helps connect together all of the pieces of the class| laboratory, reading, and homework

assignments. Lecture attendance is helpful in landing internships and permanent positions,

and allows you to get the most for your tuition dollar. Plus and minus grades will be assigned

for the �nal letter grades. There is no �nal exam. Request for regrading an assignment must

be made in writing within one (1) week of the graded assignment being made available to

students in the class. Discussion of homework questions is encouraged. Please submit your

own independent homework solutions. Late assignments will not be accepted.

University Honor Code

\The core values of The University of Texas at Austin are learning, discovery, freedom,

leadership, individual opportunity, and responsibility. Each member of the University is

expected to uphold these values through integrity, honesty, fairness, and respect toward

peers and community." http://www.utexas.edu/about-ut/mission-core-purpose-honor-code

Religious Holidays

By UT Austin policy, you must notify the instructor of any pending absence at least fourteen

(14) days prior to the date of observance of a religious holy day, or on the �rst class day if the

observance takes place during the �rst fourteen days of the semester. If you must miss class,

lab section, exam, or assignment to observe a religious holiday, you will have an opportunity

to complete the missed work within a reasonable amount of time after the absence.

College of Engineering Drop/Add Policy

The Dean must approve adding or dropping courses after the fourth class day of the semester.

Students with Disabilities

UT provides upon request appropriate academic accommodations for quali�ed students with

disabilities. Please contact OÆce of Dean of Students at 512-471-6259 or ssd@uts.cc.utexas.edu.

Lecture Topics

Introduction

Sinusoidal Generation

Introduction to Digital Signal Processors

Signals and Systems

Sampling and Aliasing

Finite Impulse Response Filters

In�nite Impulse Response Filters

Interpolation and Pulse Shaping

Quantization

Data Conversion

Channel Impairments

Digital PAM

Matched Filtering

Quadrature Amplitude Modulation (QAM) Transmitter

QAM Receiver

EE445S Instructional Sta� and Web Resources

1 Background of the Instructors

Brian L. Evans is Professor of Electrical and Computer Engineering at UT Austin. He is an IEEE

Fellow \for contributions to multicarrier communications and image display". At the undergraduate

level, he teaches Linear Systems and Signals and Real-Time Digital Signal Processing Lab. His

BSEECS (1987) degree is from the Rose-Hulman Institute of Technology, and his MSEE (1988)

and PhDEE (1993) degrees are from the Georgia Institute of Technology. He joined UT Austin in

1996. His �rst programming experience on digital signal processors was in Spring of 1988.

Teaching assistants (TAs) will run lab sections, grade lab reports, answer e-mail and hold oÆce

hours. The TAs are Mr. Chao Jia and Ms. Zeina Sinno. Both conduct research in reducing rolling

shutter artifact in smart phone cameras. Both have been TAs for this course before. A grader will

grade homework assignments for the lecture component of the class.

2 Supplemental Information

Wireless Networking & Communications Seminars generally meet Fridays in ENS 637.

You can search for a topic in Google scholar to �nd papers and patent applications on the topic.

Web address is http://scholar.google.com.

Sometimes, an article found on Google scholar is only available through a speci�c database, e.g.

IEEE Explore. You can access these databases from an on-campus computer. If you are o� campus,

then you can access these databases by �rst connecting to www.lib.utexas.edu, then selecting the

database under Research Tools, and �nally logging in using your UT EID.

Industrial

� Circuit Cellar Magazine http://www.circuitcellar.com

� Electronic Design Magazine http://electronicdesign.com

� Embedded Systems Design Magazine http://www.eetimes.com/design/embedded

� Inside DSP http://www.bdti.com/insideDSP

� Sensors Magazine http://www.sensorsmag.com

� Sensors and Transducers Journal http://www.sensorsportal.com/HTML/DIGEST/New Digest.htm

Academic

� IEEE Communications Magazine

� IEEE Computer Magazine

� EURASIP Journal on Advances in Signal Processing

� IEEE Signal Processing Magazine

� IEEE Transactions on Communications

� IEEE Transactions on Computers

� IEEE Transactions on Signal Processing

� Journal on Embedded Systems

� Proc. IEEE Real-Time Systems Symposium

� Proc. IEEE Workshop on Signal Processing Systems

� Proc. Int. Workshop on Code Generation for Embedded Processors

3 Web Resources (by Ms. Ankita Kaul)

MIT OpenCourseWare:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341-discrete-time-signal-

processing-fall-2005/

*Advantages: Exceptional Lecture Notes! The readings are more in depth than lecture material,

but still quite fascinating.

*Disadvantages: The homework assignments and solutions were Advantages for practice, but many

problems outside the scope of the 445S class

UC-Berkeley DSP Class Page:

http://www-inst.eecs.berkeley.edu/~ee123/fa09/#resources

*Advantages: The articles and applets under 'Resources' are quite interesting and useful

*Disadvantages: Seemingly no actual Berkeley work actually on website, everything taken from

other sources . . .

Carnegie Mellon DSP Class Page:

http://www.ece.cmu.edu/~ee791/

*Advantages: Lectures had a lot of Matlab code for personal demonstration purposes

*Disadvantages: The lecture notes themselves are far more math-y than the context of 445S - still

interesting though

Purdue DSP Class Lecture Notes Page:

http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html

*Advantages: the notes are super simple and easy to understand

*Disadvantages: only covers ~first half of 445S coursework

Doing a search on Apple's iTunes U[niversity] for DSP provided numerous FREE lectures from

MIT, UNSW, IIT, etc. for download as well.

Youtube Video Resources:

http://www.youtube.com/watch?v=7H4sJdyDztI&feature=related

Ŝignal Processing Tutorial: Nyquist Sampling Theorem and Anti-Aliasing (Part 1)

*Advantages: visuals

*Disadvantages: . . . a bit slow

http://www.youtube.com/watch?v=Fy9dJgGCWZI

Ŝampling Rate, Nyquist Frequency, and Aliasing

*Advantages: visualization of basic concepts

*Disadvantages: very short, would have liked more explanation

http://www.youtube.com/watch?v=RJrEaTJuX A&feature=related

Ŝimple Filters Lecture, IIT-Delhi Lecture

*Advantages: explanations of going to and from magnitude/phase

*Disadvantages: watch out for lecturer's accent

http://www.youtube.com/watch?v=Xl5bJgOkCGU&feature=channel

F̂IR Filter Design, IIT-Delhi Lecture

*Advantages: signi�cantly deeper explanations of math than in class

*Disadvantages: lecturer's accent, video gets stuck about 30 seconds in

http://www.youtube.com/watch?v=vyNyx00DZBc

D̂igital Filter Design

*Advantages: quite Advantages information - especially on design TRADEOFFs

*Disadvantages: sound quality, better o� just reading slides while he lectures

The Learning Resource Center

The ECE Learning Resource Center (LRC) for instructional computing is located in the

second-
oor ENS lab rooms as well as ENS 507. The ECE LRC rooms are open Mondays{

Fridays from 8:00 AM to 10:00 PM, and on Saturday and Sunday from 11:00 AM to 10:00

PM. 24-hour access is available Mondays{Thursdays in ENS 507 with a valid UT Austin ID

card. To activate your ECE LRC accounts, present your UT identi�cation card to an ECE

LRC proctor. The LRCs are described at http://www.ece.utexas.edu/it/labs.

1 Available Hardware

The ECE LRC has about 200 workstations, including Unix workstations and Windows

machines. Several Linux workstations are available for remote connection: browser, daisy,

luigi, mario, peach, thwomp and yoshi. The following Sun Unix workstation is available for

remote connection: sun�re1. All are in the domain ece.utexas.edu. For more information,

see http://www.ece.utexas.edu/it/remote-linux.

2 Available Software on the Unix Workstations

The following programs are installed on all of the ECE LRC machines unless otherwise

noted. On the Unix machines, they are installed in the /usr/local/bin directory.

� Matlab is a number crunching tool for matrix-vector calculations which is well-suited for

algorithm development and testing. It comes with a signal processing toolbox (FFTs, �lter

design, etc.). It is run by typing matlab. Matlab is licensed to run on the Windows PCs

in the ECE LRC, as well as Unix machines luigi, mario and princess in the ECE LRC. On

the Unix machines, be sure to type module load matlab before running Matlab. For more

information about using Matlab, please see Appendix D in this reader.

�Mathematica is a environment for solving algebraic equations, solving di�erential and dif-

ference equations in closed-form, performing inde�nite integration, and computing Laplace,

Fourier, and other transforms. The command-line interface is run by typing math. The

graphical user interface is run by typing mathematica. On ECE LRC machines, Mathe-

matica is only licensed to run on sun�re1.

� The GNU C compiler gcc and GNU C++ compiler g++ are available.

� LabVIEW software environment, which is a graphical programming environment that is

useful for signal processing and communication systems developed at National Instruments,

is also installed. LabVIEW's Mathscript facility can execute many Matlab scripts and func-

tions. We have a site license for LabVIEW that allows faculty, sta� and students to install

LabVIEW on their personally-owned computers. For more information, see

http://users.ece.utexas.edu/~bevans/courses/realtime/homework/index.html#labview

Placeholder - please ignore.

D - 1

Introduction to Computation in Matlab

Prof. Brian L. Evans, Dept. of ECE, The University of Texas, Austin, Texas USA

Matlab’s forte is numeric calculations with matrices and vectors. A vector can be defined as

vec = [1 2 3 4];

The first element of a vector is at index 1. Hence, vec(1) would return 1. A way to generate a

vector with all of its 10 elements equal to 0 is

zerovec = zeros(1,10);

Two vectors, a and b, can be used in Matlab to represent the left hand side and right hand side,

respectively, of a linear constant-coefficient difference equation:

a(3) y[n-2] + a(2) y[n-1] + a(1) y[n] = b(3) x[n-2] + b(2) x[n-1] + b(1) x[n]

The representation extends to higher-order difference equations. Assuming zero initial

conditions, we can derive the transfer function. The transfer function can also be represented

using the two vectors a (negated feedback coefficients) and b (feedforward coefficients). For the

second-order case, the transfer function becomes

21

21

)3()2()1(

)3()2()1(
)(










zazaa

zbzbb
zH

We can factor a polynomial by using the roots command.

Here is an example of values for vectors a and b:

a = [1 6/8 1/8];

b = [1 2 3];

For an asymptotically stable transfer function, i.e. one for which the region of convergence

includes the unit circle, the frequency response can be obtained from the transfer function by

substituting z = exp(j ). The Matlab command freqz implements this substitution:

[h, w] = freqz(b, a, 1000);

The third argument for freqz indicates how many points to use in uniformly sampling the points

on the unit circle. In this example, freqz returns two arguments: the vector of frequency

response values h at samples of the frequency domain given by w. One can plot the magnitude

response on a linear scale or a decibel scale:

plot(w, abs(h));

plot(w, 20*log10(abs(h)));

The phase response can be computed using a smooth phase plot or a discontinous phase plot:

plot(w, unwrap(angle(h)));

plot(w, angle(h));

One can obtain help on any function by using the help command, e.g.

help freqz

D - 2

As an example of defining and computing with matrices, the following lines would define a 2 x 3

matrix A, then define a 3 x 2 matrix B, and finally compute the matrix C that is the inverse of the

transpose of the product of the two matrices A and B:

A = [1 2 3; 4 5 6];

B = [7 8; 9 10; 11 12];

C = inv((A*B)');

Matlab Tutorials and Availability

Here are excellent Matlab tutorials:

1. UT Austin: http://ssc.utexas.edu/training/software-tutorials#matlab

2. Mathworks: http://www.mathworks.com/academia/student_center/tutorials/

The following Matlab tutorial book is a useful reference:

Duane C. Hanselman and Bruce Littlefield, Mastering MATLAB, ISBN 9780136013303,

Prentice Hall, 2011.

Matlab is available in the ECE Learning Resource Centers and through remote login. A student

version of Matlab may be purchased at the bookstore for roughly $100.

Although the first few computer homeworks will help step you through Matlab, it is strongly

suggested that you take the short courses that the Division of Statistics and Scientific Computing

will be offering. The schedule of those courses is available online at

http://ssc.utexas.edu/training/software-short-courses

Technical support is provided through free consulting services from the Division of Statistics and

Scientific Computation. Simple queries can be e-mailed to stats@ssc.utexas.edu. For more

complicated inquiries, please go in person to their offices located in GDC 7.504. You can walk

in or schedule an appointment online.

Running Matlab in Unix

On the Unix machines in the ECE Learning Resource Center, you can run Matlab by typing

module load matlab

matlab

When Matlab begins running, it will automatically execute the commands in your Matlab

initialization file, if you have one. On Unix systems, the initialization file must be

~/matlab/startup.m where ~ means your home directory.

http://ssc.utexas.edu/training/software-tutorials#matlab
http://www.mathworks.com/academia/student_center/tutorials/
http://www.amazon.com/Mastering-MATLAB-Duane-C-Hanselman/dp/0136013309/ref=sr_1_2?ie=UTF8&qid=1389259292&sr=8-2&keywords=Hanselman+and+Littlefield+Matlab
http://ssc.utexas.edu/training/software-short-courses
http://ssc.utexas.edu/consulting/free-consulting
http://ssc.utexas.edu/
http://ssc.utexas.edu/
mailto:stats@ssc.utexas.edu
http://ssc.utexas.edu/consulting/free-consulting

Fundamental Theorem of Linear Systems

Theorem: Let a linear time-invariant system g has an ef (t) denote the complex sinusoid

ej2�ft. Then, g(ef(:); t) = g(ef(:); 0)ef(t) = c ef(t).

Example: Analog RC Lowpass Filter

x(t) R

C
y(t)

Figure 1: A First-Order Analog Lowpass Filter

The impulse response for the circuit in Fig. 1, i.e. the output measured at y(t) when

x(t) = Æ(t), is

h(t) =
1

RC
e�

1

RC
tu(t)

For a complex sinusoidal input, x(t) = ef (t) = ej2�ft,

y(t) =
Z
1

�1

x(t� �)h(�) d�

=
Z
1

�1

ej2�f(t��)
1

RC
e�

1

RC
�u(�) d�

= ej2�ft
�

1

RC

Z
1

�1

e�j2�f�e�
1

RC
� d�

�

=

"
1
RC

j2�f + 1
RC

#
ej2�ft

= g(ef(:); 0) ef(t)

So, g(ef(:); 0) = H(f), which is the transfer function of the system.

Placeholder { please ignore.

EE445S Real-Time Digital Signal Processing Laboratory

Raised Cosine Spectrum

Section 7.5, pp. 431{434, Simon Haykin, Communication Systems, 4th ed.

We may overcome the practical diÆculties encounted with the ideal Nyquist channel by

extending the bandwidth from the minimum value W = Rb=2 to an adjustable value between

W and 2W . We now specify the frequency function P (f) to satisfy a condition more elaborate

than that for the ideal Nyquist channel; speci�cally, we retain three terms of (7.53) and restrict

the frequency band of interest to [�W;W], as shown by

P (f) + P (f � 2W) + P (f + 2W) =
1

W
;�W � f � W (1)

We may devise several band-limited functions to satisfy (1). A particular form of P (f) that

embodies many desirable features is provided by a raised cosine spectrum. This frequency

characteristic consists of a
at portion and a rollo� portion that has a sinusoidal form, as

follows:

P (f) =

8>>>>>><
>>>>>>:

1

2W
for 0 � jf j < f1

1

4W

1� sin

�(jf j �W)

2W � 2f1

!
for f1 � jf j < 2W � f1

0 for jf j � 2W � f1

(2)

The frequency parameter f1 and bandwidth W are related by

� = 1�
f1

W
(3)

The parameter � is called the rollo� factor; it indicates the excess bandwidth over the ideal

solution, W . Speci�cally, the transmission bandwidth BT is de�ned by 2W � f1 = W (1 + �).

The frequency response P (f), normalized by multiplying it by 2W , is shown plotted in Fig.

1 for three values of �, namely, 0, 0.5, and 1. We see that for � = 0:5 or 1, the function P (f)

cuts o� gradually as compared with the ideal Nyquist channel (i.e., � = 0) and is therefore

easier to implement in practice. Also the function P (f) exhibits odd symmetry with respect to

the Nyquist bandwidth W , making it possible to satisfy the condition of (1). The time response

p(t) is the inverse Fourier transform of the function P (f). Hence, using the P (f) de�ned in

(2), we obtain the result (see Problem 7.9)

p(t) = sinc(2Wt)

�
cos 2��Wt

1� 16�2W 2t2

�
(4)

which is shown plotted in Fig. 2 for � = 0, 0.5, and 1. The function p(t) consists of the product

of two factors: the factor sinc(2Wt) characterizing the ideal Nyquist channel and a second factor

that decreases as 1=jtj2 for large jtj. The �rst factor ensures zero crossings of p(t) at the desired

sampling instants of time t = iT with i an integer (positive and negative). The second factor

reduces the tails of the pulse considerably below that obtained from the ideal Nyquist channel,

so that the transmission of binary waves using such pulses is relatively insensitive to sampling

time errors. In fact, for � = 1, we have the most gradual rollo� in that the amplitudes of the

oscillatory tails of p(t) are smallest. Thus, the amount of intersymbol interference resulting

from timing error decreases as the rollo� factor � is increased from zero to unity.

Figure 1: Frequency response for the raised cosine function.

The special case with � = 1 (i.e., f1 = 0) is known as the full-cosine rollo� characteristic,

for which the frequency response of (2) simpli�es to

P (f) =

8>><
>>:

1

4W

1 + cos

�f

2W

!
for 0 < jf j < 2W

0 if jf j � 2W

Correspondingly, the time response p(t) simpli�es to

p(t) =
sinc(4Wt)

1� 16W 2t2
(5)

The time response exhibits two interesting properties:

1. At t = �Tb=2 = �1=4W , we have p(t) = 0:5; that is, the pulse width measured at half

amplitude is exactly equal to the bit duration Tb.

2. There are zero crossings at t = �3Tb=2, �5Tb=2,... in addition to the usual zero crossings

at the sampling times t = �Tb;�2Tb; : : :

These two properties are extremely useful in extracting a timing signal from the received signal

for the purpose of synchronization. However, the price paid for this desirable property is the

use of a channel bandwidth double that required for the ideal Nyquist channel corresponding

to � = 0.

2

Figure 2: Time response for the raised cosine function.

3

Placeholder { please ignore.

4

EE445S Real-Time Digital Signal Processing Laboratory

Analog Sinusoidal Modulation

Many ways exist to modulate a message signal m(t) to produce a modulated (transmitted)

signal x(t). For amplitude, frequency, and phase modulation, modulated signals can be expressed

in the same form as

x(t) = A(t) cos(2�fct+�(t))

where A(t) is a real-valued amplitude function (a.k.a. the envelope), fc is the carrier frequency,

and �(t) is the real-valued phase function. Using this framework, several common modulation

schemes are described below. In the table below, the amplitude modulation methods are dou-

ble sideband larger carrier (DSB-LC), DSB suppressed carrier (DSB-SC), DSB variable carrier

(DSB-VC), and single sideband (SSB). The hybrid amplitude-frequency modulation is quadra-

ture amplitude modulation (QAM). The angle modulation methods are phase and frequency

modulation.

Modulation A(t) �(t) Carrier Type Use

DSB-LC Ac [1 + kam(t)] �0 Yes Amplitude AM radio
DSB-SC Acm(t) �0 No Amplitude

DSB-VC Acm(t) + � �0 Yes Amplitude

SSB Ac

q
m2(t) + [m(t) ? h(t)]2 arctan(�m(t)?h(t)

m(t)
) No Amplitude y Marine radios

QAM Ac

q
m2

1(t) +m2
2(t) arctan(�m2(t)

m1(t)
) No Hybrid Satellite

Phase Ac �0 + kpm(t) No Angle Underwater

modems

Frequency Ac 2�kf
R t
0 m(t) dt No Angle FM radio

TV audio

y h(t) is the impulse response of a bandpass �lter or phase shifter to e�ect a cancellation of one
pair of redundant sidebands. For ideal �lters and phase shifters, the modulation is amplitude
modulation because the phase would not carry any information about m(t).

Each analog TV channel is allocated a bandwidth of 6 MHz. The picture intensity and color
information are transmitted using vestigal sideband modulation. Vestigal sideband modulation
is a variant of amplitude modulation (not shown above) in which the upper sideband is kept and

a fraction of the lower sideband is kept, or vice-versa. In an analog TV signal, the audio portion

is frequency modulated.

The following quantity is known as the complex envelope

~x(t) = A(t) ej�(t) = xI(t) + j xQ(t)

where xI(t) is called the in-phase component and xQ(t) is called the quadrature component. Both

xI(t) and xQ(t) are lowpass signals, and hence, the complex envelope ~x(t) is a lowpass signal.
An alterative representation for the modulated signal x(t) is

x(t) = <ef~x(t) ej2�fctg

I - 2

C
lu

st
er

ed
-d

ot
 d

ith
er

 E
rr

or
 d

if
fu

si
on

 H
al

ft
on

e
C

om
pa

ri
so

n

S
im

pl
e

T
hr

es
ho

ld

O
ri

gi
na

l

J - 2

The University of Texas at Austin
Dept. of Electrical and Computer Engineering

Midterm #1

Date: March 9, 2006 Course: EE 345S Arslan

Name:
Last, First

• The exam is scheduled to last 75 minutes.
• Open books and open notes. You may refer to your homework assignments and

the homework solution sets.
• Calculators are allowed.
• You may use any standalone computer system, i.e. one that is not connected to a

network.
• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).
• All work should be performed on the quiz itself. If more space is needed, then

use the backs of the pages.
• Fully justify your answers.

Problem Point Value Your score Topic
1 20 Digital Filter Analysis
2 20 IIR Filter
3 20 Sampling and Reconstruction
4 20 Linear Systems
5 20 Assembly Language

Total 100

K - 7

Problem 1.1 Digital Filter Analysis. 20 points.

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is
governed by the following difference equation:

y[k] = -0.7 y[k-1] + x[k] - x[k-1]

(a) Draw the block diagram for this filter. 4 points.

(b) What are the initial conditions and what values should they be assigned? 4 points.

(c) Find the equation for the transfer function in the z-domain including the region of
convergence. 4 points.

(d) Find the equation for the frequency response of the filter. 4 points.

(e) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass? Why? 4 points.

K - 8

Problem 1.2 IIR filtering. 20 points.
For the system shown below

The input signal ()x t to the Continuous-to-Discrete converter is

() 4 cos(500) -3cos([(2000 / 3)]x t t tπ π= +

The transfer function for the linear, time-invariant (LTI) system is ()H z

() () () ()
() ()

1 / 2 1 / 2 1

2 /3 1 2 / 3 1

1 1 1

1 0.9 1 0.9

j j

j j

z e z e z
H z

e z e z

π π

π π

− − − −

− − −

− − −
=

− −

If 1000sf = samples/sec, determine an expression for ()y t , the output of the Discrete-to-
Continuous converter.

K - 9

C-to-D D-to-C
LTI

System
H(z)

()x t []x n []y n ()y t

1/ sT f= 1/ sT f=

Problem 1.3. Sampling and Reconstruction. 20 points.

Suppose that a discrete-time signal x[n] is given by the formula

[] ()7/2.0cos10 π−π= nnx

and that it was obtained by sampling a continuous-time signal at a sampling rate of fs = 2000
samples/sec.

a) Determine two different continuous-time signals x1(t) and x2(t) whose samples are equal to
x[n]; i.e. find x1(t) and x2(t) such that x[n] = x1(nTs) = x2(nTs)

b) If x[n] is given by the equation above, what signal will be reconstructed by an ideal D-to-C

converter operating at sampling rate 2000 samples/sec? That is, what is the output y(t) in the
following figure if x[n] is as given above?

K - 10

D-to-C
T

s
 = 1/f

s

x[n] y(t)

Problem 1.4. Linear Systems. 20 points.

Two stable discrete-time linear time-invariant (LTI) filters are in cascade as shown below.

a) Show that the end-to-end system from x[k] to y[k] is equivalent to the following system
where the order of the systems have been replaced, or give a counter-example. 10 points

b) What practical considerations have to be taken into account when switching the order of two
systems in practice? 10 points

K - 11

][kx
h1[n]

][ky
h2[n]

][kx
h2[n]

][ky
h1[n]

Problem 1.5 Assembly Language. 20 points.
Consider the discrete-time linear time-

invariant filter with x[n] and output y[n] shown on
the right. Assume that the input signal x[n] and
the coefficient a represent complex numbers.

(a) Write the difference equation for this filter. Is
this an FIR or IIR filter? 4 point.

(b) Sketch the pole-zero plot for this filter. 4 points.

(c) Write a linear TI C6700 assembly language routine to implement the difference equation.
Assume that the address for x is in A4 and the address to y is in A5. Assume that the input
and output data as well as the coefficient consist of single precision floating point complex
numbers. Assume that the assembler will insert the correct number of no-operation (NOP)
instructions to prevent pipeline hazards. 12 points.

K - 12

Σx[n] y[n]

Unit
Delay

a y[n-1]

K - 25

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #1

Date: October 12, 2007 Course: EE 345S Evans

Name: Set Solution

Last, First

• The exam is scheduled to last 50 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets.

• Calculators are allowed.

• You may use any standalone computer system, i.e. one that is not connected to a network.

Please disable all wireless connections on your computer system.

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use the

backs of the pages.

• Fully justify your answers.

Problem Point Value Your score Topic

1 25 Digital Filter Analysis

2 30 Upconversion

3 25 Digital Filter Design

4 20 Potpourri

Total 100

K - 26

Problem 1.1 Digital Filter Analysis. 25 points.

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is governed by

the following difference equation

y[k] = a
2
 y[k – 2] + (1 – a) x[k]

where a is a real-valued constant with 0 < a < 1.

Note: The output is a combination of the current input and the output two samples ago.

(a) Is this a finite impulse response filter or infinite impulse response filter? Why? 2 points.

The current output y[k] depends on previous output y[k-2]. Hence, the filter is IIR.

(b) Draw the block diagram for this filter. 4 points.

(c) What are the initial conditions and what values should they be assigned? 4 points.

y[0] = a
2
 y[–2] + (1 – a) x[0] Hence, the initial conditions are y[-1] and y[-2],

y[1] = a
2
 y[–1] + (1 – a) x[1] i.e., the initial values of the memory locations for

y[2] = a
2
 y[0] + (1 – a) x[2] y[k – 1] and y[k – 2]. These initial conditions should

 be set to zero for the filter to be linear & time-invariant

(d) Find the equation for the transfer function in the z-domain including the region of convergence.

5 points.

Take the z-transform of both sides of the difference equation:

Y(z) = a
2
 z

-2
 Y(z) + (1 – a) X(z)

Y(z) – a
2
 z

-2
 Y(z) = (1 – a) X(z)

(1 – a
2
 z

-2
) Y(z) = (1 – a) X(z)

)1)(1(

1

1

1

)(

)(
)(

1122 −−− +−
−=

−
−==

azaz

a

za

a

zX

zY
zH Hence, poles are located at z = a and z = –a.

Since the system is causal, the region of convergence is |z| > a.

(e) Find the equation for the frequency response of the filter. 5 points.

System is stable because the two poles are located inside the unit circle since 0 < a < 1.

Because the system is stable, we can convert the transfer function to a frequency response:

ωωω
221

1
)()(

jezfreq
ea

a
zHH j −= −

−==

(f) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass? Why? What value of the

parameter a would you use? 5 points.

Poles are at angles 0 rad/sample (low frequency) and ππππ rad/sample (high frequency).

When a ≈≈≈≈ 0, the filter is close to allpass.

When a ≈≈≈≈ 1, the filter is bandstop. Poles close to the unit circle indicate the passband(s).

Σ x[k] y[k]

Delay

Delay

a2

y[k-1]

y[k-2]

K - 27

Problem 1.2 Upconversion. 30 points.

You’re the owner of The Zone AM radio station (AM 1300 kHz), and you’ve just bought KLBJ (AM

590 kHz). As a temporary measure, you decide to broadcast the same content (speech/audio) over

both stations.

Carrier frequencies for AM radio stations are separated by 10 kHz. The speech/audio content is

limited to a bandwidth of 5 kHz.

The output y(t) should contain an AM radio signal at carrier frequency 590 kHz and an AM radio

signal at carrier frequency 1300 kHz. The input x(t) = 1 + ka m(t), where m(t) is the speech/audio

signal to be broadcast. Since m(t) could come from an audio CD, the bandwidth of m(t) could be as

high as 22 kHz. Note: Filter #1 is anti-aliasing filter. Filter #2 is a two-passband bandpass filter.

(a) Continuous-Time Analysis. 15 points.

1) Specify a passband frequency, passband deviation, stopband frequency, and stopband

attenuation for filter #1. Speech/audio bandwidth for AM radio is limited to 5 kHz.

Filter #1 enforces this requirement (see homework problems 2.3 and 3.3). Assuming

the ideal passband response is 0 dB, Apass = -1 dB and Astop = -90 dB. The 90 dB of

comes from the dynamic range of the audio CD. Also, fstop < 5 kHz. We’ll choose

fpass = 4.3 kHz and fstop = 4.8 kHz. The transition region is roughly 10% of fpass.

2) Give the sampling rate fs of the sampler. We want to produce replicas of filter #1 output

centered at 590 kHz and 1300 kHz. Also fs > 2 fmax and fmax = 4.8 kHz. So, fs = 10 kHz.

3) Draw the spectrum of w(t). Each lobe below is 2 fmax wide.

4) Give the filter specifications to design filter #2. Filter #2 passbands are 585.7−594.3 kHz

and 1295.7−1304.3 kHz, and stopbands are 0−585 kHz, 595−1295 kHz, and greater

than 1305 kHz. These bands have counterparts in negative frequencies.

5) Draw the spectrum of y(t). Each lobe below is 2 fmax wide.

f

Y(f)

Sampler at

sampling

rate of fs

x(t) Filter #1

h1(t)

Filter #2

h2(t)

y(t)

w(t)

f

W(f)

fs 2fs −2fs −fs

590 kHz 1300 kHz −590 kHz −1300 kHz

K - 28

The block diagram for the system is repeated here for convenience:

(b) Discrete-Time Implementation. 15 points.

1) Give a second sampling rate to convert the continuous-time system to a discrete-time

system. There are two conditions on the second sampling rate, as seen in homework

problem 3.2. First, we’ll need to pick a second sampling rate fs2 for x(t), w(t), and y(t)

that minimizes aliasing. The maximum frequencies of interest for x(t) and y(t) are 22

kHz and 1305 kHz, respectively. In theory, w(t) is not bandlimited. Second, we’ll

need to pick the second sampling rate to be an integer multiple of fs. In summary,

fs2 > 2 (1305 kHz) and fs2 = k fs, where k is an integer

2) Would you use a finite impulse response (FIR) or infinite impulse response (IIR) filter for

filter #1? Why? In audio, phase is important. AM radio stations generally broadcast

single-channel audio. (AM stereo had gains in popularity in the 1990s, but has been in

decline due to digital radio.) Assuming single-channel transmission, filter #1 should

have linear phase. Hence, filter #1 should be FIR.

3) What filter design method would you use to design filter #1? Why?

I would use the Parks-McClellan (Remez exchange) algorithm to design the shortest

linear phase FIR filter.

4) Would you use a finite impulse response (FIR) or infinite impulse response (IIR) filter for

filter #2? Why? As per part (2), filter #2 should have linear phase, and hence be FIR.

Also, filter #2 is a multiband bandpass filter. It is not clear how to use classical IIR

filter design methods to design such a filter.

5) What filter design method would you use to design filter #2? Why? Through homework

assignments, we have designed multiband FIR filters using the Parks-McClellan

(Remez exchange) algorithm. The Kaiser window method is for lowpass FIR filters.

The FIR Least Squares method could be used. I would use the Parks-McClellan

(Remez exchange) algorithm to design the shortest multiband linear phase FIR filter.

Sampler at

sampling

rate of fs

x(t) Filter #1

h1(t)

Filter #2

h2(t)

y(t)

w(t)

K - 29

Problem 1.3 Digital Filter Design. 25 points.

Consider the following cascade of two causal discrete-time linear time invariant (LTI) filters with

impulse responses h1[n] and h2[n], respectively:

Filter #1 has the following impulse response:

The (group) delay through filter #1 is ½ sample. Note: Filter #1 is a first-order difference filter.

Design filter #2 so that it satisfies all three of the following conditions:

 a. Cascade of filter #1 and filter #2 has a bandpass magnitude response,

 b. Cascade of filter #1 and filter #2 has (group) delay that is an integer number of samples, and

 c. Filter #2 has minimum computational complexity.

Group delay is defined as the negative of the derivative (with respect to frequency) of the phase

response. As discussed in lecture, a linear phase FIR filter with N coefficients has a group delay

of (N-1)/2 samples for all frequencies. So, a first-order difference filter has a delay of ½ samples.

As we saw in the mandrill (baboon) image processing demonstration, a cascade of a highpass

filter (first-order differencer) and a lowpass filter (averaging filter) has a bandpass response,

provided that there is overlap in their passbands.

A two-tap averaging filter has a group delay of ½ samples. A cascade of a first-order difference

filter and a two-tap averaging filter would have a group delay of 1 sample.

A two-tap averaging filter with coefficients equal to one would only require 1 addition per

output sample. No multiplications required. This is indeed low computational complexity.

h2[n] =
�

[n] +
�

[n-1]

x[n]

Filter #1

h1[n]

Filter #2

h2[n] y[n] w[n]

n

h1[n]
1

-1
2 3

K - 30

Problem 1.4. Potpourri. 20 points.

Please determine whether the following claims are true or false and support each answer with a brief

justification. If you give a true or false answer without any justification, then you will be awarded

zero points for that answer.

(a) The automatic order estimator for the Parks-McClellan (a.k.a. Remez Exchange) algorithm always

gives the shortest length FIR filters to meet a piecewise constant magnitude response specification.

4 points. False, for two different reasons. First, the Parks-McClellan algorithm designs the

shortest length linear phase FIR filters with floating-point coefficients to meet a piecewise

constant magnitude response specification. Second, the automatic order estimator is an

important but nonetheless empirical formula developed by Jim Kaiser. It can be off the

mark by as much as 10%. Sometimes, the order returned by the automatic order estimator
does not meet the filter specifications.

(b) All linear phase finite impulse response (FIR) filters have even symmetry in their coefficients.

Assume that the FIR coefficients are real-valued. 4 points. False. It true that FIR filters that

have even symmetry in their coefficients (about the mid-point) have linear phase. However,

as mentioned in lecture, FIR filters with coefficients that have odd symmetry (about the mid-

point) also have linear phase.

(c) If linear phase finite impulse response (FIR) floating-point filter coefficients were converted to

signed 16-bit integers by multiplying by 32767 and rounding the results to the nearest integer, the

resulting filter would still have linear phase. 4 points. True. An FIR filter has linear phase if

the coefficients have either odd symmetry or even symmetry about the mid-point.

Multiplying the coefficients by a constant does not change the symmetry about the mid-point.

In addition, round(−x) = −round(x). Hence, rounding does not affect symmetry either.

(d) Floating-point programmable digital signal processors are only useful in prototyping systems to

determine if a fixed-point version of the same system would be able to run in real time.

4 points. False, due to the word “only”. It is true that floating-point programmable DSPs are

useful in feasibility studies become committing the design time and resources to map a

system into fixed-point arithmetic and data types. Beyond that, however, floating-point

programmable DSPs are commonly used in low-volume products (e.g. sonar imaging systems

and radar imaging systems) and in high-end audio products (e.g. pro-audio, car audio, and

home entertainment systems).

(e) In the TMS320C6000 family of programmable digital signal processors, consider an equivalent

fixed-point processor and floating-point processor, i.e. having the same clock speed, same on-chip

memory sizes and types, etc. The fixed-point processor would have lower power consumption. 4

points. This one could go either way. True. If the data types in a floating-point program

were converted from 32-bit floats to 16-bit short integers, and the floating-point

computations were converted to fixed-point computations, then the fixed-point processor

would consume less power. The fixed-point processor would only need to load from on-chip

memory half as often, and multiplication (addition) would take 2 cycles (1 cycle) instead of 4

cycles. Fixed-point multipliers and adders take far fewer gates than their floating-point

counterparts, which saves on power consumption. False. If a floating-point program were

run by emulating floating-point computations to the same level of precision on a fixed-point

processor, then the fixed-point processor would actually consume more power.

K - 31

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #1

Date: March 7, 2008 Course: EE 345S Evans

Name:

Last, First

• The exam is scheduled to last 50 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets.

• Calculators are allowed.

• You may use any standalone computer system, i.e. one that is not connected to a

network. Please disable all wireless connections on your computer system.

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use

the backs of the pages.

• Fully justify your answers.

Problem Point Value Your score Topic

1 25 Digital Filter Analysis

2 25 Sinusoidal Generation

3 30 Digital Filter Design

4 20 Potpourri

Total 100

K - 32

Problem 1.1 Digital Filter Analysis. 25 points.

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is

governed by the following equation

y[k] = x[k] + a x[k-1] + x[k-2]

where a is a real-valued constant with 1 ≤ a ≤ 2.

(a) Is this a finite impulse response filter or infinite impulse response filter? Why? 2 points.

(b) Draw the block diagram for this filter. 4 points.

(c) What are the initial conditions and what values should they be assigned? 4 points.

(d) Find the equation for the transfer function in the z-domain including the region of

convergence. 5 points.

(e) Find the equation for the frequency response of the filter. 5 points.

(f) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass? Why? 5 points.

K - 33

Problem 1.2 Sinusoidal Generation. 25 points.

Some programmable digital signal processors have a ROM table in on-chip memory that

contains values of cos(θ) at uniformly spaced values of θ.

Consider the array c[n] of cosine values taken at one degree increments in θ and stored in ROM:








= nnc
180

cos][
π

 for n = 0, 1, ..., 359.

(a) If the array c[n] were repeatedly sent through a digital-to-analog (D/A) converter with a

sampling rate of 8000 Hz, what continuous-time frequency would be generated? 5 points.

(b) How would you most efficiently use the above ROM table c[n] to compute s[n] given below.

5 points.








= nns
180

sin][
π

 for n = 0, 1, ..., 359?

(c) How would you most efficiently use the above ROM table c[n] to compute d[n] given below.

5 points.








= nnd
90

cos][
π

 for n = 0, 1, ..., 179

(d) How would you most efficiently use the above ROM table c[n] to compute x[n] given below.

10 points.








= nnd
360

cos][
π

 for n = 0, 1, ..., 719

K - 34

Problem 1.3 Digital Filter Design. 30 points.

Consider the following cascade of two causal discrete-time linear time invariant (LTI) filters

with impulse responses h1[n] and h2[n], respectively:

(a) Poles (X) and zeros (O) for filter #1 are shown below. Assume that the poles have radii of

0.9, and the zeros have radii of 1.2. Is filter #1 a lowpass, highpass, bandpass, bandstop,

allpass or notch filter? Why? 10 points.

(b) Give the transfer function for H1(z). 5 points.

(c) Design filter #2 by placing the minimum number of poles and zeros on the pole-zero

diagram below so that the cascade of filter #1 and filter #2 is allpass. 10 points.

(d) Give the transfer function H2(z). 5 points.

x[n]

Filter #1

h1[n]

Filter #2

h2[n] y[n] w[n]

Re(z)

Im(z)

X X

O

O

H1(z)

Re(z)

Im(z) H2(z)

K - 35

Problem 1.4. Potpourri. 20 points.

Please determine whether the following claims are true or false and support each answer with a

brief justification. If you give a true or false answer without any justification, then you will

be awarded zero points for that answer.

(a) Assume that a particular linear phase finite impulse response (FIR) filter design meets a

magnitude specification and that no lower-order linear phase FIR filter exists to meet the

specification. The linear phase FIR filter will always have the lowest implementation

complexity on the TI TMS320C6713 programmable digital signal processor among all filters

that meet the same specification. 5 points.

(b) Consider the cascade of two discrete-time linear time-invariant systems shown below.

If the order of the filters in cascade is switched, then the relationship between x[n] and y[n]

will always be the same as in the original system. 5 points.

(c) Continuous-time analog signals conform nicely to the Nyquist Sampling Theorem because

they are always ideally bandlimited. 5 points.

(d) If
�
[n] were input to a discrete-time system and the output were also

�
[n], then system could

only be the identity system, i.e. the output is always equal to the input. 5 points.

x[n]

Filter #1

h1[n]

Filter #2

h2[n] y[n]

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #1

Date: March 12, 2010 Course: EE 345S Evans

Name:

Last, First

• The exam is scheduled to last 50 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets.

• Calculators are allowed.

• You may use any standalone computer system, i.e. one that is not connected to a

network. Please disable all wireless connections on your computer system.

• Please turn off all cell phones and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use

the backs of the pages.

• Fully justify your answers.

Problem Point Value Your score Topic

1 28 Digital Filter Analysis

2 30 Filter Design Tradeoffs

3 24 Downconversion

4 18 Potpourri

Total 100

Problem 1.1 Digital Filter Analysis. 28 points.

A causal discrete-time linear time-invariant filter with input x[n] and output y[n] is governed by

the following equation, where a is real-valued,

y[n] = x[n] – a
2
 x[n-2]

(a) Is this a finite impulse response filter or an infinite impulse response filter? Why? 2 points.

The impulse response can be computed by letting the input be discrete-time impulse,

i.e. x[n] = δδδδ[n]. The response (output) is h[n] = δδδδ[n] – a
2
 δδδδ[n-2]. The impulse response is

finite in extent (3 samples in extent). Hence, the filter is a finite impulse response filter.

(b) Draw the block diagram for this filter. 4 points. Adapting a tapped delay block diagram,

(c) What are the initial conditions? What values should they be assigned and why? 4 points.

y[0] = x[0] −−−− a
2
 x[-2] Hence, the initial conditions are x[-1] and x[-2],

y[1] = x[1] −−−− a
2
 x[-1] i.e., the initial values of the memory locations for

y[2] = x[2] −−−− a
2
 x[0] x[n– 1] and x[n – 2]. These initial conditions should

 be set to zero for the filter to be linear & time-invariant

(d) Find the equation for the transfer function of the filter in the z-domain including the region of

convergence. 5 points. Taking z-transform of both sides of difference equation gives

Y(z) = X(z) −−−− a
2
 z

-2
 X(z), which gives Y(z) = (1 −−−− a

2
 z

-2
) X(z): 221

)(

)(
)(−−== za

zX

zY
zH

Two zeros at z=a and z=–a, and two poles at origin. ROC is entire z plane except origin.

(e) Find the equation for the frequency response of the filter. 5 points. Since the ROC includes

the unit circle, we can convert the transfer function to a frequency response as follows:
ω

ωω 221)()(j

ezfreq eazHH j

−
=

−==

(f) For this part, assume that 0.9 < a < 1.1. Draw the pole-zero diagram. Would the frequency

selectivity of the filter be best described as lowpass, bandpass, bandstop, highpass, notch, or

allpass? Why? 8 points. Zeros on or near the unit circle indicate the stopband. There

are two zeros at z = a and z = –a, which correspond to

frequencies ωωωω = 0 rad/sample and ωωωω = ππππ rad/sample,

respectively. This corresponds to a bandpass filter.

z
-1 z

-1 x[n]

+

-a
2

x[n-1] x[n-2]

y[n]

Re(z)

Im(z)

O O

Problem 1.2 Filter Design Tradeoffs. 30 points.

Consider the following filter specification for a narrowband lowpass discrete-time filter:

• Sampling rate fs of 1000 Hz

• Passband frequency fpass of 10 Hz with passband ripple of 1 dB

• Stopband frequency fstop of 40 Hz with stopband attenuation of 60 dB

Evaluate the following filter implementations on the C6700 digital signal processor in terms of

linear phase, bounded-input bounded-output (BIBO) stability, and number of instruction cycles

to compute one output value. Assume that the filter implementations below use only single-

precision floating-point data format and arithmetic, and are written in the most efficient C6700

assembly language possible.

(a) .Finite impulse response (FIR) filter of order 83 designed using the Parks-McClellan

algorithm and implemented as a tapped delay line. 9 points. Problem implies that the

Parks-McClellan algorithm has converged. After convergence, the Parks-McClellan

algorithm always gives an FIR filter whose impulse response is even symmetric about

the midpoint, which guarantees linear phase over all frequencies.

Linear phase: In passband? Yes, see above.

In stopband? Yes, see above.

BIBO stability: YES or NO. Why? An FIR filter is always BIBO stable. Each

 output sample is a finite sum of weighted current and previous

input samples. Each weight is finite in value, and each input

sample is finite in value. A finite sum of finite values is bounded.

Instruction cycles: 83+1+28 = 112 cycles, by means of Appendix N in course reader.

(b) Infinite impulse response (IIR) filter of order 4 designed using the elliptic algorithm and

implemented as cascade of biquads. One pole pair has radius 0.992 and quality factor 3.9.

The other has radius 0.9785 and quality factor of 0.8. 9 points. Homework problem 3.3

concerned the design of IIR filters using the elliptic design algorithm. The solution to

homework problem 3.3 plotted magnitude and phase response of an elliptic design.

Linear phase: In passband? Approximate linear phase over some of passband

In stopband? Approximate linear phase over some of stopband

BIBO stability: YES or NO. Why? Yes, the poles are inside the unit circle. The

 quality factors are quite low; hence, the poles are unlikely to

 become BIBO unstable when implemented.

Instruction cycles: 2 (5 + 28) = 66 cycles by means of Appendix N in course reader.

(An efficient implementation could overlap the implementation

for biquad #2 after data reads are finished for biquad #1, which

would save 11 instruction cycles.)

(c) IIR filter with 2 poles and 62 zeros. Poles were manually placed to correspond to 10 Hz and

have radii of 0.95. Zeros were designed using the Parks-McClellan algorithm with the above

specifications. Implementation is a tapped delay line followed by all-pole biquad. 12 points.

Linear phase: In passband? Approximate linear phase over some of passband

In stopband? Approximate linear phase over some of stopband

BIBO stability: YES or NO. Why? Yes, the poles are inside the unit circle. The

 quality factor is quite low; hence, the poles are unlikely to

 become BIBO unstable when implemented.

Instruction cycles: (62+1+28) + (2 + 28) = 121 cycles by means of Appendix N in

course reader. (An efficient implementation can remove the

second 28 cycles of overhead to give a total of 93 cycles.)

Pole locations: Angle of first pole: ωωωω0 = 2 ππππ f0 / fs = 2 ππππ (10 Hz) / (1000 Hz).

Pole locations are at 0.95 exp(j ωωωω0) and 0.95 exp(-j ωωωω0).

Matlab code to design the filter for part (c), which was not required for the test:

numerCoeffs = firpm(62, [0 .02 0.08 1], [1 1 0 0]) / 165;

denomCoeffs = conv([1 -0.95*exp(j*2*pi*10/1000)], [1 -0.95*exp(-j*2*pi*10/1000)]);

freqz(numerCoeffs, denomCoeffs)

Problem 1.3 Downconversion. 24 points.

Consider the bandpass continuous-time

analog signal x(t). Its spectrum is shown

on the right. The signal x(t) was formed

through upconversion. Our goal will be

to recover the baseband message signal

m(t) by processing x(t) in discrete time.

Let B be the bandpass bandwidth in Hz of x(t) given by B = f2 – f1

 fc be the carrier frequency in Hz given by fc = ½ (f1 + f2) where fc > 2 B.

 fs be the sampling rate in Hz for sampling x(t) to produce x[n]

 ωpass be the passband frequency of a discrete-time filter in rad/sample

 ωstop be the stopband frequency of a discrete-time filter in rad/sample

(a) Downconversion method #1. 12 points,

Uses sinusoidal amplitude demodulation.

Give formulas for ω0, ωpass, ωstop and fs.

Analyze in continuous-time first.

s

c

f

fπω 20 =)2/2(2 Bff cs +>

sf

B 2/
2pass πω =

s

c

f

ff 1
stop 2

+= πω

(b)

(c) Downconversion method #2. 12 points.

Uses a squaring device. Assume that output values of the lowpass filter are non-negative.

Give formulas for ωpass, ωstop and fs.

Analyze in continuous time first.

W(f) = X(f) * X(f)

sf

Bπω 2pass =

s

c

f

Bf −
=

2
2stop πω

)2(2 Bff cs +>

f

X(f)

f1 f2 –f2 –f1

) cos(0 nω

][nx
][nv

Lowpass

filter

][ˆ nm

][nx][nw
Lowpass

filter (·)
2

][ˆ nm

 ()•

f

V(f)

fc+f1

fc+f2

B/2 –B/2 – fc – f1

– fc – f2

f

W(f)

2fc – B

2fc+B

B –B – 2fc +B

– 2fc – B

Problem 1.4. Potpourri. 18 points.

Please determine whether the following claims are true or false. If you believe the claim to be

false, then provide a counterexample. If you believe the claim to be true, then give supporting

evidence that may include formulas and graphs as appropriate. If you give a true or false answer

without any justification, then you will be awarded zero points for that answer. If you answer

by simply rephrasing the claim, you will be awarded zero points for that answer.

(a) Consider an infinite impulse response (IIR) filter with four complex-valued poles (occurring

in conjugate symmetric pairs) and no zeros. When implemented in handwritten assembly on

the C6713 digital signal processor using only single-precision floating-point data format and

arithmetic, a cascade of four first-order IIR sections would be more efficient in computation

than implementing the filter as a cascade of two second-order IIR sections. 9 points.

False. Assume input x[n] is real-valued. Poles located at p1, p2, p3 and p4. Outputs for

the four first-order sections follow:

y1[n] = x[n] + p1 y1[n-1]

y2[n] = y1[n] + p2 y2[n-1]

y3[n] = y2[n] + p3 y3[n-1]

y4[n] = y3[n] + p4 y4[n-1]

For the cascade of first-order sections, the final output value can be calculated as

y4[n] = x[n] + p1 y1[n-1] + p2 y2[n-1] + p3 y3[n-1] + p4 y4[n-1]

Cascade of biquads has real-valued feedback coefficients. Its final output value is

v2[n] = x[n] + b1 v1[n-1] + b2 v1[n-2] + b3 v2[n-1] + b4 v2[n-2]

Case #1: All poles are real-valued. Cascade of first-order sections requires the same

execution time as a tapped delay line with five coefficients, or 33 instruction cycles,

according to Appendix N in course reader. Same goes for the cascade of biquads.

Case #2: Poles are complex-valued and occur in conjugate symmetric pairs. Cascade

of biquads still takes 33 instruction cycles. For cascade of first-order sections, the

first section output x[n] + p1 y1[n-1] is complex-valued. In subsequent sections, the

complex-valued multiply-add operation will require four times the number of real-

valued multiply-add operations. Cascade of biquads will hence require fewer cycles.

(b) Consider implementing an infinite impulse response (IIR) filter solely in single-precision

floating-point data format and arithmetic. There are no conditions under which the

implemented filter would be linear and time-invariant. 9 points.

False. Counterexample: y[n] = x[n] + y[n-1] where y[-1] = 0 and x[n] = δδδδ[n]. The

system passes the all-zero test. The system is linear and time-invariant only for a

limited set of input signals.

True. Although a necessary condition for linear and time-invariance is that the initial

conditions are zero, exact precision calculations in IIR filters require increasing

precision as n increases in the worst case. (This is mentioned in lecture 6 slides when

the block diagram for each of the three IIR direct form structures was discussed).

Eventually, the increase in precision will exceed the precision of the single-precision

floating-point data format. The clipping that results will cause linearity to be lost.

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #1

Date: October 15, 2010 Course: EE 445S Evans

Name:

Last, First

• The exam is scheduled to last 50 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets.

• Calculators are allowed.

• You may use any standalone computer system, i.e. one that is not connected to a

network. Please disable all wireless connections on your computer system(s).

• Please turn off all cell phones and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use

the backs of the pages.

• Fully justify your answers. If you decide to quote text from a source, please give

the quote, page number and source citation.

Problem Point Value Your score Topic

1 28 Digital Filter Analysis

2 30 Sinusoidal Generation

3 24 Upconversion

4 18 Potpourri

Total 100

Problem 1.1 Digital Filter Analysis. 28 points.

A causal discrete-time linear time-invariant filter with input x[n] and output y[n] is governed by

the following difference equation:

y[n] – 0.8 y[n-1] = x[n] – 1.25 x[n-1]

(a) Is this a finite impulse response filter or an infinite impulse response filter? Why? 2 points.

(b) Draw the block diagram for this filter. 4 points.

(c) What are the initial conditions? What values should they be assigned and why? 4 points.

(d) Find the equation for the transfer function of the filter in the z-domain including the region of

convergence. 5 points.

(e) Find the equation for the frequency response of the filter. 5 points.

(f) Draw the pole-zero diagram. Would the frequency selectivity of the filter be best described

as lowpass, bandpass, bandstop, highpass, notch, or allpass? Why? 8 points.

Problem 1.2 Sinusoidal Generation. 30 points.

Consider generating a causal discrete-time cosine waveform y[n] that has a fixed frequency of

ω0 = 2 π f0 / fs, where f0 is the continuous-time sinusoidal frequency and fs is the sampling rate:

y[n] = cos(ω0 n) u[n]

(a) What value must fs take to prevent aliasing? 6 points.

(b) We’ll evaluate design tradeoffs on the C6000 family of digital signal processors. Assume

that the most efficient assembly language implementation is used in all cases. 18 points.

Data Size Operation Throughput Delay Slots

16-bit short addition 1 cycle 0 cycles

16-bit by 16-bit short multiplication 1 cycle 1 cycle

32-bit floating-point addition 1 cycle 3 cycles

32-bit x 32-bit floating-point multiplication 1 cycle 3 cycles

64-bit floating-point addition 2 cycles 6 cycles

64-bit x 64-bit floating-point multiplication 4 cycles 9 cycles

Please complete the following table:

Method Memory for data

and coefficients

(in bytes)

Multiplication-

add operations

per output

sample

C6000 cycles to finish

multiplication-add

operations to compute

one output sample

C math library call

Difference equation

using 32-bit floating-

point data/arithmetic

Difference equation

using arithmetic on

16-bit (short) data

and coefficients

(c) Which method would you advocate using? Why? 6 points.

f

M(f)

W –W

) cos(0 nω

][nm
][nv

Bandpass

filter

][ns

) cos(0 nω

][nm
][nw

Bandpass

filter

][ns

(•)2

Problem 1.3 Upconversion. 24 points.

Consider a baseband continuous-time analog signal

m(t). Its spectrum is shown on the right. Our goal is

to upconvert m(t) into a bandpass signal s(t). Our

upconversion will be implemented in discrete time.

Let W : baseband bandwidth in Hz of m(t)

 B : transmission bandwidth of s(t)

 fc : carrier frequency in Hz of s(t) where fc > 3 W

 fs : sampling rate in Hz for sampling of m(t) to give m[n] and s(t) to give s[n]

 ωpass : passband freq. of discrete-time filter in rad/sample

 ωstop : stopband freq. of discrete-time filter in rad/sample

(a) Upconversion method #1. 14 points,

Uses sinusoidal amplitude modulation.

Give formulas for the following parameters:

ω0 =

B =

ωstop1 =

ωpass1 =

ωpass2 =

ωstop2 =

fs >

(b) Upconversion method #2. 10 points.

Uses a squaring device and the

bandpass filter from part (a).

Give formulas for the following parameters:

ω0 =

Β =

fs >

Problem 1.4. Potpourri. 18 points.

(a) For a system design, you have determined that you need to design a linear phase discrete-

time finite impulse response filter to meet piecewise magnitude constraints. The Parks-

McClellan design algorithm fails to converge. What filter design method would you use and

why? 9 points.

(b) For a system design, you have determined that you need a discrete-time biquad notch filter to

remove a narrowband interferer at discrete-time frequency ω0. The actual discrete-time

frequency will vary over time when the system is deployed in the field. Give the poles and

zeros for the notch filter. Set the biquad gain to 1. 9 points.

UNIVERSITY OF TEXAS AT AUSTINDept. of Electrical and Computer EngineeringQuiz #2Date: December 5, 2001 Course: EE 345SName: Last, First� The exam will last 75 minutes.� Open textbooks, open notes, and open lab reports.� Calculators are allowed.� You may use any standalone computer system, i.e., one that is not connected to anetwork.� All work should be performed on the quiz itself. If more space is needed, then use thebacks of the pages.� Fully justify your answers.
Problem Point Value Your Score Topic1 30 True/False Questions2 20 PAM & QAM3 20 Pulse Shaping4 15 ADSL Modems5 15 PotpourriTotal 100

Problem 2.1 True/False Questions. 30 points.Please determine whether the following claims are true or false and support each an-swer with a brief justi�cation. If you put a true/false answer without any justi�cation,then you will get 0 points for that part.(a) The receiver (demodulator) design for digital communications is always more compli-cated than the transmitter (modulator) design.(b) Pulse shaping �lters are designed to contain the spectrum of a digital communica-tion signal. They will introduce ISI except that we sample at certain particular timeinstances.(c) The eye diagram does not tell you anything about intersymbol interference but onlytells you how noisy or how clean the channel is.(d) QAM is more popular than PAM because it is easier to build a QAM receiver than aPAM receiver.(e) It is less accurate to use a DSP to realize in-phase/quadrature (I/Q) modulation anddemodulation than to use an analog I/Q modulator and demodulator due to the quan-tization errors.(f) A low-cost DSP cannot be used for doing in-phase/quadrature (I/Q) modulation anddemodulation for high carrier frequency (e.g., 100 MHz) since it does not have enoughMIPS to implement it.(g) PAM and QAM will have the same bit-error-rate (BER) performance given the samesignal-to-noise ratio (SNR).(h) Digital communication systems are better than analog communication systems sincedigital communication systems are more reliable and more immune to noise and inter-ference.(i) FM and Spread Spectrum communications are examples of wideband communications.The excess frequency makes transmission more resistant to degradation by the channel.(j) Analog PAM generally requires channel equalization.

Problem 2.2 PAM and QAM. 20 points.
I

Q

2d

2d

0001

1110

00 01 10 11

QAM -4 PAM-4Figure 1: PAM-4 and QAM-4 (QPSK) constellationAssume that the noise is additive white Gaussian noise with variance �2 in both thein-phase and quadrature components.Assuming that 0's and 1's appear with equal probability.The symbol error probability formula for PAM-4 isPe = 32 Q d�!(a) Derive the symbol error probability formula for QAM-4 (also known as QPSK) shownin Figure 1. 10 points.

(b) Please accurately calculate the power of the QPSK signal given d. Please compare thepower di�erence of PAM-4 and QAM-4 for the same d. 5 points.

(c) Are the bit assignments for the PAM or QAM optimal in Figure 1? If not, thenplease suggest another assignment scheme to achieve lower bit error rate given thesame scenario, i.e., the same SNR. The optimal bit assignment is commonly referredto as Gray coding. 5 points.

Problem 2.3 Pulse Shaping. 20 points.Consider doing pulse shaping for a 2-PAM signal also known as BPSK signal. Assumethe pulse shaping �lter has 24 coe�cients fh0; : : : ; h23g and the oversampling rate is 4.(a) Draw a block diagram of a �lter bank scheme to implement the pulse shaping. Pleasealso specify the number of the �lters in the �lter bank and express the coe�cients ofeach �lter in terms of h0, . . . , h23. 5 points.

(b) Evaluate the number of MACs and the amount of RAM space required to accomplishthe pulse shaping via the approach in (a). 5 points.

(c) Since the data symbols coming into the �lters in (a) are 1's or -1's (BPSK) and the�lter coe�cients are �xed, the pulse shaping �lter can be implemented via a lookuptable approach on a DSP (similar to the implementation of sine and cosine signals).Please describe one way of implementing the lookup table approach, including how tobuild the lookup table. 5 points.

(d) If a bit shift operation and a MAC instruction each takes one instruction cycle (omittingthe data move instructions), how many instructions and how much RAM space arerequired to implement the pulse shaping via the lookup table approach. Please comparethe results with those in (b). 5 points.

Problem 2.4 ADSL Modems. 15 points.(a) What does the fast Fourier transform implement? 2 points.
(b) Estimate the number of multiply-accumulates per second for the upstream and down-stream fast Fourier transform. 4 points.
(c) Before each symbol is transmitted, a cyclic pre�x is transmitted. 3 points.1. How is the cyclic pre�x chosen?

2. Give two reasons why a cyclic pre�x is used.
(d) Compare discrete multitone (DMT) modulation, such as the ADSL standards, withorthogonal frequency division multiplexing (OFDM), such as for the physical layer ofthe IEEE 802.11a wireless local area network standard.1. Give three similarities between DMT and OFDM. 3 points.

2. Give three di�erences between DMT and OFDM. 3 points.

Problem 2.5 Potpourri. 15 points.(a) You are evaluating two DSP processors, the TI TMS320C6200 and the TI TMS320C30,for use in a high-end laser printer that has to process 40 MB/s. Which of the twoprocessors would you choose? Give at least three reasons to support your choice. 6points.

(b) You are designing an A/D converter to produce audio sampled at 96 kHz with 24 bitsper sample. When an analog sinusoid is input to the A/D converter, the convertershould produce one sinusoid at the right frequency and no harmonics. The convertershould give true 24 bits of precision at low frequencies, but can give lower resolutionat higher frequencies. Draw a block diagram of the A/D converter you would design.9 points.

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #2

Prof. Brian L. Evans

Date: December 3, 2003 Course: EE 345S

Name:

Last, First

• The exam is scheduled to last 75 minutes.

• Open books and open notes. You may refer to your homework and solution sets.

• Calculators are allowed.

• You may use any stand-alone computer system, i.e. one that is not connected to a

network.

• Please turn off all cell phones and pagers.

• All work should be performed on the quiz itself. If more space is needed, then

use the backs of the pages.

• Fully justify your answers unless instructed otherwise.

Problem Point Value Your score Topic

1 15 Phase Modulation

2 15 Equalizer Design

3 30 8-QAM

4 20 ADSL Receivers

5 20 Potpourri

Total 100

Problem 2.1 Phase Modulation. 15 points.

Phase modulation at a carrier frequency fc of a causal message signal m(t) is defined as

Frequency modulation is defined as

(a) Show that one can use a frequency modulator to generate a phase modulated signal using

the block diagram below. Give kp in terms of frequency modulation parameters. 5 points.

(b) Give a version of Carson’s rule for the transmission bandwidth of phase modulation. You

do not have to derive it. 10 points.

())(2 2cos)(tmktfAts pccPM ππ +=











+= ∫

t

fccFM dmktfAts
0

)(2 2cos)(λλππ

)(tm

d

dt

Frequency

Modulator

)(tsPM

Problem 2.2 Equalizer Design. 15 points.

You are given a discretized communication channel defined by the following sampled

impulse response with a representing a real number:

h[n] = δ[n] – 2 a δ[n-1] + a
2
 δ[n-2]

(a) For this channel, what would you propose to do at the transmitter to prevent intersymbol

interference? 5 points.

(b) Find the transfer function of the discretized channel. 5 points.

(c) For this channel, design a stable linear time-invariant equalizer for the receiver so that the

impulse response of the cascade of the discretized channel and equalizer yields a delayed

impulse. Please state any assumptions on the value of a. 5 points.

Problem 2.3 8-QAM. 30 points.

This problem asks you to compare the two different 8-QAM constellations below.

(i) Assume that the channel noise is additive white Gaussian noise with variance σ2
 in

both the in-phase and quadrature components.

(ii) Assume that 0's and 1's occur with equal probability.

(iii) Assume that the symbol period T is equal to 1.

(a) Compute the average power for each 8-QAM constellation. 5 points.

(b) Compute the formula for probability of symbol error for each 8-QAM in terms of the Q

function. Draw the decision regions you are using on the above constellations. 15 points.

(c) Draw the optimal bit assignments for each symbol you would use for each of the

constellations above on the constellations directly. 5 points.

(d) How would you choose which 8-QAM constellation to use in a modem? 5 points.

I

Q

2d

2d I

Q

2d

2d

Problem 2.4 ADSL Receivers. 20 points.

Downstream ADSL transmission uses a symbol length N of 512, a cyclic prefix ν of 32

samples, and a sampling rate of 2.208 MHz. There are N/2 or 256 subchannels.

A downstream ADSL receiver for data transmission is shown below. The D/A converter has 16

bits of resolution. Use a word size of 16 bits for the analysis. The time-domain equalizer is a

32-tap FIR filter. Please calculate the computational complexity and memory usage of the each

function shown except for the receive filter and A/D converter. (From slide 18-8).

 N/2 subchannels

Function Multiply-

accumulates

Compares Words of

memory

Time domain equalizer

Remove cyclic prefix

Serial-to-parallel converter

Fast Fourier Transform

Remove mirrored data

Frequency domain equalizer

QAM decoder

Parallel-to-serial converter

P/S QAM
demod

decoder

invert
channel

=
frequency
domain

equalizer

N-FFT
and

remove
mirrored

data

N real

samples

S/P remove
cyclic
prefix

N real

samples

 receive
filter

+
A/D

Problem 2.5 Potpourri. 20 points.

Please determine whether the following claims are true or false and support each answer

with a brief justification. If you give a true or false answer without any justification, then you

will receive zero points for that answer.

(a) In a communication system design, digital communication should always be chosen over

analog communications because digital communication systems are more reliable and more

immune to noise and interference. 4 points.

(b) Digital QAM is more popular than Digital PAM because it is easier to build a Digital QAM

transmitter than a Digital PAM transmitter. 4 points.

(c) Pulse shaping filters are designed to contain the spectrum of a digital communication

signal. They are chosen to aid the receiver in locking onto the carrier frequency and phase.

4 points.

(d) IEEE 802.11a wireless LAN modems and ADSL/VDSL wireline modems employ

multicarrier modulation. 802.11a modems achieve higher bit rates than ADSL/VDSL

because 802.11a systems deliver the highest bits/s/Hz of transmission bandwidth. 4 points.

(e) FM radio uses excess frequency to make transmission more resistant to fading in wireless

channels. 4 points.

K - 67

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #2

Prof. Brian L. Evans

Date: December 13, 2005 Course: EE 345S

Name:

Last, First

• The exam is scheduled to last 90 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets.

• Calculators are allowed.

• You may use any stand-alone computer system, i.e. one that is not connected to a

network.

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use the

backs of the pages.

• Fully justify your answers unless instructed otherwise. When justifying your answers,

you may refer to the J&S and Tretter textbooks, course reader, and course handouts.

Please be sure to reference the page/slide.

Problem Point Value Your score Topic

1 15 Digital PAM Transmission

2 15 Equalizer Design

3 40 8-PAM vs. 8-QAM

4 15 Multicarrier Communications

5 15 Potpourri

Total 100

K - 68

Problem 2.1. Digital PAM Transmission. 15 points.

Shown below is a block diagram for baseband pulse amplitude modulation (PAM) transmission. The

system parameters include the following:

• M is the number of points in the constellation

• 2d is the constellation spacing in the PAM constellation.

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter)

• Ng is the length in symbols of the non-zero extent of the pulse shape

• fsym is the symbol rate

(a) Give a formula using the appropriate system parameters for the bit rate being transmitted.

2 points.

(b) The leftmost block performs upsampling by L samples. What communication system parameter

does L represent? 2 points.

(c) Give a formula using the appropriate system parameters for the sampling rate for the D/A

converter. 3 points.

(d) Give a formula using the appropriate system parameters for the number of multiplication-

accumulation operations per second that would be required to compute the two leftmost blocks in

the above block diagram (i.e., the blocks before the D/A converter)

I. as shown in the block diagram? 4 points.

II. using a filter bank implementation? 4 points.

D/A Transmit

Filter

ak
gT[m] L

K - 69

Problem 2.2 Equalizer Design. 15 points.

You are given a discretized communication channel defined by the following sampled impulse

response, where |a| < 1:

h[n] = a
n-1

 u[n-1]

(a) Give the transfer function of the channel. 2 points.

(b) Does the channel have a lowpass, highpass, bandpass, bandstop, allpass, or notch response?

2 points.

(c) Design a causal stable discrete-time filter to equalize the above channel for a single-carrier

communication system. 4 points.

(d) Does the channel equalizer you designed in part (c) have a lowpass, highpass, bandpass, bandstop,

allpass, or notch response? 2 points.

(e) Using your answer in part (c), give the impulse response of the equalized channel. 5 points.

K - 70

Problem 2.3 8-PAM vs. an 8-QAM constellation. 40 points.

In this problem, assume that

 (i) the channel noise for both in-phase and quadrature

components is additive white Gaussian noise with

variance of σ2
 and mean of zero.

 (ii) 0's and 1's occur with equal probability.

(iii) the symbol period T is equal to 1.

Please complete the comparison below of 8-PAM and

the version of 8-QAM shown on the right.

(a) Compute the average power for the 8-QAM constellation

on the right. 5 points.

(b) Draw your decision regions on the 8-QAM constellation shown above. 5 points.

(c) Based on the decision regions in part (b), derive the formula for the probability of symbol error at

the sampled output of the matched filter for the 8-QAM constellation in terms of the Q function

and the SNR. 10 points.

.

I

Q

2d

2d

8-QAM

2d

K - 71

(d) On the blank PAM constellation on the right, draw the

8-PAM constellation with spacing between adjacent

constellation points of 2d. 5 points.

(e) Compute the average power for the 8-PAM constellation. 5 points.

(f) Derive the formula for the probability of symbol error at the sampled output of the matched filter

in the receiver for the 8-PAM constellation in terms of the Q function and the SNR. 5 points.

(g) Which constellation, the 8-PAM constellation on this page or the 8-QAM constellation on the

previous page, is better to use and why? 5 points.

8-PAM

K - 72

Problem 2.4 Multicarrier Communications. 15 points.

Here are some of the system parameters for a standard-compliant ADSL transceiver:

• Transmission bandwidth BT = 1.104 MHz

• Sampling rate fsampling = 2.208 MHz

• Symbol rate fsymbol = 4 kHz (same symbol rate in both downstream and upstream directions)

• Number of subcarriers: Ndownstream = 256 and Nupstream = 32

• Cyclic prefix length is 1/16 of the symbol length

(a) What is the ratio of the computational complexity of the downstream fast Fourier transform to the

upstream fast Fourier transform in terms of real multiplication-accumulation (MAC) operations per

second? 4 points.

(b) During data transmission, what is the longest time domain equalizer that could be computed in real

time on the C6701 digital signal processing board you have been using in lab? 4 points.

(c) Which block in a multicarrier transceiver implements pulse shaping? What is the pulse shape?

4 points.

(d) Every 69
th

 frame in an ADSL transmission is a synchronization frame. For use between

synchronization frames, describe in words a method for symbol synchronization. 3 points.

K - 73

Problem 2.5 Potpourri. 15 points.

Please determine whether the following claims are true or false and support each answer with a

brief justification. If you give a true or false answer without any justification, then you will be

awarded zero points for that answer.

(a) In a modem, as much of the processing as possible in the baseband transceiver should be

performed in the digital, discrete-time domain because digital communications is more reliable and

more immune to noise and interference than is analog communications. 3 points.

(b) Pulse shaping filters are designed to contain the spectrum of a transmitted signal in a

communication system. In a communication system, the pulse shape should be zero at non-zero

integer multiples of the symbol duration and have its maximum value at the origin. 3 points.

(c) Although wired and wireless channels have impulse responses of infinite duration, each can be

modeled as an FIR filter. Wired channel impulse responses do not change over time, whereas

wireless channel impulse responses change over time. 3 points.

(d) A receiver in a digital communication system employs a variety of adaptive subsystems, including

automatic gain control, carrier recovery, and timing recovery. A transmitter in a digital

communication system does not employ any adaptive systems. 3 points.

(e) All consumer modems for high-speed Internet access (i.e. capable of bit rates at or above 1 Mbps)

employ multicarrier modulation. 3 points.

K - 74

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #2

Prof. Brian L. Evans

Date: December 7, 2007 Course: EE 345S

Name:

Last, First

• The exam is scheduled to last 60 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets. You may not share materials with other students.

• Calculators are allowed.

• You may use any stand-alone computer system, i.e. one that is not connected to a

network. Disable all wireless access from your stand-alone computer system.

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use the

backs of the pages.

• Fully justify your answers unless instructed otherwise. When justifying your answers,

you may refer to the Johnson & Sethares and Tretter textbooks, course reader, and course

handouts. Please be sure to reference the page/slide number and quote the particular

content you are using in your justification.

Problem Point Value Your score Topic

1 28 Digital PAM Transmission

2 24 Digital PAM Reception

3 24 Equalizer Design

4 24 Potpourri

Total 100

K - 75

Problem 2.1. Digital PAM Transmission. 28 points.

Shown below is a block diagram for baseband digital pulse amplitude modulation (PAM)

transmission. The system parameters (in alphabetical order) include the following:

• 2d is the constellation spacing in the PAM constellation.

• fsym is the symbol rate.

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter).

• L is the upsampling factor, a.k.a. the oversampling ratio

• M is the number of points in the constellation, where M = 2
J
.

• Ng is the length in symbols of the non-zero extent of the pulse shape.

(a) What does ak represent? Give a formula using the appropriate system parameters for the values

that ak could take. 3 points

(b) What communication system parameter does the upsampling factor L represent? 3 points.

(c) Give a formula for the data rate in bits per second of the transmitter. 4 points.

(d) Give formulas using the appropriate system parameters for the implementation complexity

measures in the table below that would be required to compute the two leftmost blocks in the

above block diagram (i.e., the blocks before the D/A converter). 18 points.

 Multiplication-accumulation

operations per second

Memory Usage in Words Memory Reads and

Writes in words/second

As shown

above

Using a

filter bank

D/A Transmit

Filter

ak
gT[m] L

K - 76

Problem 2.2 Digital PAM Reception. 24 points

As in problem 2.1, shown below is a block diagram for baseband digital pulse amplitude modulation

(PAM) transmission. The system parameters (in alphabetical order) include the following:

• 2d is the constellation spacing in the PAM constellation.

• fsym is the symbol rate.

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter).

• L is the upsampling factor, a.k.a. the oversampling ratio

• M is the number of points in the constellation, where M = 2
J
.

• Ng is the length in symbols of the non-zero extent of the pulse shape.

Here is a block diagram for baseband digital PAM reception:

The blocks in the baseband digital PAM receiver are analogous to the blocks in the digital baseband

PAM transmitter. The hat above the ak term in the receiver means an estimate of ak in the transmitter.

Assume that the channel only consists of additive white Gaussian noise. Assume synchronization.

Please describe in words each of the missing blocks (a)-(c) and how to choose the parameters (e.g.

filter coefficients) for each block. Each part is worth 8 points.

(a)

(b)

(c)

A/D (a) (b) (c)
kâ

D/A Transmit

Filter

ak
gT[m] L

K - 77

Problem 2.3 Equalizer Design. 24 points.

Consider a discrete-time baseband model of a communication channel that consists of a linear time-

invariant finite impulse response (FIR) filter with impulse response h[n] plus additive white Gaussian

noise w[n] with zero mean, as shown below:

During modem training, the transmitter transmits a short training signal that is a pseudo-noise

sequence of length seven that is known to the receiver. The bit pattern is 1 1 1 0 1 0 0. The bits are

encoded using 2-level pulse amplitude modulation (but without pulse shaping) so that

• for x[n] equal to the sequence 1, 1, 1, -1, 1, -1, -1,

• the channel output r[n] is equal to the sequence 0.982, 2.04, 2.02, -0.009, 0.040, -2.03, -0.891.

(a) Assuming that h[n] has two non-zero coefficients, i.e. h[0] and h[1], estimate their values to three

significant digits. 6 points.

(b) Using the result in (a), estimate the coefficients for a two-tap FIR filter c[n] to equalize the

channel. What value of the delay are you assuming? 6 points.

(c) Without changing the training sequence, describe an algorithm that the receiver can use to estimate

the true length of the FIR filter h[n]. You do not have to compute the length. 6 points.

(d) In a receiver, for a training sequence of 8000 samples and an FIR equalizer of 100 coefficients,

would you advocate using a least-squares equalizer design algorithm or an adaptive equalizer

design algorithm for real-time implementation on a DSP processor? Why? 6 points.

x[n]
h[n]

w[n]

+

r[n]
c[n]

Channel
Model

Equalizer

y[n]

K - 78

Problem 2.4 Potpourri. 24 points.

Please determine whether the following claims are true or false. If you believe the claim to be false,

then provide a counterexample. If you believe the claim to be true, then give supporting evidence

that may includes formulas and graphs as appropriate. If you give a true or false answer without any

justification, then you will be awarded zero points for that answer. If you answer by simply

rephrasing the claim, you will be awarded zero points for that answer.

(a) A common baseband model for wired and wireless channels is as an FIR filter plus additive white

Gaussian noise. 4 points.

(b) When a Gaussian random process is input to a linear time-invariant system, the output is also a

Gaussian random process where the mean is scaled by the DC response of the linear time-invariant

system and the variance is scaled by twice the bandwidth. 4 points.

(c) Frequency shift keying is another type of multicarrier modulation method in which one or more

subcarriers are “turned on” to represent the digital information being transmitted. The only use of

frequency shift keying in a consumer electronics product is in telephone touchtone dialing (i.e.

dual-tone multiple frequency signaling). 4 points.

(d) All modems in currently available consumer electronics products for very high-speed Internet

access (i.e. capable of bit rates at or above 5 Mbps) employ multicarrier modulation.

4 points.

(e) The TI TMS320C6713 digital signal processing board you have been using in lab can compute the

fast Fourier transform operation for downstream ADSL reception in real time using single-

precision floating-point arithmetic. 4 points.

(f) In ADSL, the pulse shape used in the transmitter is a square root raised cosine. 4 points.

K - 79

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #2

Prof. Brian L. Evans

Date: December 4, 2009 Course: EE 345S

Name:

Last, First

• The exam is scheduled to last 60 minutes.

• Open books and open notes. You may refer to your homework assignments and the

homework solution sets. You may not share materials with other students.

• Calculators are allowed.

• You may use any stand-alone computer system, i.e. one that is not connected to a

network. Disable all wireless access from your stand-alone computer system.

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).

• All work should be performed on the quiz itself. If more space is needed, then use the

backs of the pages.

• Fully justify your answers unless instructed otherwise. When justifying your answers,

you may refer to the Johnson, Sethares & Klein textbook, the Tretter lab manual, course

reader, and course handouts. Please be sure to reference the page/slide number and quote

the particular content you are using in your justification.

Problem Point Value Your score Topic

1 27 Baseband Digital PAM Transmission

2 27 Digital PAM Reception

3 30 QAM

4 16 Equalizer Design

Total 100

K - 80

Problem 2.1. Baseband Digital PAM Transmission. 27 points.

Shown below is part of a baseband digital pulse amplitude modulation (PAM) transmitter. The system

parameters (in alphabetical order) include the following:

• 2d is the constellation spacing in the PAM constellation.

• fs is the sampling rate.

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter).

• L is the upsampling factor, a.k.a. the oversampling ratio

• M is the number of points in the constellation, where M = 2
J
.

• Ng is the length in symbol periods of the non-zero extent of the pulse shape.

(a) What does ak represent? Give a formula using the appropriate system parameters for the values

that ak could take. 3 points

(b) What communication system parameter does the upsampling factor L represent? 3 points.

(c) Give a formula for the bit rate in bits per second of the transmitter. 3 points.

(d) Give formulas using the appropriate system parameters for the implementation complexity

measures in the table below that would be required to compute the two leftmost blocks in the

above block diagram (i.e., the blocks before the D/A converter). 18 points.

 Multiplication-accumulation

operations per second

Memory usage in words Memory reads and

writes in words/second

As shown

above

Using a

filter bank

D/A Transmit

Filter

ak
gT[m] L

K - 81

Problem 2.2 Baseband Digital PAM Reception. 27 points

As in problem 2.1, shown below is part of a baseband digital pulse amplitude modulation (PAM)

transmitter. The system parameters (in alphabetical order) include the following:

• 2d is the constellation spacing in the PAM constellation.

• fs is the sampling rate.

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter).

• L is the upsampling factor, a.k.a. the oversampling ratio

• M is the number of points in the constellation, where M = 2
J
.

• Ng is the length in symbols of the non-zero extent of the pulse shape.

Last Four Blocks of the Digital PAM Transmitter

Channel Model

Additive white Gaussian noise.

First Four Blocks of the Digital PAM Receiver

The hat above the ak term in the receiver means an estimate of ak in the transmitter.

Assume that the receiver is synchronized to the transmitter.

Each block in the baseband digital PAM receiver is analogous to one block in the digital baseband

PAM transmitter; e.g., the receive filter is analogous to the transmit filter.

Please describe in words each of the missing blocks (a)-(c) and how to choose the parameters (e.g.

filter coefficients) for each block. Each part is worth 9 points.

(a)

(b)

(c)

(a) Receive

Filter
(b) (c)

D/A Transmit

Filter

ak L gT[m]

kâ

K - 82

Problem 2.3 QAM. 30 points.

This problem asks you to evaluate two different 12-QAM constellations. Assumptions follow:

 (i) Each symbol is equally likely (iii) Perfect carrier frequency/phase recovery

 (ii) Channel only consists of additive white (iv) Perfect symbol timing recovery

 Gaussian noise with zero mean and (v) Constellation spacing of 2d

 and variance σ2
 in both the in-phase (I) (vi) Symbol duration Tsym = 1

 and quadrature (Q) components

 Constellation #1 Constellation #2

(a) Compute the average signal power for each of the QAM constellations above. 6 points.

(b) Draw your decision regions on the 12-QAM constellations shown above. 6 points.

(c) Based on your decision regions in part (b), give a formula for the probability of symbol error at

the sampled output of the matched filter for each of the 12-QAM constellations in terms of the Q

function, i.e. Q(d/σ). 12 points.

(d) Given the above assumptions and answers, which 12-QAM constellation would you choose?

6 points.

I

2d

2d

2d

I

Q

2d

2d

2d

Q

K - 83

Problem 2.4 Equalizer Design. 16 points.

Consider a discrete-time baseband model of a communication system with transmitted signal x[n] and

received signal r[n]. The channel model is a linear time-invariant (LTI) finite impulse response (FIR)

filter with impulse response h[n] plus additive white Gaussian noise process with zero mean w[n]:

During modem training, the transmitter transmits a short training signal that is a pseudo-noise

sequence of length seven that is known to the receiver. The bit pattern is 1 1 1 0 1 0 0. The bits are

encoded using 2-level pulse amplitude modulation (but without pulse shaping) so that

• for x[n] equal to the sequence 1, 1, 1, -1, 1, -1, -1,

• r[n] is equal to the sequence 0.982, 2.04, 2.02, -0.009, 0.040, -2.03, -0.891,

(a) Assume that the equalizer is a two-tap LTI FIR filter. Compute an equalizer impulse response c[n]

for a transmission delay of zero. 7 points.

(b) In a receiver, for a training sequence of 8000 symbols and an FIR equalizer of 100 coefficients,

would you advocate using a least-squares equalizer design algorithm or an adaptive equalizer

design algorithm for real-time implementation on a digital signal processor? Why? 9 points.

x[n]
h[n]

w[n]

+

r[n]
c[n]

Channel

Model

1

K - 134

M - 2

N - 1

EE 445S Real-Time DSP Laboratory – Prof. Brian L. Evans

Computational Complexity of Implementing a Tapped Delay Line on the C6700 DSP

To compute one output sample y[n] of a finite impulse response filter of N coefficients (h0, h1, ...

hN-1) given one input sample x[n] takes N multiplication and N-1 addition operations:

y[n] = h0 x[n] + h1 x[n-1] + … + hN-1 x[n – (N-1)]

Two bottlenecks arise when using single-precision floating-point (32-bit) coefficients and data

on the C6700 DSP. First, only one data value and one coefficient can be read from internal

memory by the CPU registers during the same instruction cycle, as there are only two 32-bit data

busses. The load command has 4 cycles of delay and 1 cycle of throughput. Second,

accumulation of multiplication results must be done by four different registers because the

floating-point addition instruction has 3 cycles of delay and 1 cycle of throughput. Once all of

the multiplications have been accumulated, the four accumulators would be added together to

produce one result. The code below does not use looping, and does not contain some of the

necessary setup code (e.g. to initiate modulo addressing for the circular buffer of past input data).

Cycle Instruction

1 LDW x[n] || LDW h0

2 LDW x[n-1] || LDW h1 || ZERO accumulator0

3 LDW x[n-2] || LDW h2 || ZERO accumulator1

4 LDW x[n-3] || LDW h3 || ZERO accumulator2

5 LDW x[n-4] || LDW h4 || ZERO accumulator3

6 LDW x[n-5] || LDW h5 || MPYSP x[n], h0, product0

7 LDW x[n-6] || LDW h6 || MPYSP x[n-1], h1, product1

8 LDW x[n-7] || LDW h7 || MPYSP x[n-2], h2, product2

9 LDW x[n-8] || LDW h8 || MPYSP x[n-3], h3, product3

10 LDW x[n-9] || LDW h9 || MPYSP x[n-4], h4, product4 ||

 ADDSP product0, accumulator0, accumulator0
11 LDW x[n-10] || LDW h10 || MPYSP x[n-5], h5, product5 ||

 ADDSP product1, accumulator1, accumulator1

12 LDW x[n-11] || LDW h11 || MPYSP x[n-6], h6, product6 ||

 ADDSP product2, accumulator2, accumulator2

 13 LDW x[n-12] || LDW h12 || MPYSP x[n-7], h7, product7 ||

 ADDSP product3, accumulator3, accumulator3

14 LDW x[n-13] || LDW h13 || MPYSP x[n-8], h8, product8 ||

 ADDSP product4, accumulator0, accumulator0

 15 …

The total number of execute cycles to compute a tapped delay line of N coefficients is the delay

line length (N) + LDW throughput (1) + LDW delay (4) + MPYSP throughput (1) + MPYSP

delay (3) + ADDSP throughput (1) + ADDSP delay (3) + adding four accumulators together (8)

+ STW throughput (1) + STW delay (4) = N + 26 cycles. If we were to include two instructions

to set up the modulo addressing for the circular buffer, then the total number of execute cycles

would be N + 28 cycles.

N - 2

The University of Texas at Austin EE 345S Real-Time Digital Signal Processing Laboratory

Communication Performance of PAM vs. QAM Handout

Prof. Brian L. Evans

In the transmitter,
• Assume the bit stream on the transmitter side 0's and 1's appear with equal probability.
• Assume that the symbol period T is equal to 1.

In the channel,
• Assume that the noise is additive white Gaussian noise with zero mean. For QAM, the variance

is σ2 in each of the in-phase and quadrature components. For PAM, the variance is 2 σ2. The
difference is the variance is to keep the total noise power the same in QAM and PAM.

• Assume that there is no nonlinear distortion
• Assume there is no linear distortion

In the receiver,
• Assume that all subsystems (e.g. automatic gain control and symbol timing recovery) prior to

matched filtering and sampling at the symbol rate are working perfectly
• Hence, assume that reception is synchronized with transmission

Given these mostly ideal conditions, the lower bound on symbol error probability for 4-PAM when the
additive white Gaussian noise in the channel has variance 2 σ2 is






=

σ22
3 dQPe

Given the 4-QAM and 4-PAM constellations below,

(a) Derive the symbol error probability formula for 4-QAM, also known as Quadrature Phase
Shift Keying (QPSK), shown in Figure 1.

(b) Calculate the average power of the QPSK signal given d.

(c) Write the probability of symbol error for 4-PAM and 4-QAM as functions of the signal-to-
noise ratio (SNR). Superimposed on the same plot, plot the probability of symbol error for 4-
PAM and 4-QAM as a function of SNR. For the horizontal axis, let the SNR take on values
from 0 dB to 20 dB. Comment on the differences in the symbol error rate vs. SNR curves.

(d) Are the bit assignments for the PAM or QAM optimal with respect to bit error rate in Figure
1? If not, then please suggest another bit assignment to achieve a lower bit error rate given
the same scenario, i.e., the same SNR. The optimal bit assignment (in terms of bit error
probability) is commonly referred to as Gray coding.

P - 1

The University of Texas at Austin EE 345S Real-Time Digital Signal Processing Laboratory

a) Based on lecture notes on slides 15-13 through 15-15, the case of 4-QAM corresponds to
having the four corner points in the 16-QAM constellation. So, the probability of correct
detection is given by type 3 correct detection given on page 15-4 in the lecture notes. Since

T=1, then the formula for the probability of correct detection is given by ()
2

3 1 










−=

σ
dQcP

. Thus the probability of error is given by

() 




−





=










−−=−=

σσσ
dQdQdQcPPe

2
2

3 2111 .

b) To obtain the energy of is , we notice that the sum of the squared coordinates will give you the
energy of the signal is . To see this, notice that is is represented by the following vector






 −−]

4
)12sin[(],

4
)12cos[(ππ iEiE in the ())()(21 tt φφ − coordinate system. Thus, it is

immediate that EiiE =




 −+−]

4
)12[(sin]

4
)12[(cos 22 ππ

. This implies that EPT
T
EP =⇒== 1; .

() 22 224
4
1 ddPAVG =×= .

c) SNR is defined as 2

2

2

2

22 2
2

22
/

σσσσ
ddETE

P
P

SNR
Noise

Signal ===== for the 4-QAM. For the 4-

PAM,
()

2

2

2

2

22 2
5

2

922
4
1

22
/

σσσσ
ddETE

P
P

SNR
Noise

Signal =
×+

==== . Substituting this into the Pe

formula we obtain the following formulas:

() ()







=

−=




−





=

−

−

52
3

22 22

SNRQP

SNRQSNRQdQdQP

PAMe

QAMe σσ

SNR = 0:20; % dB scale SNR
SNR_lin = 10.^(SNR/10); % linear scale SNR
Pq = 2*qfunc(sqrt(SNR_lin)) - (qfunc(sqrt(SNR_lin))).^2; % QAM error
Probability
Pp = 3/2 * qfunc(sqrt(SNR_lin/5)); % PAM error Probability
semilogy(SNR,Pq, 'Displayname', '4-QAM');
hold on;
semilogy(SNR, Pp,'r','Displayname', '4-PAM');
title('4-PAM vs. 4-QAM Communication Performance');
ylabel('P_e'); xlabel('SNR (dB)');
legend('show');

P - 2

The University of Texas at Austin EE 345S Real-Time Digital Signal Processing Laboratory

QAM performs much better than the PAM system due to the following reasons: first the
noise variance in the PAM system is higher so we expect its error rate to be higher; on the
other hand the PAM system is not fully utilizing the bandwidth as opposed to QAM.

d) The bit assignments are not optimal because the difference between the bits across the
decision regions are more than one bit while they can be made one by using Gray Coding
since each decision region has only two neighbors. The following bit assignment is optimal.

P - 3

The University of Texas at Austin EE 345S Real-Time Digital Signal Processing Laboratory

P - 4

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Brian L. Evans

Q - 1

Four Ways to Filter a Signal

Problem: Evaluate four ways to filter an input signal. Run waystofilt.m on page 143 (Section
7.2.1) of Johnson, Sethares & Klein using

• h[n] that is a four-symbol raised cosine pulse with β = 0.75 (4 samples/symbol, i.e. 16 samples)

• x[n] that is an upsampled 8-PAM symbol amplitude signal with d = 1 and 4 samples/symbol
and that is defined as the following 32-length vector (where each number is a sample value)
as

x = [-7 0 0 0 -5 0 0 0 -3 0 0 0 -1 0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 7 0 0 0]

In the code provided by Johnson, Sethares & Klein, please replace plot with stem so that the
discrete-time signals are plotted in discrete time instead of continuous time.

Please comment on the different outputs. Please state whether each method implements linear
convolution or circular convolution or something else. Please see the online homework hints.

Hints: To compute the values of h, please use the "rcosine" command in Matlab and not the
"SRRC" command. The length of h should be 16. The syntax of the "rcosine" command is

rcosine(Fd, Fs, TYPE_FLAG, beta)

The ratio Fs/Fd must be a positive integer. Since the the number of samples per symbol is 4,
Fs/Fd must be 4. The rcosine function is defined in the Matlab communications toolbox.

Running the rcosine function with these parameters gives a pulse shape of 25 samples. We want
to keep four symbol periods of the pulse shape. That is, we want to keep two symbol periods to
the left of the maximum value, the symbol period containing the maximum value as the first
sample, and the symbol period immediately following that:

rcosinelen25 = rcosine(1, 4, 'fir', 0.75);
h = rcosinelen25(5:20);
stem(h)

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Brian L. Evans

Q - 2

Some of the methods yield linear convolution, and some do not. With an input signal of 32
samples in length and a pulse shaping filter with an impulse response of 16 samples in length,
linear convolution would produce a result that is 47 samples in length (i.e., 32 + 16 - 1).

For the FFT-based method, the length of the FFT determines the length of the filtered result. An
FFT length of less than 47 would yield circular convolution, but it wouldn't be linear
convolution. When the FFT length is long enough, the answer computed by circular convolution
is the same as by linear convolution.

Consider when the filter is a block in a block diagram, as would be found in Simulink or
LabVIEW. When executing, the filter block would take in one sample from the input and
produce one sample on the output. How many times to execute the block? As many times as
there are samples on the input. How many samples would be produced? As many times as the
block would be executed.

In particular, pay attention to the use of the FFT to implement linear filtering. A similar trick is
used in multicarrier communication systems, such as DSL, WiFi (IEEE 802.11a/g), WiMax
(IEEE 802.16e-2005), next-generation cellular data transmission (LTE), terrestrial digital audio
broadcast, and handheld and terrestrial digital video broadcast.

Solution: The filter is given by its impulse response h[n] that has a length of Lh samples. The
signal is given by x[n] and it has a length of Lx samples. Both the impulse response and input
signal are causal. In this problem, Lh is 16 samples and Lx is 32 samples.

The first way of filtering computes the output signal as the linear convolution of x[n] and h[n]:

∑
−

=

−==
1

0

][][][*][][
hL

m
linear mnxmhnhnxny

Linear convolution yields a signal of length Lx+Lh-1 = 47 samples.

The second way is to use the filter command in Matlab/Mathscript. The filter command
produces one output sample for each input sample. This is a common behavior for a filter block
in a block diagram simulation framework, e.g. Simulink or LabVIEW. When executing, the
filter block would take in one sample from the input and produce one sample on the output. The
scheduler will execute the block as many times as there are samples on the input. So, the length
of the filtered signal would be Lx = 32 samples. To obtain an output of length of Lx+Lh-1
samples, one would append Lh-1 zeros to x[n].

The third way is compute the output by using a Fourier-domain approach. For linear
convolution, the discrete-time Fourier transform of the linear convolution of x[n] and h[n] is
simply the product of their individual discrete-time Fourier transforms. The product could then
be inverse transformed to find the filtered signal in the discrete-time domain. That approach,
however, is difficult to automate using only numeric calculations. An alternative is to use the
Fast Fourier Transform (FFT).

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Brian L. Evans

Q - 3

The FFT of the circular convolution of x[n] and h[n] is the product of their individual FFTs. In
circular convolution, the signals x[n] and h[n] are considered to be periodic with period N. One
period of N samples of the circular convolution is defined as

∑
−

=

−=⊗=
1

0

]))[((]))[((][][][
N

m
NNNcircular mnxmhnhnxny

where ((•))N means that the argument is taken modulo N. We will henceforth refer to the circular
convolution between periodic signals of length N as circular convolution of length N. On a
programmable digital signal processor, we would use the modulo addressing mode to accelerate
the computation of circular convolution.

Circular convolution of two finite-length sequences x[n] and h[n] is equivalent to linear
convolution of those sequences by padding (appending) Lx-1 zeros to h[n] and Lh-1 zeros to x[n]
so that both of them are of the same length and using a circular convolution length of Lx+Lh-1
samples. This is the approach used in the FFT-based method in this problem.

The FFT-based method to compute the linear convolution uses an FFT length of N of Lx+Lh-1.
First, the FFT of length N of the zero-padded x[n] is computed to give X[k], and the FFT of
length N of the zero-padded h[n] is computed to give H[k]. Second, the product Ycircular[k] = X[k]
H[k] for k = 0,…, N-1 is computed. Then, the inverse FFT of length N of Ycircular[k] is computed
to find ycircular[n]. This third way results in an output signal of Lx+Lh-1 = 47 samples.

The fourth way to filter a signal uses a time-domain formula. It is an alternate implementation
of the same approach used by the filter command. Hence, this approach gives an output of
length Lx = 32 samples.

% waystofilt.m "conv" vs. "filter" vs. "freq domain " vs. "time domain"
over=4; % 4 samples/symbol
r=0.75; % roll-off
rcosinelen25 = rcosine(1, 4, 'fir' , 0.75);
h = rcosinelen25(5:20);
x= [-7 0 0 0 -5 0 0 0 -3 0 0 0 -1 0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 7 0 0 0];
yconv=conv(h,x) ; % (a) convolve x[n] * h[n]
n=1:length(yconv);stem(n,yconv)
xlabel('Time');ylabel('yconv');title('Using conv function'); figure
yfilt=filter(h,1,x) ; % (b) filter x[n] with h[n]
n=1:length(yfilt);stem(n,yfilt)
xlabel('Time');ylabel('yfilt');title('Using the filter command'); figure
N=length(h)+length(x)-1; % pad length for FFT
ffth=fft([h zeros(1,N-length(h))]); % FFT of impulse response = H[k]
fftx=fft([x, zeros(1,N-length(x))]); % FFT of input = X[k]
ffty=ffth .* fftx; % product of H[k] and X[k]
yfreq=real(ifft(ffty)); % (c)IFFT of product gives y[n]
 % it’s complex due to roundoff
n=1:length(yfreq); stem(n,yfreq)
xlabel('Time');ylabel('yfreq');title('Using FFT'); figure
z=[zeros(1,length(h)-1),x]; % initial state in filter = 0
for k=1:length(x) % (d) time domain method
 ytim(k)=fliplr(h)*z(k:k+length(h)-1)'; % iterates once for each x[k]
end % to directly calculate y[k]
n=1:length(ytim); stem(n,ytim)
xlabel('Time');ylabel('ytim');title('Using the time domain formula');
%end of function

EE 445S Real-Time Digital Signal Processing Laboratory Prof. Brian L. Evans

Q - 4

0 5 10 15 20 25 30 35
-8

-6

-4

-2

0

2

4

6

Time

yf
ilt

Using the filter command

0 5 10 15 20 25 30 35
-8

-6

-4

-2

0

2

4

6

Time

yt
im

Using the time domain formula

0 5 10 15 20 25 30 35 40 45 50
-8

-6

-4

-2

0

2

4

6

8

Time

yc
on

v

Using conv function

0 5 10 15 20 25 30 35 40 45 50
-8

-6

-4

-2

0

2

4

6

8

Time

yf
re

q

Using FFT

Adding Random Variables Page S-1

Spring 2014 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans

Discussion of handout on YouTube: http://www.youtube.com/watch?v=7E8_EBd3xK8

Adding Random Variables and Connections with the Signals and Systems Pre-requisite

Problem

A key connection between a Linear Systems and Signals course and a Probability course is that when

two independent random variables are added together, the resulting random variable has a probability

density function (pdf) that is the convolution of the pdfs of the random variables being added together.

That is, if X and Y are independent random variables and Z = X + Y, then fZ(z) = fX(z) * fY(z) where fR(r)

is the probability density function for random variable R and * is the convolution operation. This is

true for continuous random variables and discrete random variables. (An alternative to a probability

density function is a probability mass function. They represent the same information but in different

formats.)

a) Consider two fair six-sided dice. Each die, when rolled, generates a number in the range of 1

to 6, inclusive, with each outcome having an equal probability. That is, each outcome is

uniformly distributed. When adding the outcomes of a roll of these two six-sided dice, one

would have a number between 2 and 12, inclusive.

1) Tabulate the likelihood for each outcome from 2 to 12, inclusive.

2) Compute the pdf of Z by convolving the pdfs of X and Y. Compare the result to the first

part of this sub-problem (a)-(1).

b) Compute the pdf of continuous random variable Z where Z = X + Y and X is a continuous

random variable uniformly distributed on [0, 2] and Y is a continuous random variable

uniformly distributed on [0, 4]. Assume that X and Y are independent.

c) A constant value C can be modeled as a pdf with only one non-zero entry. Recall that the pdf

can only contain non-negative values and that the area under a continuous pdf (or equivalently

the sum of a discrete pdf) must be 1.

1) Plot the pdf of a discrete random variable X that is a constant of value C.

2) Plot the pdf of a continuous random variable Y that is a constant of value C.

3) Using convolution, determine the pdf of a continuous random variable Z where Z = X +

Y. Here, X has a uniform distribution on [0, 3] and Y is a constant of value 2. Assume

that X and Y are independent.

Solution

(a) (1) Likelihood for each outcome from 2 to 12

Let Xbe the number generated when the first die is rolled and Y be the number generated when the

second die is rolled. Since each outcome is uniformly distributed for each die, P(X = x) = 1/6 where x

 {1, 2, 3, 4, 5, 6} and P(Y = y) = 1/6 where y {1, 2, 3, 4, 5, 6}:

Z P(z)

2 1/36

3 2/36

http://www.youtube.com/watch?v=7E8_EBd3xK8

Adding Random Variables Page S-2

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

(2) Adding the two random variables results in another random variable Z = X + Y which takes on

values between 2 and 12, inclusive. Since the dice are rolled independently, the numbers generated are

independent.

.

2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Z

P
Z
(z

)

The result of the convolution of P
x
 and P

y

The convolution of two rectangular pulses of the same length N samples gives a triangular pulse of

length 2N – 1 samples. Example calculations:

Evaluating the above convolution, we get the same pdf as obtained in the table. The output of the

Matlab simulation of the convolution is displayed in the above graph. The conv method was used for

the convolution. The stem method was used for plotting.

(b) X is uniformly distributed on [0, 2]. Therefore for all x [0,2]. Similarly, since Y is

uniformly distributed on [0, 4], for all y [0, 4].

Adding Random Variables Page S-3

(c) (1)The answer is a Kronecker (discrete-time) impulse located at x = C.

(2) For a continuous random variable we require that 1)(




dxxf X
and this is satisfied by an

continuous impulse (Dirac delta functional) at C. Mathematically, 1)(




dxCx

(3) X is uniformly distributed on [0, 3]. Therefore for all x [0, 3]. Y has a constant value of

2 and hence . Since X and Y are independent, Z = X + Y implies that

This follows from the fact that convolution by shifts)(zf X by 2.

z

fZ(z)

1/4

4 2 6

Adding Random Variables Page S-4

