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EE445S Real-Time DSP Lab: Lecture & Lab 

This course is a four-credit course, with three hours of lecture and three hours of lab scheduled 
per week.  

For spring 2014, lecture will be held in ETC 5.148 on Mondays, Wednesdays, and Fridays from 

11:00 am to 12:00 pm, beginning Jan. 13th and ending May 2nd. The laboratory sessions will be 

held in ENS 252B on Mondays, Tuesdays, Wednesdays, and Fridays from Jan. 21st to May 2nd.  

This course does not require a semester project nor does it have a final examination. Final grades 

will consist of pre-lab quizzes, laboratory reports, homework assignments and exams. Exams 

will be based on material covered in lecture, homework assignments, laboratory sessions and 

reading assignments. 

All lecture slides (13 MB) and the course reader (18 MB) are available for Spring 2014.  

For the first half of the semester, the weekly schedule of lecture and lab topics follows. Reading 

assignments are also given, where JSK means Johnson, Sethares and Klein, Software Receiver 

Design, and WWM means Welch, Wright and Morrow, Real-Time Digital Signal Processing.  

Week  
Monday 

Lecture  

Wednesday 

Lecture  
Friday Lecture  Lab  Reading  

Jan. 

13th  
Introduction  Introduction  

Sinusoidal 

Generation  
NONE  

Wednesday: JSK ch. 1 

Friday: JSK 2.1-2.7 

Reader handouts A-D & R  

Jan. 

20th  

DR. MARTIN 

LUTHER 

KING DAY  

Sinusoidal 

Generation  

Discussion of 

homework #0 

solutions  

Introduction 

- Tools  

Tuesday: Pre-lab Reading 
Wednesday: JSK 2.8-2.16 

Friday: JSK 3.1-3.4  

Jan. 

27th  

Signals and 

Systems  

Signals and 

Systems  

Discussion of 

homework #1 

solutions 

Sine Wave 

Generation  

Monday: Pre-lab Quiz 
Wednesday: JSK 3.5-3.8 and 

app. A.2, A.4, G.1 & G.2 

Friday: JSK 4.1-4.6, and 

Reader handouts E & F  

Feb. 

3rd  

Finite Impulse 

Response 

Filters  

Finite Impulse 

Response Filters  

Discussion of 

homework #2 

solutions 

Sine Wave 

Generation  

Monday: JSK 7.1-7.2 

Wednesday: JSK app. F  

Feb. 

10th  

Finite Impulse 

Response 

Filters  

Finite Impulse 

Response Filters  

Introduction to 

Digital Signal 

Processors (DSPs)  

Digital 

Filters  
Monday: Pre-lab Quiz 
Friday: Reader handout N  

Feb. 

17th  

Introduction to 

DSPs  

Infinite Impulse 

Response Filters  

Infinite Impulse 

Response Filters  

Digital 

Filters  

Wednesday: Reader handout 

O  

Feb. 

24th  

Discussion of 

homework #3  

Infinite Impulse 

Response Filters  

Infinite Impulse 

Response Filters  

Digital 

Filters  

Friday: JSK 5.1-5.2, 6.1-6.3 

and A.3; Reader handout H  

Mar. 

3rd  

Sampling and 

Aliasing  

Sampling and 

Aliasing  
Midterm #1  

Digital 

Filters  
Monday: JSK 6.4  
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For the second half of the semester, the weekly schedule of lecture and lab topics follows.  

Week  
Monday 

Lecture  

Wednesday 

Lecture  

Friday 

Lecture  
Lab  Reading  

Mar. 

17th  

Interpolation 

and Pulse 

Shaping  

Interpolation 

and Pulse 

Shaping  

Discussion 

of midterm 

#1 solutions  

Data 

Scramblers  

Monday: Pre-lab Quiz 

Wednesday: JSK 5.3-5.4, 8.1-8.5, and 

Reader handout I 

Friday: JSK 9.1-9.4 and app. B & E  

Mar. 

24th  

Channel 

Impairments  

Digital Pulse 

Amplitude 

Modulation  

Discussion 

of homework 

#4 solutions  

Pulse 

Amplitude 

Modulation  

Monday: Pre-lab Quiz 
Wednesday: JSK 11.1-11.6 and app. C 

Friday: JSK 10.1-10.4, and Reader 

handout M & S  

Mar. 

31st  

Digital Pulse 

Amplitude 

Modulation  

Matched 

Filtering  

Discussion 

of homework 

#5 solutions  

Pulse 

Amplitude 

Modulation  

Monday: JSK 13.1-13.3 

Wednesday: JSK 12.1-12.4 

Friday: JSK 16.1-16.2  

Apr. 

7th  

Matched 

Filtering  

Matched 

Filtering  

Matched 

Filtering  

Pulse 

Amplitude 

Modulation  

Monday: JSK 16.3-16.6 

Wednesday: JSK 16.7-16.11 

Friday: Reader handout P  

Apr. 

14th  

QAM 

Transmitter  

QAM 

Transmitter  

QAM 

Receiver  

Quadrature 

Amplitude 

Modulation  
Monday: Pre-lab Quiz  

Apr. 

21st  
Quantization  Quantization  

Data 

Conversion  

Quadrature 

Amplitude 

Modulation  

Monday: Reader handout J 

Friday: JSK ch. 7 & app. D  

Apr. 

28th  

Data 

Conversion  
Review  Midterm #2  

Guitar Special 

Effects  
Monday: Pre-lab Quiz 

The following lectures are not scheduled to be presented this semester:  

 TMS320C6000 DSP  

 Advanced Data Conversion  

 Fast Fourier Transform  

 DSL Modems  

 Analog Sinusoidal Modulation  

 Wireless OFDM Systems  

 WiMAX  

 Spread Spectrum Communications  

 Modern DSP Processors  

 Native Signal Processing  

 Algorithm Interoperability  

 System-level Design  

 Synchronization in ADSL Modems  

 Wireless 1000x  
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EE445S Real-Time Digital Signal Processing Laboratory - Overview 

Prof. Brian L. Evans  

This undergraduate elective is an introduction to the analysis, design, and implementation of embedded 
real-time digital signal processing systems. "Real-time" means guaranteed delivery of data by a certain 
time. "Embedded" means that the subsystem performs behind-the-scenes tasks within a larger system. 
These tasks are often tailored to an application, e.g. speech compression/decompression for a cell phone.  

Traditionally, users do not directly interact with the embedded systems in the product. For example, a 
modern cell phone contains several embedded systems, including processors, memory systems, and 
input/output systems, but the user interacts with the cell phone through the touchscreen and/or voice 
commands. As another example, a PC contains several embedded digital systems, including the disk 

drive, CD/DVD player, video processor, and wireless LAN system. Embedded systems range from a 
system-on-chip to a board to a rack of computing engines to a distributed network of computing engines.  

The application space for embedded systems includes control, communication, networking, signal 
processing, and instrumentation. High-volume products in units shipped worldwide in 2012 include  

 1750M cell phones  

   350M PCs/laptops  

   115M DVD/Blu-ray players  

   100M digital still cameras  

     75M DSL/VDSL modems  

     70M cars/light trucks  

     34M video game consoles  

High-end cars now have more than 150 embedded processors in them. More than two billion products are 
sold each year with multiple embedded digital signal processing systems in them. In fact, there are more 
embedded programmable processors in the world than people.  

Texas is a worldwide epicenter for microprocessors for control, signal processing, and communication 
systems. In 2007, Texas Instruments (Dallas, TX) and Freescale (Austin, TX) have 64% and 12%, 
respectively, of the $8B embedded programmable digital signal processor market. Their digital signal 
processors were developed, and are still being developed, in Texas. Near three-fourths of all digital signal 
processors are used in wireless systems for both cellular and data networks. Texas Instruments and 
Freescale are also market leaders in the embedded programmable microcontroller market, esp. for the 
automotive sector. In addition, Qualcomm and Cirrus Logic have developed several generations of 
programmable digital signal processors in Austin, Texas, for cell phones and audio systems, respectively. 

To boot, Austin is a worldwide leader in ARM-based digital VLSI design centers.  

Through this undergraduate elective, I hope that students gain an intuitive feel for basic discrete-time 
signal processing concepts and how to translate these concepts into real-time software using digital signal 
processor technology. The course will review some of the mathematical foundations of the course 
material, but emphasize the qualitative concepts. The qualitative concepts are reinforced by hands-on 
laboratory work and homework assignments.  

In the laboratory and lecture, the course will cover  

http://users.ece.utexas.edu/~bevans/


 digital signal processing: signals, sampling, filtering, quantization, oversampling, noise shaping, 
and data converters.  

 digital communications: Analog/digital modulation, analog/digital demodulation, pulse shaping, 
pseudo-noise sequences, ADSL transceivers, and wireless LAN transceivers.  

 digital signal processor architectures: Harvard architecture, special addressing modes, parallel 
instructions, pipelining, real-time programming, and modern digital signal processor 
architectures.  

In particular, we will discuss design tradeoffs between implementation complexity and signal 
quality/communication performance.  
 
In the laboratory component, students implement transceiver subsystems in C on a Texas Instruments 
TMS320C6748 floating-point dual-core programmable digital signal processor. The C6000 family is used 

in DSL modems, wireless LAN modems, mobile wireless basestations, and video conferencing systems.  
For professional audio systems, the C6700 floating-point sub-family empowers guitar effects and 
intelligent mixing boards.  Students test their implementations using rack equipment, Texas Instruments 
Code Composer Studio software, and National Instruments LabVIEW software. A voiceband transceiver 
reference design and simulation is available in LabVIEW. 

In addition to learning about voiceband modem design in the lab and lecture, students will also learn in 
lecture about the design of modern analog-to-digital and digital-to-analog converters, which employ 
oversampling, filtering, and dithering to obtain high resolution. Whereas the voiceband modem is a single 
carrier system, lectures will also cover modern multicarrier modulation systems, esp. asymmetric digital 

subscriber line (ADSL) and wireless LAN systems. In particular, we discuss the data transmission 
subsystems in ADSL and wireless LAN transceivers. Last, we spend several lectures on digital signal 
processor architectures, esp. the architectural features adopted to accelerate digital signal processing 
algorithms.  

For the lab component, I chose a floating-point DSP over a fixed-point DSP. The primary reason was to 
avoid overwhelming the students with the severe fixed-point precision effects so that the students could 
focus on the design and implementation of real-time digital communications systems. That said, floating-
point DSPs are used in industry to prototype algorithms, e.g. to see if real-time performance can be met. If 

the prototype is successful, then it might be modified for low-volume applications or it might be mapped 
onto a fixed-point DSP for high-volume applications (where the engineering time for the mapping can 
potentially be recovered).  

A UT undergraduate ECE student who took the real-time DSP laboratory course in Fall 1999 and 
graduated in May of 2000 wrote the following about the course in August 2000:  

"... keep that real-time DSP lab as good as it was when I took it. I have to say, that lab was the best class I 
took at UT. It is close enough to the cutting edge of technology that you can hold a conversation with 
someone from industry and actually contribute useful ideas. 345L is a close second. Good work."  

A UT undergraduate BME student who took the real-time DSP laboratory course in Spring 2009 wrote 
the following about the course in June 2009:  

"I wanted to thank you for teaching the EE 445S course this last spring semester (Spring 09). I got my 
summer internship based on my experience in the EE 445S lab and the whole course. I am told that 
[Company X] has never hired any Biomedical Engineering student before, but because of this course I got 
the opportunity to be the first BME student in this company."  

http://www.ni.com/labview
http://users.ece.utexas.edu/~bevans/courses/realtime/demonstration/index.html
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Dept. of Electrical and Computer Engineering 

The University of Texas at Austin 

EE 445S Real-Time Digital Signal Processing Lab           Spring 2014 

Lecture 0                     http://www.ece.utexas.edu/~bevans/courses/rtdsp 
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Outline 

• Instructional staff 

• Real-time digital signal processing 

• Course overview 

• Communication systems 

• Single carrier transceiver 

• Multicarrier transceivers 

• Conclusion 

Instructional Staff 

• Prof. Brian L. Evans 

Conducts research in digital communication, 

digital image processing & embedded systems 

Past and current projects on next two slides 

Office hours: M 12:00-12:30pm, W 12:00-12:30pm, 

TH 12:30-2:30pm (ENS 433B) 

Coffee hours F 12:00-2:00pm starting Jan. 17th 

• Teaching assistants (lab sections/office hours below) 

Mr. Chao Jia 

W & F lab sections 

TH  3:30-5:30pm 

F     9:30-10:30am 

Ms. Zeina Sinno 

M & T lab sections 

W    3:00- 4:30pm 

TH  5:30-  7:00pm 
0-3 

Completed Research Projects 

DSP    Digital Signal Processor                  FPGA  Field Programmable Gate Array 

LTE     Long-Term Evolution (cellular)        PXI      PCI Extensions for Instrumentation 

21 PhD and 9 MS alumni 

Instructional Staff  

System Contribution SW release Prototype Funding 

ADSL equalization Matlab DSP/C Freescale, TI 

2x2 testbed LabVIEW LabVIEW/PXI Oil&Gas 

Wimax/LTE resource alloc. LabVIEW DSP/C Freescale, TI 

Underwater 

comm. 

space-time comm. 

large rec. arrays 

Matlab Lake Travis 

testbed 

UT Applied 

Res. Labs 

Camera image acquisition Matlab DSP/C Intel, Ricoh 

Display image halftoning Matlab C HP, Xerox 

video halftoning Matlab C Qualcomm 

Elec. design 

automation 
fixed point conv. Matlab FPGA Intel, NI 

distributed comp. Linux/C++ Navy sonar Navy, NI 

0-4 
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Current Research Projects 
9 PhD students 

Instructional Staff  

System Contributions SW release Prototype Funding 

Powerline 

comm. 

interference reduction; 

testbeds 

LabVIEW Freescale, TI 

modems 

Freescale, 

IBM, TI 

Wi-Fi interference reduction Matlab NI FPGA Intel, NI 

time-based analog-to-

digital converter 

IBM 45nm 

TSMC 180nm 

Cellular 

(LTE) 

cloud radio access net. 

baseband compression 

Matlab Huawei 

Handheld 

camera 

reducing rolling shutter 

artifacts 

Matlab Android TI 

EDA reliability patterns NI 

EDA    Electronic Design Automation         FPGA  Field Programmable Gate Array 

LTE     Long-Term Evolution (cellular)        TSMC  Taiwan Semicond. Manufac. Corp. 

0-5 

Real-Time Digital Signal Processing 

• Real-time systems [Prof. Yale Patt, UT Austin] 

Guarantee delivery of data by a specific time 

• Signal processing [http://www.signalprocessingsociety.org] 

Generation, transformation, extraction, interpretation of 

information 

Algorithms with associated architectures and implementations 

Applications related to processing information 

• Embedded systems 

Perform application-specific tasks 

Work “behind the scenes” (e.g. speech compression) 

0-6 

Course Overview 

• Objectives 

Build intuition for signal processing concepts 

Explore design tradeoffs in signal quality vs. 
implementation complexity 

• Lecture: breadth (3 hours/week) 

Digital signal processing (DSP) algorithms 

Digital communication systems 

Digital signal processor (DSP) architectures 

• Laboratory: depth (3 hours/week) 

Translate DSP concepts into software 

Design/implement data transceiver  

Test/validate implementation 

Measures of 

signal quality? 

Implementation 

complexity? 

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

4.5 5 5.5 6 6.5 7  

SymMinSSNR

SymMMSE

MinSSNR

SymMinISI

MMSE

MinISI

MDS

DualPath

ADSL receiver design: bit rate 

(Mbps) vs. multiplications 

in equalizer training methods 

[Data from Figs. 6 & 7 in B. L. Evans et al., 

“Unification and Evaluation of Equalization  

Structures…”, IEEE Trans. Sig. Proc., 2005] 

105 106 107 

Pre-Requisites and Co-Requisites 

• Pre-Requisites 

Introduction to Programming: C programming, arrays 
and circular buffers, asymptotic analysis 

Signals & Systems: convolution, transfer functions, 
frequency responses, filtering 

Intro. to Embedded Systems: assembly and C languages, 
microprocessor organization, quantization 

• Co-Requisites 

Probability: Gaussian and uniform distributions, sum of 
random variables, statistical independence, random 
processes, correlation 

Engineering Communication: technical writing 

Course Overview 

 dt
t

  


0-8 
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Detailed Topics 

• Digital signal processing algorithms/applications 

Signals, convolution and sampling (signals & systems) 

Transfer functions & freq. responses (signals & systems) 

Filter design & implementation, signal-to-noise ratio 

Quantization (embedded systems) and data conversion 

• Digital communication algorithms/applications 

Analog modulation/demodulation (signals & systems) 

Digital modulation/demodulation, pulse shaping, pseudo noise 

Signal quality: matched filtering, bit error probability 

• Digital signal processor (DSP) architectures 

Assembly language, interfacing, pipelining (embedded systems) 

Harvard architecture, addressing modes, real-time prog. 

Course Overview 

0-9 

Digital Signal Processors In Products 

0-10 

Consumer audio 

Pro-audio 

Amp 

Mixing 

board 

IP camera 

IP phone 

Video conferencing 

Multimedia 

In-car entertainment 

Communications 

Smart power meters 

DSL modems 

Tablets 

Course Overview 

0-11 

Required Textbooks 

Software Receiver Design, 
Oct. 2011 

Design of digital 
communication systems 

Convert algorithms into 
Matlab simulations 

Bill Sethares 

(Wisconsin) 

Rick Johnson 

(Cornell) 

Andy Klein 

(WPI) 

Thad Welch 

(Boise State) 
Cameron 

Wright 

(Wyoming) 

Michael 

Morrow 

(Wisconsin) 

U

T 

Real-Time Digital Signal 
Processing from Matlab 

to C with the TMS320C6x 

DSPs, Dec. 2011 

Matlab simulation 

Mapping algorithms to C 
0-11 

Course Overview 

Supplemental (Optional) Textbooks 

• J. H. McClellan, R. W. Schafer & M. A. Yoder, 

DSP First: A Multimedia Approach, 1998 

DSP theory and algorithms at sophomore level 

Demos: http://users.ece.gatech.edu/~dspfirst/ 

• B. P. Lathi, Linear Systems & Signals, or 

M. J. Roberts, Signals and Systems, or 

Oppenheim & Willsky, Signals and Systems 

Textbook for pre-requisite signals & systems course 

• Steve Smith, The Scientist and Engineer’s 

Guide to Digital Signal Processing, 1997 

Available free online: http://www.dspguide.com 

R. Schafer’s 

1975 book 

seminal for 

DSP theory 

0-12 

Course Overview 
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Related BS ECE Technical Cores 

Signal/image processing 

Real-Time Dig. Sig. Proc. Lab 

Digital Signal Processing 

Introduction to Data Mining 

Digital Image & Video 

Processing 

 

 

 

Courses with the highest 

workload at UT Austin? 

Communication/networking 

Real-Time Dig. Sig. Proc. Lab 

Digital Communications 

Wireless Communications Lab 

Telecommunication Networks 

Embedded Systems 

Embedded & Real-Time Systems 

Real-Time Dig. Sig. Proc. Lab 

Digital System Design (FPGAs) 

Computer Architecture 

Introduction to VLSI Design 

Undergraduate students may 

take grad courses upon request 

and at their own risk  

0-13 

Course Overview 

Grading 

• Calculation of numeric grades 

21% midterm #1 

21% midterm #2 

14% homework  (drop lowest grade of eight) 

  5% pre-lab quizzes (drop lowest grade of six) 

39% lab reports (drop lowest grade of seven) 

• 21% for each midterm exam 

Focus on design tradeoffs in signal quality vs. complexity 

Based on in-lecture discussion and homework/lab assignments 

Open books, open notes, open computer (but no networking) 

Dozens of old exams (most with solutions) in course reader 

Test dates on course descriptor and lecture schedule 

 

Average GPA 

has been ~3.1 

MyEdu.com 

No final 

exam 

0-14 

Course Overview 

Grading 

• 14% homework – eight assignments (drop lowest) 

Strengthen theory and analysis 

Translate signal processing concepts into Matlab simulations 

Evaluate design tradeoffs in signal quality vs. complexity 

•   5% pre-lab quizzes – for labs 2-7 (drop lowest) 

10 questions on course Blackboard site taken individually 

• 39% lab reports – for labs 1-7 (drop lowest) 

Work individually on labs 1 and 7 

Work in team of two on labs 2-6 and receive same base grade 

Attendance/participation in lab section required and graded 

• Course ranks in graduate school recommendations 

 0-15 

Course Overview 

0-16 

Maximizing Your Numeric Grade 

• Attend every lecture 

Most important information not 
on slides [fall 2010 student] 

• Complete every homework 

• Submit only your own work 

Independent solutions on all 
homework assignments, lab 1/7 
reports and all pre-lab quizzes 

Lab team on lab 2-6 reports 

Cite sources for all other work  

Lowest 

Grades 

Lecture 

Absences 

Zeros on 

homework 

55.13 10 6  

68.12 10 6 

73.96 0 0 

74.43 5 4 

74.80 12 2 

74.90 2 1 

75.89 6 2 

Spring 2011 

“In May 2006, William Swanson, CEO of Raytheon … was docked approximately 
US $1 million in pay by the company after it was revealed he had plagiarized 16 of 
the 33 rules in his popular 2004 book, Swanson's Unwritten Rules of Management.” 
[Sept. 8, 2006, issue of IEEE's The Institute electronic newsletter] 

Course Overview 
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Communication System Structure 

• Information sources 

Voice, music, images, video, and data (message signal m(t)) 

Have power concentrated near DC (called baseband signals) 

• Baseband processing in transmitter 

Lowpass filter message signal (e.g. AM/FM radio) 

Digital: Add redundancy to message bit stream to aid receiver 

in detecting and possibly correcting bit errors 

 

m(t) 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

)(ˆ tm

CHANNEL 

Communication Systems 

0-17 

Communication System Structure 

• Carrier circuits in transmitter 

Upconvert baseband signal into transmission band 

 

 

 

Then apply bandpass filter to enforce transmission band 

 

m(t) 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

)(ˆ tm

CHANNEL 

w 

 

w 
0 

1 

w1 -w1 

F(w) 

0 

S(w) 

½ 

-w0 - w1 -w0 + w1 
w0 

w0 - w1 w0 + w1 
w0 

½Fw  w0 ½Fw + w0 

Baseband signal Upconverted signal 

Communication Systems 

0-18 

Communication System Structure 

• Channel – wired or wireless 

Propagating signals spread and attenuate over distance 

Boosting improves signal strength and reduces noise 

• Receiver 

Carrier circuits downconvert bandpass signal to baseband 

Baseband processing extracts/enhances message signal 

m(t) 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

)(ˆ tm

CHANNEL 

Communication Systems 

0-19 

Single Carrier Transceiver Design 

• Design/implement transceiver 

Design different algorithms for each subsystem 

Translate algorithms into real-time software 

Test implementations using signal generators & oscilloscopes 

Laboratory Transceiver Subsystems 

1 introduction block diagram of transmitter 

2 sinusoidal generation sinusoidal mod/demodulation 

3(a) finite impulse response filter pulse shaping, 90o phase shift 

3(b) infinite impulse response filter transmit and receive filters, 

carrier detection, clock recovery  

4 pseudo-noise generation training sequences 

5 pulse amplitude mod/demodulation training during modem startup 

6 quadrature amplitude mod (QAM) data transmission 

7 digital audio effects not applicable 

 

Single Carrier Transceivers 
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Lab 4 

Rate 
Control 

Lab 6 

QAM  
Encoder 

Lab 3 

Tx Filters 

Lab 2 

Bandpass 
Signal 

LabVIEW demo by Zukang Shen (UT Austin) 

Lab 1: QAM Transmitter Demo 
http://www.ece.utexas.edu/~bevans/courses/realtime/demonstration 

Single Carrier Transceivers 

Reference design in LabVIEW 

0-22 

Lab 1: QAM Transmitter Demo 
LabVIEW 

control  

panel 
QAM 

baseband 

signal 

Eye 

diagram 

LabVIEW demo by Zukang Shen (UT Austin) 

Single Carrier Transceivers 

Got Anything Faster? 

• Multicarrier modulation divides broadband 
(wideband) channel into narrowband subchannels 

Uses Fourier series computed by fast Fourier transform (FFT) 

Standardized for ADSL (1995) & VDSL (2003) wired modems 

Standardized for IEEE 802.11a/g wireless LAN 

Standardized for IEEE 802.16d/e (Wimax) and cellular (3G/4G) 

subchannel 

frequency 

m
a
g
n
it
u
d
e
 

carrier 

channel 

Each ADSL/VDSL subchannel is 4.3 kHz wide (about 
width of voiceband channel) and carries a QAM signal 

Multicarrier Transceivers 

0-23 

Conclusion 

• Objectives 

Build intuition for signal processing concepts 

Translate signal processing concepts into 
real-time digital communications software 

• Deliverables and takeaways 

Tradeoffs of signal quality vs. implementation complexity 

Design/implement voiceband transceiver in real time 

Test/validate implementation 

• Role of technology 

Matlab for algorithm development 

TI DSPs and Code Composer Studio for real-time prototyping 

LabVIEW for test and measurement 

Plug into 
network of 

1,400+ course 

alumni 

All software/hardware 

used lead in usage in 

their respective markets 

0-24 
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Generating Sinusoidal Signals 

Prof. Brian L. Evans 

Dept. of Electrical and Computer Engineering 

The University of Texas at Austin 

EE 445S Real-Time Digital Signal Processing Lab           Spring 2014 

Lecture 1                      http://www.ece.utexas.edu/~bevans/courses/rtdsp 
1-2 

Outline 

• Bandwidth 

• Sinusoidal amplitude modulation 

• Sinusoidal generation 

• Design tradeoffs 

1-3 

Bandwidth 

• Non-zero extent in positive frequencies 

 

 

 

 

• Applies to continuous-time & discrete-time signals 

• In practice, spectrum won’t be ideally bandlimited 

Thermal noise has “flat” spectrum from 0 to 1015 Hz 

Finite observation time of signal leads to infinite bandwidth 

• Alternatives to “non-zero extent”? 

Ideal Lowpass Spectrum 

fmax -fmax 

f  

Bandwidth fmax 

Ideal Bandpass Spectrum 

f1 f2 

f  

–f2 –f1 

Bandwidth W = f2 – f1 

Bandwidth 

1-4 

Lowpass Signal in Noise 

• How to determine fmax? 

Apply threshold and eyeball it 

OR 

Estimate fmax that captures certain 

percentage (say 90%) of energy 

 

 

 

 

In practice, (a) use large frequency in place of  and 

(b) integrate a measured spectrum numerically  

Lowpass Spectrum 

in Noise 

f  

 
max

max 0

2
Energy 9.0)(min

f

f
dffH

Idealized Lowpass 

Spectrum 

fmax -fmax 

f  

Bandwidth 





0

2
 )(Energy where dffH

approximate 

Baseband signal: energy in frequency domain concentrated around DC 
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Bandpass Signal in Noise 

• How to find f1 and f2? 

Apply threshold and eyeball it 

OR 

Assume knowledge of fc  and 

estimate f1 = fc  W/2 and 

 f2 =  fc + W/2 that capture  

percentage of energy 

 

 

 

 

In practice, (a) use large frequency in place of  and 

(b) integrate a measured spectrum numerically  

Idealized Bandpass Spectrum 

f1 f2 

f  

–f2 –f1 

Bandpass Spectrum In Noise 

f  







Wf

WfW

c

c

dffH2

1

2

1

2
Energy 9.0)(min

cfWdffH 20 and )(Energy where
0

2
 



fc 
- fc 

Bandwidth 
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Amplitude Modulation by Cosine 

• y1(t) = x1(t) cos(wc t) 

Assume x1(t) is an ideal lowpass signal with bandwidth w1 

Assume w1 << wc 

 

 

 

 

 

Y1(w) has (transmission) bandwidth of 2w1 

Y1(w) is real-valued if X1(w) is real-valued 

• Demodulation: modulation then lowpass filtering 

w 
0 

1 

w1 -w1 

X1(w) 

w 

 
0 

Y1(w) 

½ 

-wc - w1 -wc + w1 
wc 

wc - w1 wc + w1 
wc 

½X1(w  wc) ½X1(w  wc) 

lower sidebands 

Amplitude Modulation 

( ) ( ) ( )cc XXY wwwww  111
2

1

2

1
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Amplitude Modulation by Sine 

• y2(t) = x2(t) sin(wc t) 

Assume x2(t) is an ideal lowpass signal with bandwidth w2 

Assume w2 << wc 

 

 

 

 

 

Y2(w) has (transmission) bandwidth of 2w2 

Y2(w) is imaginary-valued if X2(w) is real-valued 

• Demodulation: modulation then lowpass filtering 

w 

Y2(w) 

j ½ 

-wc – w2 -wc + w2 
wc 

wc – w2 wc + w2 
wc 

-j ½X2(w  wc) j ½X2(w  wc) 

-j ½ 

w 
0 

1 

w2 -w2 

X2(w) 

lower sidebands 

Amplitude Modulation 

( ) ( ) ( )cc X
j

X
j

Y wwwww  222
22

How to Use Bandwidth Efficiently? 

• Send lowpass signals x1(t) 

and x2(t) with w 1 = w 2 over 

same transmission bandwidth 

Called Quadrature Amplitude  

Modulation (QAM) 

Used in DSL, cable, Wi-Fi, and 

LTE cellular communications 

 

• Cosine modulated signal is orthogonal to sine 

modulated signal at transmitter 

Receiver separates x1(t) and x2(t) through demodulation 
1-8 

+ cos(wc t) 

sin(wc t) 

x1(t) 

x2(t) 

s(t) 

( ) ( ) ( )( ) ( ) ( )( )cccc XXjXXS wwwwwwwww  2211
2

1

2

1

Amplitude Modulation 
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Lab 2: Sinusoidal Generation 

• Compute sinusoidal waveform 

Function call 

Lookup table 

Difference equation 

• Output waveform off chip 

Polling data transmit register 

Software interrupts 

Quantization effects in digital-to-analog (D/A) converter 

• Expected outcomes are to understand  

Signal quality vs. implementation complexity tradeoff 

Interrupt mechanisms 

Sinusoidal Generation 

1-10 

Sinusoidal Waveforms 

• One-sided discrete-time cosine (or sine) signal with 

fixed-frequency w 0 in rad/sample has form  

cos(w0 n) u[n] 

• Consider one-sided continuous-time analog-

amplitude cosine of frequency f0 in Hz  

cos(2  f0 t) u(t)  

Sample at rate of fs by substituting t = n Ts = n / fs  

(1/Ts) cos(2  (f0 / fs) n) u[n]  

Discrete-time frequency w0 = 2  f0 / fs in units of rad/sample 

Example: f0 = 1200 Hz and fs = 8000 Hz, w0 = 3/10   

• How to determine gain for D/A conversion?  

Design Tradeoffs in Generating Sinusoidal Signals 

1-11 

Math Library Call in C 

• Uses double-precision floating-point arithmetic 

• No standard in C for internal implementation 

• Appropriate for desktop computing 

On desktop computer, accuracy is a primary concern, so 
additional computation is often used in C math libraries 

In embedded scenarios, implementation resources generally at 
premium, so alternate methods are typically employed 

• GNU Scientific Library (GSL) cosine function 

Function gsl_sf_cos_e in file specfunc/trig.c 

Version 1.8 uses 11th order polynomial over 1/8 of period 

20 multiply, 30 add, 2 divide and 2 power calculations per 
output value (additional operations to estimate error) 

Design Tradeoffs in Generating Sinusoidal Signals 

1-12 

Efficient Polynomial Implementation  

• Use 11th-order polynomial 

Direct form a11 x
11 + a10 x

10 + a9 x
9 + ... + a0  

Horner's form minimizes number of multiplications 

a11 x
11 + a10 x

10 + a9 x
9 + ... + a0 = 

        ( ... (((a11 x + a10) x + a9) x ... ) + a0  

• Comparison 

Realization Multiply 

Operations 

Addition 

Operations 

Memory 

Usage 

Direct form 66 10 13 

Horner’s form 11 10 12 

Design Tradeoffs in Generating Sinusoidal Signals 

http://www.gnu.org/software/gsl/
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Difference Equation 

• Difference equation with input x[n] and output y[n] 

y[n] = (2 cos w0) y[n-1] - y[n-2] + x[n] - (cos w0) x[n-1]  

From inverse z-transform of z-transform of cos(w0 n) u[n] 

Impulse response gives cos(w0 n) u[n] 

Similar difference equation for sin(w0 n) u[n] 

• Implementation complexity 

Computation: 2 multiplications and 3 additions per cosine value 

Memory Usage: 2 coefficients, 2 previous values of y[n] and 
1 previous value of x[n]  

• Drawbacks 

Buildup in error as n increases due to feedback 

Fixed value for w0 

Initial conditions 

are all zero 

Design Tradeoffs in Generating Sinusoidal Signals 

1-14 

Difference Equation 

• If implemented with exact precision coefficients 

and arithmetic, output would have perfect quality 

• Accuracy loss as n increases due to feedback from 

Coefficients cos(w0) and 2 cos(w0) are irrational, except when 

cos(w0) is equal to -1, -1/2, 0, 1/2, and 1 

Truncation/rounding of multiplication-addition results 

• Reboot filter after each period of samples by 

resetting filter to its initial state 

Reduce loss from truncating/rounding multiplication-addition 

Adapt/update w0 if desired by changing cos(w0) and 2 cos(w0) 

Design Tradeoffs in Generating Sinusoidal Signals 

1-15 

Lookup Table 

• Precompute samples offline and store them in table 

• Cosine frequency w 0 = 2  N / L 

Remove all common factors between integers N and L 

Continuous-time period for cos(2  f0 t) is T0 = 1 / f0 

Discrete-time period for cos(2  (N / L) n) is L samples 

Store L samples in lookup table (N continuous-time periods) 

• Built-in lookup tables in read-only memory (ROM) 

Samples of cos() and sin() at uniformly spaced values for  

Interpolate values to generate sinusoids of various frequencies 

Allows adaptation of w0 if desired 

Design Tradeoffs in Generating Sinusoidal Signals 
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Design Tradeoffs 

• Signal quality vs. implementation complexity in 

generating cos(w 0 n) u[n] with w 0 = 2  N / L 

Method MACs/ 

sample 

ROM 

(words) 

RAM 

(words) 

Quality in 

floating pt. 

Quality in 

fixed point 

C math 

library call 

30 22 1 Second 

Best 

N/A 

Difference 

equation 

2 2 3 Worst Second 

Best 

Lookup 

table 

0 L 0 Best Best 

MAC  Multiplication-accumulation 

RAM  Random Access Memory (writeable)      ROM  Read-Only Memory 

Design Tradeoffs in Generating Sinusoidal Signals 
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INTRODUCTION TO 

DIGITAL SIGNAL 

PROCESSORS 

Prof. Brian L. Evans 

Contributions by 

Dr. Niranjan Damera-Venkata and 

Mr. Magesh Valliappan 

Embedded Signal Processing Laboratory 

The University of Texas at Austin 

http://signal.ece.utexas.edu/ 

Accumulator architecture 

Load-store architecture 

Memory-register architecture 

register 

file 

on-chip 

memory 

2 -2 

Outline 

 Embedded processors and systems 

 Signal processing applications 

 TI TMS320C6000 digital signal processor 

 Conventional digital signal processors 

 Pipelining 

 RISC vs. DSP processor architectures 

 Conclusion 

2 -3 

Embedded Processors and Systems 

 Embedded system works 

On application-specific tasks 

 “Behind the scenes” (little/no direct user interaction) 

 Units of consumer products shipped in 2012 

1750M  cell phones                     75M  DSL/VDSL modems 

   350M  PCs                                70M  cars/light trucks 

   115M  DVD/Blu-ray players      34M  game consoles 

   100M  digital still cameras 

 How many embedded processors are in each? 

 How much should an embedded processor cost? 

2011: average US prices were $73 for traditional cell phone 

and $191 for digital still camera 

2012: iPhone5 costs $749 (16GB) & $849 w/o contract 

2 -4 

Smart Phone Application Processors 

 Standalone app processors (Samsung) 

 Integrated baseband-app processors (Qualcomm) 

iPhone5 (10+ cores) 

• Touchscreen: Broadcom 

  (probably 2 ARM cores) 

• Apps: Samsung 

  (2 ARM + 3 GPU cores) 

• Audio: Cirrus Logic 

  (1 DSP core + 1 codec) 

• Wi-Fi: Broadcom 

• Baseband: Qualcomm 

• Inertial sensors: 

  STMicroelectronics 

3Q12 Smart Phone
App Proc Market ($3.8B) 

Qualcomm 
(Android)
Samsung 
(iPhone)
MediaTek 
(Android)
Broadcom 
(Android)
NVIDIA 
(Android)
Others

Source: Cellular News, 11 Jan. 2013 

http://www.cellular-news.com/story/58089.php 
“iPhone 5 Tear Down” 

http://www.ifixit.com/Teardown/iPhone-5-Teardown/10525/ 
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Market for Application Processors 

2012 Tablet App Proc Market
(107M Units) 

Apple 
(Samsung)
Texas Inst.

Nvidia

Qualcomm

Samsung

Other

Forward Concepts 

http://www.fwdconcepts.com/dsp071513.htm 

 $2.3B in tablets, $12.4B in smart phones, 2012 

 $3.5B in tablets, $16.1B in smart phones, 2013 (est.) 

 32% of revenue for all microprocessors sold in 2013 (est.) 

[“Tablet and Cellphone Processors Offset PC MPU Weakness,” Aug 2013] 

2 -6 

Signal Processing Applications 

 Embedded system cost & input/output rates 

Low-cost, low-throughput:  sound cards, 2G cell 

phones, MP3 players, car audio, guitar effects 

Medium-cost, medium-throughput: printers, 

disk drives, 3G cell phones, ADSL modems, 

digital cameras, video conferencing 

High-cost, high-throughput:  high-end printers, 

audio mixing boards, wireless basestations, 

3-D medical reconstruction from 2-D X-rays 

 Embedded processor requirements 

 Inexpensive with small area and volume 

Predictable input/output (I/O) rates to/from processor 

Low power (e.g. smart phone uses 200mW average for 

voice and 500mW for video; battery gives 5 W-hours) 

Single 

DSP 

Multiple 

multicore 

DSPs 

Multiple DSP  

chips or cores 

+ accelerators 

2 -7 

Type of Digital Signal Processor? 

Fixed-Point Floating-Point 

Per unit cost $2 and up $2 and up 

Prototyping time Long Short 

Power 

consumption 

10 mw - 1 W 1-3 W 

Battery-powered 

products 

Cell phones 

Digital cameras 

Very few 

Other products DSL modems 

Cellular basestations 

Pro & car audio 

Medical imaging 

Sales volume High Low 

Prototyping Convert floating- to 

fixed-point; use non-

standard C extensions; 

redesign algorithms 

Reuse desktop 

simulations; feasibility 

check before investing 

in fixed-point design 
2 -8 

Program RAM 
Data RAM 

or Cache 

Internal Buses 

Control Regs 

R
e

g
s
 (B

0
-B

1
5

) 

R
e

g
s
 (A

0
-A

1
5

) 

.D1 

.M1 

.L1 

.S1 

.D2 

.M2 

.L2 

.S2 

CPU 

Addr 

Data 

External 
Memory 

  -Sync 

  -Async 

DMA 
 

Serial Port 

 

Host Port 

 
Boot Load 

 

Timers 

 

Pwr Down 

Modern Digital Signal Processor Example 

TI TMS320C6000 Family, Simplified Architecture 
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Modern DSP: TI TMS320C6000 Architecture 

 Very long instruction word (VLIW) of 256 bits 

Eight 32-bit functional units with one cycle throughput 

One instruction cycle per clock cycle 

 Data word size and register size are 32 bits 

16 (32 on C6400) registers in each of two data paths 

40 bits can be stored in adjacent even/odd registers 

 Two parallel data paths 

Data unit - 32-bit address calculations (modulo, linear)  

Multiplier unit - 16 bit  16 bit with 32-bit result 

Logical unit - 40-bit (saturation) arithmetic/compares 

Shifter unit - 32-bit integer ALU and 40-bit shifter 
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Modern DSP: TI TMS320C6000 Architecture 

 Families: All support same C6000 instruction set 

C6200 fixed-pt. 150- 300 MHz  printers, DSL (obsolete) 

C6400 fixed pt.  500-1200 MHz video, DSL 

C6600 floating 1000-1250 MHz basestations (8 cores) 

C6700 floating  150-1,000 MHz medical imaging, audio 

 TMS320C6748 OMAP-L138 Experimenter Kit 

375-MHz CPU (750 million MACs/s, 3000 RISC MIPS) 

On-chip: 8 kword program, 8 kword data, 64 kword L2 

On-board memory: 32 Mword SDRAM, 2 Mword ROM 
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Modern DSP: TMS320C6000 Instruction Set 

.S Unit 
ADD NEG 

ADDK NOT 

ADD2 OR 

AND SET 

B SHL 

CLR SHR 

EXT SSHL 

MV SUB 

MVC SUB2 
MVK XOR 

MVKH ZERO 

.L Unit 
ABS   NOT 

ADD   OR 

AND   SADD 

CMPEQ   SAT 

CMPGT   SSUB 

CMPLT   SUB 

LMBD   SUBC 

MV   XOR 

NEG   ZERO 

NORM 

.M Unit 
MPY SMPY 

MPYH SMPYH 

.D Unit 
ADD   ST 

ADDA   SUB 

LD   SUBA 

MV   ZERO 

NEG 

Other 

NOP IDLE 

C6000 Instruction Set by Functional Unit 

Six of the eight functional units can perform integer add, 

subtract, and move operations 
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Modern DSP: TMS320C6000 Instruction Set 

Arithmetic 
ABS 

ADD 

ADDA 

ADDK 

ADD2 

MPY 

MPYH 

NEG 

SMPY 
SMPYH 

SADD 

SAT 

SSUB 

SUB 

SUBA 

SUBC 

SUB2 

ZERO 

Logical 

AND 

CMPEQ 

CMPGT 

CMPLT 

NOT 

OR 

SHL 

SHR 
SSHL 

XOR 

Bit 

Management 

CLR 

EXT 

LMBD 

NORM 

SET 

Data 

Management 

LD 

MV 

MVC 

MVK 

MVKH 

ST 

Program 

Control 

B 

IDLE 

NOP 

C6000 Instruction 

Set by Category 
(un)signed multiplication 
saturation/packed arithmetic  
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C5000 vs. C6000 Addressing Modes 

ADD #0Fh    mvk .D1 15, A1 

            add .L1 A1, A6, A6 

TI C5000           TI C6000 

(implied)   add .L1 A7, A6, A7            

 

ADD 010h    not supported           

 

ADD *       ldw .D1 *A5++[8],A1 

                          

 

 Immediate 

Operand part of instruction 

 Register 

Operand specified in a 

register 

 Direct 

Address of operand is part 

of the instruction (added 

to imply memory page) 

 Indirect 

Address of operand is 

stored in a register  
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C6700 Extensions 

.S Unit 
ABSDP      CMPLTSP  

ABSSP      RCPDP 

CMPEQDP  RCPSP  

CMPEQSP  RSARDP  

CMPGTDP  RSQRSP  

CMPGTSP  SPDP 

CMPLTDP 

.L Unit 
ADDDP      INTSP 

ADDSP      SPINT 

DPINT      SPTRUNC 

DPSP      SUBDP 

DPTRUNC  SUBSP 

INTDP 

.M Unit 
MPYDP       MPYID 

MPYI       MPYSP 

.D Unit 

ADDAD       LDDW 

C6700 Floating Point Extensions by Unit 

Four functional units perform IEEE single-precision (SP) and 

double-precision (DP) floating-point add, subtract, and move. 

Operations beginning with R are reciprocal (i.e. 1/x) calculations. 
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DS P  MHz MIP S Data  

(kbits ) 

P rogram  

(kbits ) 

Le ve l 2 

(kbits ) 

P rice  Application s  

C6701 150 

167 

1200 

1336 

512 

512 

512 

512 

0 

0 

$  88 

$141 

C6701 EVM board  

C6711 150 

250 

1200 

2000 

32 32 512 n /a  

$  18 

C6711 DSK board  

 

C6712 150 1200 32 32 512 $  14  

C6713 167 

225 

300 

1336 

1800 

2400 

32 

32 

32 

32 

32 

32 

1000 

1000 

1000 

$  19 

$  25  

$  33 

 

C6713 DS K boa r d  

C6722 250 2000 1000 3072 256 $  10 P rofe ss ion al a u dio  

C6726 266 2128 2000 3072 256 $  15 P rofe ss ion al a u dio  

C6727 300 

350 

2400 

2800 

2000 

2000 

3072 

3072 

256 

256 

$  22 

$  30 

C6727 EVM board  

P rofe ss ion al au dio  

C6748 300 2400 256 256 2048 $  18 P ro-au dio  and v ide o  

 375 3000 256 256 2048 $ 20 C6748 XK & EVM boa r d s 
 

200 

$ 

 

Selected TMS320C6700 Floating-Point DSPs 

For more information: http://www.ti.com 

Unit price for 100 units.  Prices effective February 1, 2009. 

DSK: DSP Starter Kit.  EVM: Evaluation Module. 
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Selected TMS320C6000 Fixed-Point DSPs 

DS P  MHz MIP S Data  

(kbits ) 

P rogram  

(kbits ) 

Le ve l 2 

(kbits ) 

P rice  Application s  

C6202 250 

300 

2000 

2400 

1000 2000  $  66 

$  79 

 

C6203 250 

300 

2000 

2400 

4000 3000  $  84 

$  84 

m ode m s ban ks  ADSL1 

m ode m s 

C6204 200 1600 512 512  $  11  

C6416 720 

1000 

5760 

8000 

128 

128 

128 

128 

8000 

8000 

$114 

$227 

ADSL2 m ode m s  

3G base station s  

C6418 500 

600 

4000 

4800 

128 

128 

128 

128 

5000 

5000 

$  49 

$  49 

 

DM641 500 

600 

4000 

4800 

128 

128 

128 

128 

1000 

1000 

$  28 

$  31 

Vide o  con fe re n cin g  

DM642 500 

720 

4000 

5760 

128 

128 

128 

128 

2000 

2000 

$  37 

$  57 

Vide o  con fe re n cin g  

DM648 900 7200 512 512 4000 $  64 Vide o  con fe re n cin g  
 

200 

$ 

 

For more information: http://www.ti.com 

Unit price is for 100 units.  Prices effective February 1, 2009. 

C6416 has Viterbi and Turbo decoder coprocessors. 
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C6000 Reference Information for Lab Work 

 Code Composer Studio v5 

http://processors.wiki.ti.com/index.php/CCSv4 

 C6000 Optimizing C Compiler 7.4 

http://focus.ti.com/lit/ug/spru187u/spru187u.pdf 

 C6000 Programmer's Guide 

http://www.ti.com/lit/ug/spru198k/spru198k.pdf 

 C674x DSP CPU & Instruction Set Ref. Guide 

http://focus.ti.com/lit/ug/sprufe8b/sprufe8b.pdf 

 C6748 Board 

Logic PD’s ZOOM OMAP-L138 Experimenter Kit 

http://www.logicpd.com/products/development-kits/zoom-

omap-l138-experimenter-kit 

Download them for reference 

TI software 

development 

environment 
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Conventional Digital Signal Processors 

 Low cost: as low as $2/processor in volume 

 Deterministic interrupt service routine latency 

guarantees predictable input/output rates 

On-chip direct memory access (DMA) controllers 

 Processes streaming input/output separately from CPU 

 Sends interrupt to CPU when frame read/written 

Ping-pong buffering 

 CPU reads/writes buffer 1 as DMA reads/writes buffer 2 

 After DMA finishes buffer 2, roles of buffers switch 

 Low power consumption: 10-100 mW 
 TI TMS320C54:     0.48 mW/MHz   76.8 mW at 160 MHz 

 TI TMS320C5504: 0.15 mW/MHz   45.0 mW at 300 MHz 

 Based on conventional (pre-1996) architecture 
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Conventional Digital Signal Processors 

 Multiply-accumulate in one instruction cycle 

 Harvard architecture for fast on-chip I/O 

Separate data memory/bus and program memory/bus 

1 read from program memory per instruction cycle 

2 reads/writes from/to data memory per inst. cycle 

 Instructions to keep pipeline (3-6 stages) full 

Zero-overhead looping (one pipeline flush to set up) 

Delayed branches 

 Special addressing modes in hardware 

Bit-reversed addressing (fast Fourier transforms) 

Modulo addressing for circular buffers (e.g. filters) 
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 Conventional Digital Signal Processors 

xN-K+1 xN-K+2 xN-1 xN 

Data Shifting Using a Linear Buffer 
Time Buffer contents Next sample 

xN+1 

xN+3 

xN+2 

n=N 

n=N+1 

n=N+2 xN-K+3 xN-K+4 xN+1 xN+2 

xN-K+2 xN-K+3 xN xN+1 

Modulo Addressing Using a Circular Buffer 
Time Buffer contents Next sample 

n=N 

n=N+1 

n=N+2 

xN-2 xN-1 xN-K+1 xN-K+2 

xN-K+4 

xN+1 

xN+2 

xN+3 

xN-2 xN-1 xN+1 xN-K+2 xN 

xN-2 xN-1 xN+1 xN+2 xN 

xN 

xN 

xN 

xN-K+3 

xN-K+3 xN-K+4 

 Buffers 
Used in processing 

streaming data 

 Linear buffer 
Sort by time index 

Update: discard 
oldest data, copy 
old data left, insert 
new data 

 Circular buffer 
Oldest data index 

Update: insert new 
data at oldest 
index, update 
oldest index 
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  Fixe d-P oin t F loatin g-P oin t 

Cost /Un i t  $2 - $79 $2 - $381 

Ar ch i t ect u r e Accumula tor  load-store or  

memory-register  

R egist er s  2-4 data   

8 address  

8 or  16 da ta   

8 or  16 address  

Da t a  Wor d s 16 or  24 bit  in teger  

and fixed-poin t  

32 bit  in teger  and 

fixed/floa t ing-poin t  

On -Ch ip  

Mem or y 

2-64 kwords da ta  

2-64 kwords program  

8-64 kwords da ta  

8-64 kwords program 

Ad d r ess 

S p a ce 

16-128 kw da ta  

16-64 kw program 

16 Mw – 4Gw da ta  

16 Mw – 4 Gw program 

Com p i ler s  C, C++ compilers; 

poor  code genera t ion  

C, C++ compilers; 

bet ter  code genera t ion  

Exa m p les TI TMS320C5000; 

Freescale DSP56000 

TI TMS320C30; 

Analog Devices SHARC 

 

Conventional Digital Signal Processors 
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Conventional Digital Signal Processors 

 Different on-chip configurations in each family 

Size and map of data and program memory 

A/D, input/output buffers, interfaces, timers, and D/A 

 Drawbacks to conventional digital signal processors 

No byte addressing (needed for images and video) 

Limited on-chip memory 

Limited addressable memory on fixed-point DSPs 

(exceptions include Freescale 56300 and TI C5409) 

Non-standard C extensions for fixed-point data type 
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Pipelining 

Pipelining 

• Process instruction stream in 

  stages (as stages of assembly 

  in manufacturing line) 

• Increase throughput 

Managing Pipelines 

• Compiler or programmer 

• Pipeline interlocking 

Sequential (Freescale 56000) 

Pipelined (Most conventional DSPs) 

Superscalar (Pentium) 

Superpipelined (TI C6000) 

Fetch      Read   Execute Decode 

Fetch Decode Read    Execute 

Fetch Read   Execute Decode 

Fetch Read   Execute Decode 
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 Time-stationary pipeline model 

Programmer controls each cycle 

Example: Freescale DSP56001 (has X/Y 

data memories/registers) 

 

 Data-stationary pipeline model 

Programmer specifies data operations 

Example: TI TMS320C30 

 

 Interlocked pipeline 

“Protection” from pipeline effects 

May not be reported by simulators: 

inner loops may take extra cycles 

Pipelining: Operation 

MAC X0,Y0,A  X:(R0)+,X0 Y:(R4)-,Y0 

MPYF *++AR0(1),*++AR1(IR0),R0 

D 

E 

F 

G 

H 

I 

J 

K 

L 

L 

C 

D 

E 

F 

G 

H 

I 

J 

K 

- 

L 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

- 

L 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

- 

L 

F D R E 

Execute 
Read Decode Fetch 

MAC means multiplication-accumulation. 
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 A control hazard occurs when a 

branch instruction is decoded 

Processor “flushes” the pipeline, or 

Delayed branch (expose pipeline) 

 A data hazard occurs because                              

an operand cannot be read yet 

 Intended by programmer, or 

 Interlock hardware inserts “bubble” 

TI TMS320C5000 (20 CPU & 16 I/O 

registers, one accumulator, and one 

address pointer ARP implied by *) 

Pipelining: Control and Data Hazards 

LAR  AR2, ADDR ; load address reg. 

LACC *-        ; load accumulator w/ 

               ; contents of AR2 

D 

E 

F 

br 

G 

- 

- 

X 

Y 

Y 

Z 

F D R E 

Execute 
Read Decode Fetch 

C

D 

E 

F 

br 

- 

- 

- 

X 

- 

Y 

Z 

B

C

D 

E 

F 

br 

- 

- 

- 

X 

- 

Y 

Z 

A

B

C

D 

E 

F 

br 

- 

- 

- 

X 

- 

Y 

Z 
LAR: 2 cycles to update AR2 & ARP; need NOP after it 
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 A repeat instruction repeats one 

instruction or block of 

instructions after repeat 

 The pipeline is filled with 

repeated instruction (or block of 

instructions) 

 Cost: one pipeline flush only 

Pipelining: Avoiding Control Hazards 

; repeat TBLR inst. COUNT-1 times 

RPT COUNT 

TBLR *+ 

High throughput performance of DSPs is 

helped by on-chip dedicated logic for 

looping (downcounters/looping registers) 
D 

E 

F 

rpt 

X 

X 

X 

X 

X 

X 

X 

X 

F D R E 

Execute 
Read Decode Fetch 

C 

D 

E 

F 

rpt 

- 

- 

X 

X 

X 

X 

X 

B 

C

D 

E 

F 

rpt 

- 

- 

X 

X 

X 

X 

AB 

C

D 

E 

F 

rpt 

- 

- 

X 

X 

X 
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Pipelining: TI TMS320C6000 DSP 

 C6000 has deep pipeline 

7-11 stages in C6200: fetch 4, decode 2, execute 1-5 

7-16 stages in C6700: fetch 4, decode 2, execute 1-10 

Compiler and assembler must prevent pipeline hazards 

 Only branch instruction: delayed unconditional 

Processor executes next 5 instructions after branch 

Conditional branch via conditional execution: 

[A2] B loop 

Branch instruction in pipeline disables interrupts 

Undefined if both shifters take branch on same cycle 

Avoid branches by conditionally executing instructions 

Pentium IV pipeline 

has more than 20 stages 

Contributions by Sundararajan Sriram (TI) 
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RISC vs. DSP: Instruction Encoding 

 RISC: Superscalar, out-of-order execution  

 DSP: Horizontal microcode, in-order execution  

Reorder 

Load/store 

Integer Unit Floating-Point Unit 

Load/store 

Load/store 

Address 
Multiplier ALU 

Memory 

Memory 
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RISC vs. DSP: Memory Hierarchy 

 RISC 

 DSP 

Registers 

Out 
of  

order 

I/D 
Cache 

Physical 
 memory 

TLB 

Registers 

DMA Controller 

I Cache Internal 
 memories 

External 
 memories 

TLB: Translation Lookaside Buffer 

DMA: Direct Memory Access 
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Concluding Remarks 

 Conventional digital signal processors 

High performance vs. power consumption/cost/volume 

Excel at one-dimensional processing 

Per cycle: 1 16  16 MAC & 4 16-bit RISC instructions 

 TMS320C6000 VLIW DSP family 

High performance vs. cost/volume 

Excel at multidimensional signal processing 

Per cycle: 2 1616 MACs & 4 32-bit RISC instructions 

 Get the best of both worlds 

Assembly language for computational kernels 

(possibly wrapped in C callable functions) 

C for main program (control code, interrupt definition) 
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Digital Signal Processors 

 DSP processor market 

~1/3 embedded DSP market 

2007 cholesterol lowering 

Pzifer Lipitor sales: $13B 

 DSP proc. market 2007 

 

 

 

 

 DSP proc. benchmarking 

Berkeley Design Technology 

Inc. http://www.bdti.com 

DSP Processor Market 

Source: Forward Concepts 
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1. INTRODUCTION   

ULTI-CORE Digital Signal Processors (DSPs) have 

gained significant importance in recent years due to 

the emergence of data-intensive applications, such as video 

and high-speed Internet browsing on mobile devices, which  

demand increased computational performance but lower 

cost and power consumption. Multi-core platforms allow 

manufacturers to produce smaller boards while simplifying 

board layout and routing, lowering power consumption and 

cost, and maintaining programmability. 

      Embedded processing has been dealing with multi-core 

on a board, or in a system, for over a decade. Until recently, 

size limitations have kept the number of cores per chip to 

one, two, or four but, more recently, the shrink in feature 

size from new semiconductor processes has allowed single-

chip DSPs to become multi-core with reasonable on-chip 

memory and I/O, while still keeping the die within the size 

range required for good yield. Power and yield constraints, 

as well as the need for large on-chip memory have further 

driven these multi-core DSPs to become systems-on-chip 

(SoCs).  Beyond the power reduction, SoCs also lead to 

overall cost reduction because they simplify board design by 

minimizing the number of components required.  

The move to multi-core systems in the embedded space 

is as much about integration of components to reduce cost 

and power as it is about the development of very high 

performance systems. While power limitations and the need 

for low-power devices may be obvious in mobile and hand-

held devices, there are stringent constraints for non-battery 

powered systems as well. Cooling in such systems is 

generally restricted to forced air only, and there is a strong 

desire to avoid the mechanical liability of a fan if possible. 

This puts multi-core devices under a serious hotspot 

constraint. Although a fan cooled rack of boards may be 

able to dissipate hundreds of Watts (ATCA carrier card can 

dissipate up to 200W), the density of parts on the board will 

start to suffer when any individual chip power rises above 

roughly 10W. Hence, the cheapest solution at the board 

level is to restrict the power dissipation to around 10W per 

chip and then pack these chips densely on the board.  

The introduction of multi-core DSP architectures 

presents several challenges in hardware architectures, 

memory organization and management, operating systems, 

platform software, compiler designs, and tooling for code 

development and debug. This article presents an overview 

of existing multi-core DSP architectures as well as 

programming models, software tools, emerging applications, 

challenges and future trends of multi-core DSPs.  

 

2. HISTORICAL PRESPECTIVES: FROM SINGLE-

CORE TO MULTI-CORE 

The concept of a Digital Signal Processor came about in the 

middle of the 1970s.  Its roots were nurtured in the soil of a 

growing number of university research centers creating a 

body of theory on how to solve real world problems using a 

digital computer.  This research was academic in nature and 

was not considered practical as it required the use of state-

of-the-art computers and was not possible to do in real time. 

It was a few years later that a Toy by the name of Speak N 

Spell™  was created using a single integrated circuit to 

synthesize speech.  This device made two bold statements: 

-Digital Signal Processing can be done in real time. 

-Digital Signal Processors can be cost effective. 

This began the era of the Digital Signal Processor. So, what 

made a Digital Signal Processor device different from other 

microprocessors?  Simply put, it was the DSP’s attention to 

doing complex math while guaranteeing real-time 

processing.  Architectural details such as dual/multiple data 

buses, logic to prevent over/underflow, single cycle 

complex instructions, hardware multiplier, little or no 

capability to interrupt, and special instructions to handle 

signal processing constructs, gave the DSP its ability to do 

the required complex math in real time. 

 “If I can’t do it with one DSP, why not use two of 

them?”  That is the answer obtained from many customers 

after the introduction of DSPs with enough performance to 

change the designer’s mind set from “how do I squeeze my 

algorithm into this device” to “guess what, when I divide the 

performance that I need to do this task by the performance 

of a DSP, the number is small.”  The first encounter with 

this was a year or so after TI introduced the TMS320C30 – 

the first floating-point DSP.  It had significantly more 

performance than its fixed-point predecessors.  TI took on 

the task of seeing what customers were doing with this new 

DSP that they weren’t doing with previous ones.  The 

significant finding was that none of the customers were 

using only one device in their system.  They were using 

multiple DSPs working together to create their solutions. 

 As the performance of the DSPs increased, more 

sophisticated applications began to be handled in real time.  

So, it went from voice to audio to image to video 

processing.  Fig. 1 depicts this evolution. The four lines in 

M 
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Fig. 1. Four examples of the increase of instruction cycles per sample 

period. It appears that the DSP becomes useful when it can perform a 

minimum of 100 instructions per sample period. Note that for a video 

system the pixel is used in place of a sample. 

 

 
Fig. 2. Four generations of DSPs show how multi-processing has more 

effect on performance than clock rate. The dotted lines correspond to the 

increase in performance due to clock increases within an architecture. 

The solid line shows the increase due to both the clock increase and the 

parallel processing.  

 

Fig. 1 represent the performance increases of Digital Signal 

Processors in terms of instruction cycles per sample period.   

For example, the sample rate for voice is 8 kHz.  Initial 

DSPs allowed for about 625 instructions per sample period, 

barely enough for transcoding.  As higher performance 

devices began to be available, more instruction cycles 

became available each sample period to do more 

sophisticated tasks.  In the case of voice, algorithms such as 

noise cancellation, echo cancellation and voice band 

modems were able to be added as a result of the increased 

performance made available. Fig. 2 depicts how this 

increase in performance was more the result of multi-

processing rather than higher performance single processing 

elements.  Because Digital Signal Processing algorithms are 

Multiply-Accumulate (MAC) intensive, this chart shows 

how, by adding multipliers to the architecture, the 

performance followed an aggressive growth rate. Adding 

multiplier units is the simplest form of doing 

multiprocessing in a DSP device. 

For TI, the obvious next step was to architect the next 

generation DSPs with the communications ports necessary 

to matrix multiple DSPs together in the same system.  That 

device was created and introduced as the TMS320C40.  

And, as one might suspect, a follow up (fixed-point) device 

was created with multiple DSPs on one device under the 

management of a RISC processor, the TMS320C80. 

The proliferation of computationally demanding 

applications drove the need to integrate multiple processing 

elements on the same piece of silicon.  This lead to a whole 

new world of architectural options: homogeneous multi-

processing, heterogeneous multi-processing, processors 

versus accelerators, programmable versus fixed function, a 

mix of general purpose processors and DSPs, or system in a 

package versus System on Chip integration. And then there 

is Amdahl’s Law that must be introduced to the mix [1-2]. 

In addition, one needs to consider how the architecture 

differs for high performance applications versus long battery 

life portable applications. 

 

3. ARCHITECTURES OF MULTI-CORE DSPs 

In 2008, 68% of all shipped DSP processors were used in 

the wireless sector, especially in mobile handsets and base 

stations; so, naturally, development in wireless 

infrastructure and applications is the current driving force 

behind the evolution of DSP processors and their 

architectures [3].  The emergence of new applications such 

as mobile TV and high speed Internet browsing on mobile 

devices greatly increased the demand for more processing 

power while lowering cost and power consumption. 

Therefore, multi-core DSP architectures were established as 

a viable solution for high performance applications in packet 

telephony, 3G wireless infrastructure and WiMAX [4]. This 

shift to multi-core shows significant improvements in 

performance, power consumption and space requirements 

while lowering costs and clocking frequencies. Fig. 3 

illustrates a typical multi-core DSP platform.   

Current state-of-the-art multi-core DSP platforms can 

be defined by the type of cores available in the chip and 

include homogeneous and heterogeneous architectures. A 

homogeneous multi-core DSP architecture consists of cores 

that are from the same type, meaning that all cores in the die 

are DSP processors. In contrast, heterogeneous architectures 

contain different types of cores. This can be a collection of 

DSPs with general purpose processors (GPPs), graphics 

processing units (GPUs) or micro controller units (MCUs). 
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Another classification of multi-core DSP processors is by 

the type of interconnects between the cores. 

More details on the types of interconnect being used in 

multi-core DSPs as well as the memory hierarchy of these 

multiple cores are presented below, followed by an 

overview of the latest multi-core chips. A brief discussion 

on performance analysis is also included.   

 

3.1 Interconnect and Memory Organization 

As shown in Fig. 4, multiple DSP cores can be connected 

together through a hierarchical or mesh topology. In 

hierarchical interconnected multi-core DSP platforms, data 

transfers between cores are performed through one or more 

switching units. In order to scale these architectures, a 

hierarchy of switches needs to be planned. CPUs that need 

to communicate with low latency and high bandwidth will 

be placed close together on a shared switch and will have 

low latency access to each others’ memory. Switches will be 

connected together to allow more distant CPUs to 

communicate with longer latency. Communication is done 

by memory transfer between the memories associated with 

the CPUs. Memory can be shared between CPUs or be local 

to a CPU. The most prominent type of memory architecture 

makes use of Level 1 (L1) local memory dedicated to each 

core and Level 2 (L2) which can be dedicated or shared 

between the cores as well as Level 3 (L3) internal or 

external shared memory. If local, data is moved off that 

memory to another local memory using a non CPU block in 

charge of block memory transfers, usually called a DMA. 

The memory map of such a system can become quite 

complex and caches are often used to make the memory 

look “flat” to the programmer. L1, L2 and even L3 caches 

can be used to automatically move data around the memory 

hierarchy without explicit knowledge of this movement in 

the program. This simplifies and makes more portable the 

software written for such systems but comes at the price of 

uncertainty in the time a task needs to complete because of 

uncertainty in the number of cache misses [5].  

In a mesh network [6-7], the DSP processors are 

organized in a 2D array of nodes. The nodes are connected 

through a network of buses and multiple simple switching 

units. The cores are locally connected with their “north”, 

“south”, “east” and “west” neighbors. Memory is generally 

local, though a single node might have a cache hierarchy. 

This architecture allows multi-core DSP processors to scale 

to large numbers without increasing the complexity of the 

buses or switching units. However, the programmer 

generally has to write code that is aware of the local nature 

of the CPU. Explicit message passing is often used to 

describe data movement.  

Multi-core DSP platforms can also be categorized as 

Symmetric Multiprocessing (SMP) platforms and 

Asymmetric Multiprocessing (AMP) platforms. In an SMP 

platform, a given task can be assigned to any of the cores 

without affecting the performance in terms of latency.  In an 

AMP platform, the placement of a task can affect the 

latency, giving an opportunity to optimize the performance 

by optimizing the placement of tasks. This optimization 

comes at the expense of an increased programming 

complexity since the programmer has to deal with both 

space (task assignment to multiple cores) and time (task 

scheduling). For example, the mesh network architecture of 

Fig. 4 is AMP since placing dependent tasks that need to 

heavily communicate in neighboring processors will 

significantly reduce the latency. In contrast, in a hierarchical 

interconnected architecture, in which the cores mostly 

communicate by means of a shared L2/L3 memory and have 

to cache data from the shared memory, the tasks can be 

assigned to any of the cores without significantly affecting 

the latency. SMP platforms are easy to program but can 

result in a much increased latency as compared to AMP 

platforms. 

 
Fig.3. Typical multi-core DSP platform. 
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Table 1: Multi-core DSP platforms. 

 TI [8] Freescale [9] picoChip [10] Tilera [11] 
Sandbridge 

[12-13] 

Processor TNETV3020  MSC8156 PC205 TILE64 SB3500 

Architecture Homogeneous Homogeneous Heterogeneous Homogeneous Heterogeneous 

No. of Cores 6 DSPs 6 DSPs 
248 DSPs 

1 GPP 
64 DSPs 

3 DSPs 

1 GPP 

Interconnect 

Topology 
Hierarchical Hierarchical Mesh Mesh Hierarchical 

Applications 

Wireless 

Video 

VoIP 

Wireless Wireless 

Wireless 

Networking 

Video 

Wireless 

 

 

 
Fig.4. Interconnect types of multi-core DSP architectures. 

 

 
Fig.5. Texas Instruments TNETV3020 multi-core DSP processor. 

 

 
Fig.6. Freescale 8156 multi-core DSP processor. 

 

3.2 Existing Vendor-Specific Multi-Core DSP Platforms 

Several vendors manufacture multi-core DSP platforms such 

as Texas Instruments (TI) [8], Freescale [9], picoChip [10], 

Tilera [11], and Sandbridge [12-13]. Table 1 provides an 

overview of a number of these multi-core DSP chips. 

Texas Instruments has a number of homogeneous and 

heterogeneous multi-core DSP platforms all of which are 

based on the hierarchal-interconnect architecture.  One of 

the latest of these platforms is the TNETV3020 (Fig. 5) 

which is optimized for high performance voice and video 

applications in wireless communications infrastructure [8]. 

The platform contains six TMS320C64x+ DSP cores each 

capable of running at 500 MHz and consumes 3.8 W of 

power. TI also has a number of other homogeneous multi-

core DSPs such as the TMS320TCI6488 which has three     
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1 GHz C64x+ cores and the older TNETV3010 which 

contains six TMS320C55x cores, as well as the 

TMS320VC5420/21/41 DSP platforms with dual and quad 

TMS320VC54x DSP cores.  

Freescale's multi-core DSP devices are based on the 

StarCore 140, 3400 and 3850 DSP subsystems which are 

included in the MSC8112 (two SC140 DSP cores), 

MSC8144E (four SC3400 DSP cores) and its latest 

MSC8156 DSP chip (Fig. 6) which contains six SC3850 

DSP cores targeted for 3G-LTE, WiMAX, 3GPP/3GPP2 

and TD-SCDMA applications [9]. The device is based on a 

homogeneous hierarchical interconnect architecture with 

chip level arbitration and switching system (CLASS).  

PicoChip manufactures high performance multi-core 

DSP devices that are based on both heterogeneous (PC205) 

and homogeneous (PC203) mesh interconnect architectures. 

The PC205 (Fig. 7) was taken as an example of these multi-

core DSPs [10]. The two building blocks of the PC205 

device are an ARM926EJ-S microprocessor and the 

picoArray. The picoArray consists of 248 VLIW DSP 

processors connected together in a 2D array as shown in 

Fig. 8. Each processor has dedicated instruction and data 

memory as well as access to on-chip and external memory. 

The ARM926EJ-S used for control functions is a 32-bit 

RISC processor. Some of the PC205 applications are in 

high-speed wireless data communication standards for 

metropolitan area networks (WiMAX) and cellular networks 

(HSDPA and WCDMA), as well as in the implementation of 

advanced wireless protocols.  

Tilera manufactures the TILE64, TILEPro36 and 

TILEPro64 multi-core DSP processors [11]. These are based 

on a highly scalable homogeneous mesh interconnect 

architecture. 

 
 

 

 
 

Fig.7. picoChip PC205 multi-core DSP processor. 

 

 
Fig. 8. picoChip picoArray. 

 

 
Fig. 9. Tilera TILE64 multi-core DSP processor. 

 

The TILE64 family features 64 identical processor 

cores (tiles) interconnected using a mesh network of buses 

(Fig. 9). Each tile contains a processor, L1 and L2 cache 

memory and a non-blocking switch that connects each tile to 

the mesh. The tiles are organized in an 8 x 8 grid of identical 

general processor cores and the device contains 5 MB of on-

chip cache. The operating frequencies of the chip range 

from 500 MHz to 866 MHz and its power consumption 

ranges from 15 – 22 W. Its main target applications are 

advanced networking, digital video and telecom. 

SandBridge manufactures multi-core heterogeneous 

DSP chips intended for software defined radio applications. 

The SB3011 includes four DSPs each running at a minimum 

of 600 MHz at 0.9V. It can execute  up  to  32 independent  
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Table 2: BTDI OFDM benchmark results on various processors for the 

maximum number of simultaneous OFDM channels processed in real time. 

The specific number of simultaneous OFDM channels is given in [17].  

 

 Clock 

(MHz) 

DSP 

cores 

OFDM 

channels 

TI TMS320C6455 1200 1 Lowest 

Freescale MSC8144 1000 4 Low 

Sandbridge SB3500 500 3 Medium 

picoChip PC102 160 344 High 

Tilera TILE64  866 64 Highest 

 

instruction streams while issuing vector operations for each 

stream using an SIMD datapath. An ARM926EJ-S 

processor with speeds up to 300 MHz implements all 

necessary I/O devices in a smart phone and runs Linux OS. 

The kernel has been designed to use the POSIX pthreads 

open standard [14] thus providing a cross platform library 

compatible with a number of operating systems (Unix, 

Linux and Windows). The platform can be programmed in a 

number of high-level languages including C, C++ or Java 

[12-13]. 

 

3.3 Multi-Core DSP Platform Performance Analysis 

Benchmark suites have been typically used to analyze the 

performance among architectures [15]. In practice, 

benchmarking of multicore architectures has proven to be 

significantly more complicated than benchmarking of single 

core devices because multicore performance is affected not 

only by the choice of CPU but also very heavily by the CPU 

interconnect and the connection to memory. There is no 

single agreed-upon programming language for multicore 

programming and, hence, there is no equivalent of the “out 

of the box” benchmark, commonly used in single core 

benchmarks. Benchmark performance is heavily dependent 

on the amount of tweaking and optimization applied as well 

as the suitability of the benchmark for the particular 

architecture being evaluated. As a result, it can be seen that 

single core benchmarking was already a complicated task 

when done well, and multicore benchmarking is proving to 

be exponentially more challenging. The topic of benchmark 

suites for multicore remains an active field of study [16]. 

Currently available benchmarks are mainly simplified 

benchmarks that were mainly developed for single-core 

systems.  

One such a benchmark is the Berkeley Design 

Technology, Inc (BTDI) OFDM benchmark [17] which was 

used to evaluate and compare the performance of some 

single- and multi-core DSPs in addition to other processing 

engines. The BTDI OFDM benchmark is a simplified digital 

signal processing path for an FFT-based orthogonal 

frequency division multiplexing (OFDM) receiver [17]. The 

path consists of a cascade of a demodulator, finite impulse 

response (FIR) filter, FFT, slicer, and Viterbi decoder. The 

benchmark does not include interleaving, carrier recovery, 

symbol synchronization, and frequency-domain 

equalization. 

Table 2 shows relative results for maximizing the 

number of simultaneous non-overlapping OFDM channels 

that can be processed in real time, as would be needed for an 

access point or a base station. These results show that the 

four considered multi-core DSPs can process in real time a 

higher number of OFDM channels as compared to the 

considered single-core processor using this specific 

simplified benchmark. 

However, it should be noted that this application 

benchmark does not necessarily fit the use cases for which 

the candidate processors were designed. In other words, 

different results can be produced using different benchmarks 

since single and multi-core embedded processors are 

generally developed to solve a particular class of functions 

which may or may not match the benchmark in use. At the 

end, what matters most is the actual performance achieved 

when the chips are tested for the desired customer’s end 

solution. 

 

4. SOFTWARE TOOLS FOR MULTI-CORE DSPs 

Due to the hard real-time nature of DSP programming, one 

of the main requirements that DSP programmers insist on 

having is the ability to view low level code, to step through 

their programs instruction by instruction, and evaluate their 

algorithms and “see” what is happening at every processor 

clock cycle. Visibility is one of the main impediments to 

multi-core DSP programming and to real-time debugging as 

the ability to “see” in real time decreases significantly with 

the integration of multiple cores on a single chip. Improved 

chip-level debug techniques and hardware-supported 

visualization tools are needed for multi-core DSPs. The use 

of caches and multiple cores has complicated matters and 

forced programmers to speculate about their algorithms 

based on worst-case scenarios.  Thus, their reluctance to 

move to multi-core programming approaches. For 

programmers to feel confident about their code, timing 

behavior should be predictable and repeatable [5]. Hardware 

tracing with Embedded Trace Buffers (ETB) [18] can be 

used to partially alleviate the decreased visibility issue by 

storing traces that provide a detailed account of code 

execution, timing, and data accesses. These traces are 

collected internally in real-time and are usually retrieved at 

a later time when a program failure occurs or for collecting 

useful statistics.  Virtual multi-core platforms and 

simulators, such as Simics by Virtutech [19] can help 

programmers in developing, debugging, and testing their 

code before porting it to the real multi-core DSP device.  

Operating Systems (OS) provide abstraction layers that 

allow tasks on different cores to communicate. Examples of 

OS include SMP Linux [20-21], TI’s DSP BIOS [22], 

Enea’s OSEck [23]. One main difference between these OS 

is in how the communication is performed between tasks 

running on different cores. In SMP Linux, a common set of 
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tables that reflect the current global state of the system are 

shared by the tasks running on different cores. This allows 

the processes to share the same global view of the system 

state. On the other hand, TI’s DSP/BIOS and Enea’s OSEck 

supports a message passing programming model. In this 

model, the cores can be viewed as "islands with bridges" as 

contrasted with the "global view" that is provided by SMP 

Linux. Control and management middleware platforms, 

such as Enea’s dSpeed [23], extend the capabilities of the 

OS to allow enhanced monitoring, error handling, trace, 

diagnostics, and inter-process communications.   

As in memory organization, programming models in 

multi-core processors include Symmetric Multiprocessing 

(SMP) models and Asymmetric Multiprocessing (AMP) 

models [24]. In an SMP model, the cores form a shared set 

of resources that can be accessed by the OS.  

The OS is responsible for assigning processes to 

different cores while balancing the load between all the 

cores. An example of such OS is SMP Linux [18-19] which 

boasts a huge community of developers and lots of 

inexpensive software and mature tools. Although SMP 

Linux has been used on AMP architectures such as the mesh 

interconnected Tilera architecture, SMP Linux is more 

suitable for SMP architectures (Section 3.1) because it 

provides a shared symmetric view. In comparison, TI’s 

DSP/BIOS and Enea's OSE can better support AMP 

architectures since they allow the programmer to have more 

control over task assignments and execution. The AMP 

approach does not balance processes evenly between the 

cores and so can restrict which processes get executed on 

what cores. This model of multi-core processing includes 

classic AMP, processor affinity and virtualization [23].  

Classic AMP is the oldest multi-core programming 

approach. A separate OS is installed on each core and is 

responsible for handling resources on that core only. This 

significantly simplifies the programming approach but 

makes it extremely difficult to manage shared resources and 

I/O. The developer is responsible for ensuring that different 

cores do not access the same shared resource as well as be 

able to communicate with each other.  

In processor affinity, the SMP OS scheduler is modified 

to allow programmers to assign a certain process to a 

specific core. All other processes are then assigned by the 

OS. SMP Linux has features to allow such modifications. A 

number of programming languages following this approach 

have appeared to extend or replace C in order to better allow 

programmers to express parallelism. These include OpenMP 

[25], MPI [26], X10 [27], MCAPI [28], GlobalArrays [29], 

and Uniform Parallel C [30]. In addition, functional 

languages such as Erlang [31] and Haskell [32] as well as 

stream languages such as ACOTES [33] and StreamIT [34] 

have been introduced. Several of these languages have been 

ported to multi-core DSPs. OpenMP is an example of that. It 

is a widely-adopted shared memory parallel programming 

interface providing high level programming constructs that 

enable the user to easily expose an application’s task and 

loop level parallelism in an incremental fashion. Its range of 

applicability was significantly extended by the addition of 

explicit tasking features. The user specifies the 

parallelization strategy for a program at a high level by 

annotating the program code; the implementation works out 

the detailed mapping of the computation to the machine. It 

is the user’s responsibility to perform any code 

modifications needed prior to the insertion of OpenMP 

constructs. In particular, OpenMP requires that 

dependencies that might inhibit parallelization are detected 

and where possible, removed from the code. The major 

features are directives that specify that a well-structured 

region of code should be executed by a team of threads, who 

share in the work. Such regions may be nested. Work 

sharing directives are provided to effect a distribution of 

work among the participating threads [35]. 

Virtualization partitions the software and hardware into 

a set of virtual machines (VM) that are assigned to the cores 

using a Virtual Machine Manager (VMM). This allows 

multiple operating systems to run on single or multiple 

cores. Virtualization works as a level of abstraction between 

the OS and the hardware. VirtualLogix employs 

virtualization technology using its VLX for embedded 

systems [36].  VLX announced support for TI single and 

multi-core DSPs. It allows TI's real-time OS (DSP/BIOS) to 

run concurrently with Linux. Therefore, DSP/BIOS is left to 

run critical tasks while other applications run on Linux. 
 

5. APPLICATIONS OF MULTI-CORE DSPs 

5.1 Multi-core for mobile application processors 

The earliest SoC multi-core in the embedded space was the 

two-core heterogeneous DSP+ARM combination introduced 

by TI in 1997. These have evolved into the complex OMAP 

line of SoC for handset applications. Note that the latest in 

the OMAP line has both multi-core ARM (symmetric 

multiprocessing) and DSP (for heterogeneous 

multiprocessing). The choice and number of cores is based 

on the best solution for the problem at hand and many 

combinations are possible. The OMAP line of processors is 

optimized for portable multimedia applications. The ARM 

cores tend to be used for control, user interaction and 

protocol processing, whereas the DSPs tend to be signal 

processing slaves to the ARMs, performing compute 

intensive tasks such as video codecs. Both CPUs have 

associated hardware accelerators to help them with these 

tasks and a wide array of specialized peripherals allows 

glueless connectivity to other devices. 

This multi-core is an integration play to reduce cost and 

power in the wireless handset. Each core had its own unique 

function and the amount of interaction between the cores 

was limited. However, the development of a 

communications bridge between the cores and a 

master/slave programming paradigm were important 

developments that allowed this model of processing to 

become the most highly used multi-core in the embedded 

space today [37]. 
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Fig.10. The Agere SP2603. 

 

 
Fig. 11. Texas Instruments TCI6487. 

 

 

5.2 Multi-core for Core network Transcoding 

The next integration play was in the transcoding space. In 

this space, the master/slave approach is again taken, with a 

host processor, usually servicing multiple DSPs, that is in 

charge of load balancing many tasks onto the multi-core 

DSP. Each task is independent of the others (except for 

sharing program and some static tables) and can run on a 

single DSP CPU. Fig. 10 shows the Agere SP2603, a multi-

core device used in transcoding applications. 

Therefore, the challenge in this type of multi-core SoC 

is not in the partitioning of a program into multiple threads 

or the coordination of processing between CPUs, but in the 

coordination of CPUs in the access of shared, non CPU, 

resources, such as DDR memory, Ethernet ports, shared L2 

on chip memory, bus resources, and so on. Heterogeneous 

variants also exist with an ARM on chip to control the array 

of DSP cores.  

Such multi-core chips have reduced the power per 

channel and cost per channel by an order of magnitude over 

the last decade. 

 

5.3 Multi-core for Base Station Modems 

Finally, the last five years have seen many multi-core 

entrants into the base station modem business for cellular 

infrastructure. The most successful have been DSP based 

with a modest number of CPUs and significant shared 

resources in memory, acceleration and I/O. An example of 

such a device is the Texas Instruments TCI6487 shown in 

Fig. 11. 

Applications that use these multi-core devices require 

very tight latency constraints, and each core often has a 

unique functionality on the chip. For instance, one core 

might do only transmit while another does receive and 

another does symbol rate processing. Again, this is not a 

generic programming problem. Each core has a specific and 

very well timed set of tasks to perform. The trick is to make 

sure that timing and performance issues do not occur due to 

the sharing of non CPU resources [38]. 

However, the base station market also attracted new 

multi-core architectures in a way that neither handset (where 

the cost constraints and volume tended to favor hardwired 

solutions beyond the ARM/DSP platform) nor transcoding 

(where the complexity of the software has kept “standard” 

DSP multi-core in the forefront) have experienced. 

Examples of these new paradigm companies include 

Chameleon, PACT, BOPS, Picochip, Morpho, Morphics 

and Quicksilver. These companies arose in the late 90s and 

mostly died in the fallout of the tech bubble burst. They 

suffered from a lack of production quality tooling and no 

clear programming model. In general, they came in two 

types; arrays of ALUs with a central controller and arrays of 

small CPUs, tightly connected and generally intended to 

communicate in a very synchronized manner. Fig. 8 shows 

the picoArray used by picoChip, a proponent of regular, 

meshed arrays of processors. Serious programming 

challenges remain with this kind of architecture because it 

requires two distinct modes of programming, one for the 

CPUs themselves and one for the interconnect between the 

CPUs. A single programming language would have to be 

able to not only partition the workload, but also comprehend 

the memory locality, which is severe in a mesh-based 

architecture.  

 

5.4 Next Generation Multi-Core DSP Processors 

Current and emerging mobile communications and 

networking standards are providing even more challenges to 

DSP. The high data-rates for the physical layer processing, 
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as well as the requirements for very low power have driven 

designers to use ASIC designs.  However, these are 

becoming increasingly complex with the proliferation of 

protocols, driving the need for software solutions. 

Software defined radio (SDR) holds the promise of 

allowing a single piece of silicon to alternate between 

different modem standards. Originally motivated by the 

military as a way to allow multinational forces to 

communicate [39], it has made its way into the commercial 

arena due to a proliferation of different standards on a single 

cell phone (for instance GSM, EDGE, WCDMA, Bluetooth, 

802.11, FM radio, DVB). 

SODA [40] is one multi-core DSP architecture designed 

specifically for software-defined radio (SDR) applications.  

Some key features of SODA are the lack of cache with 

multiple DMA and scratchpad memories used instead for 

explicit memory control.  Each of the processors has a 

32x16bit SIMD datapath and a coupled scalar datapath 

designed to handle the basic DSP operations performed on 

large frames of data in communication systems.   

Another example is the AsAP architecture [41] which 

relies on the dataflow nature of DSP algorithms to obtain 

power and performance efficiency. Shown in Fig. 12, it is 

similar to the Tilera architecture at a superficial glance, but 

also takes the mesh network principal to its logical 

conclusion, with very small cores (0.17mm
2
) and only a 

minimal amount of memory per core (128 word program 

and 128 word data).The cores communicate asynchronously 

by doubly clocked FIFO buffers and each core has its own 

clock generator so that the device is essentially clockless. 

When a FIFO is either empty or full, the associated cores 

will go into a low power state until they have more data to 

process. These and other power savings techniques are used 

in a design that is heavily focused on low power 

computation. There is also an emphasis on local 

communication, with each chip connected to its neighbors, 

in a similar manner to the Tilera multi-core. Even within the 

core, the connectivity is focused on allowing the core to 

absorb data rather than reroute it to other cores. The overall 

goal is to optimize for data flow programming with mostly 

local interconnect. Data can travel a distance of more than 

one core but will require more latency to do so. The AsAP 

chip is interesting as a “pure” example of a tiled array of 

processors with each processor performing a simple 

computation. The programming model for this kind of chip 

is however, still a topic of research. Ambric produced an 

architecturally similar chip [42] and showed that, for simple 

data flow problems, software tooling could be developed. 

An example of this data flow approach to multi-core 

DSP design can be found in [43], where the concept of 

Bulk-Synchronous Processing (BSP), a model of 

computation where data is shared between threads mostly at 

synchronization barriers, is introduced. This deterministic 

approach to the mapping of algorithms to multi-core is in 

line with the recommendations made in [44] where it is  

argued that adding parallelism in a non deterministic manner 

(such as is commonly done with POSIX threads [14]) leads 

to systems that are unreasonably hard to test and debug. 

Fortunately, the parallelization of DSP algorithms can often 

be done in a deterministic manner using data flow diagrams. 

Hence, DSP may be a more fruitful space for the 

development of multi-core than the general purpose 

programming space. 

  Sandbridge (see Section 3.2) has also been 

producing DSPs designed for the SDR space for several 

years.  
 

6. CONCLUSIONS AND FUTURE TRENDS 

In the last 2 years, the embedded DSP market has been 

swept up by the general increase in interest in multi-core 

that has been driven by companies such as Intel and Sun.  

One of the reasons for this is that there is now a lot of 

focus on tooling in academia and also a willingness on the 

part of users to accept new programming paradigms. This 

industry wide effort will have an effect on the way multi-

core DSPs are programmed and perhaps architected. But it 

is too early to say in what way this will occur. Programming 

multi-core DSPs remains very challenging. The problem of 

how to take a piece of sequential code and optimally 

partition it across multiple cores remains unsolved. Hence, 

there will naturally be a lot of variations in the approaches 

taken. Equally important is the issue of debug and visibility. 

Developing effective and easy-to-use code development and 

real-time debug tools is tremendously important as the 

opportunity for bugs goes up significantly when one starts to 

deal with both time and space. 

The markets that DSP plays in have unique features in 

their desire for low power, low cost and hard real-time 

processing, with an emphasis on mathematical computation. 

How well the multi-core research being performed presently 

in academia will address these concerns remains to be seen. 

 
Fig.12. The AsAP processor architecture. 
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System developers, especially those who are new to digital signal processors (DSPs),
are sometimes uncertain whether they need to use fixed- or floating-point DSPs for
their systems. Both fixed- and floating-point DSPs are designed to perform the high-
speed computations that underlie real-time signal processing. Both feature system-on-
a-chip (SOC) integration with on-chip memory and a variety of high-speed peripherals
to ensure fast throughput and design flexibility. Tradeoffs of cost and ease of use often
heavily influenced the fixed- or floating-point decision in the past. Today, though, select-
ing either type of DSP depends mainly on whether the added computational capabilities
of the floating-point format are required by the application.

Different numeric formats

As the terms fixed- and floating-point indicate, the fundamental difference between the
two types of DSPs is in their respective numeric representations of data. While fixed-
point DSP hardware performs strictly integer arithmetic, floating-point DSPs support
either integer or real arithmetic, the latter normalized in the form of scientific notation.
TI’s TMS320C62x™ fixed-point DSPs have two data paths operating in parallel, each
with a 16-bit word width that provides signed integer values within a range from –2^15 to
2^15. TMS320C64x™ DSPs, double the overall throughput with four 16-bit (or eight 8-
bit or two 32-bit) multipliers. TMS320C5x™ and TMS320C2x™ DSPs, with architec-
tures designed for handheld and control applications, respectively, are based on single
16-bit data pathss.

By contrast, TMS320C67x™ floating-point DSPs divide a 32-bit data path into two
parts: a 24-bit mantissa that can be used for either for integer values or as the base of
a real number, and an 8-bit exponent. The 16M range of precision offered by 24 bits
with the addition of an 8-bit exponent, thus supporting a vastly greater dynamic range
than is available with the fixed-point format. The C67x™ DSP can also perform calcula-
tions using industry-standard double-width precision (64 bits, including a 53-bit mantis-
sa and an 11-bit exponent). Double-width precision achieves much greater precision
and dynamic range at the expense of speed, since it requires multiple cycles for each
operation.

Comparing Fixed- and Floating-Point DSPs
Does your design need a fixed- or floating-point DSP? 
The application data set can tell you.

By 
Gene Frantz, TI Principal Fellow, Business Development Manager, DSP
Ray Simar, Fellow and Manager of Advanced DSP Architectures



Cost versus ease of use

The much greater computational power offered by floating-point DSPs is normally the
critical element in the fixed- or floating-point design decision. However, in the early
1990s, when TI released its first floating-point DSP products, other factors tended to
obscure the fundamental mathematical issue. Floating-point functions require more
internal circuitry, and the 32-bit data paths were twice as wide as those of fixed-point
DSPs, which at that time integrated only a single 16-bit data path. These factors, plus
the greater number of pins required by the wider data bus, meant a larger die and larg-
er package that resulted in a significant cost premium for the new floating-point
devices. Fixed-point DSPs therefore were favored for high-volume applications like dig-
itized voice and telecom concentration cards, where unit manufacturing costs had to be
kept low.

Offsetting the cost issue at that time was ease of use. TI floating-point DSPs were
among the first DSPs to support the C language, while fixed-point DSPs still needed to
be programmed at the assembly code level. In addition, real arithmetic could be coded
directly into hardware operations with the floating-point format, while fixed-point devices
had to implement real arithmetic indirectly through software routines that added devel-
opment time and extra instructions to the algorithm. Because floating-point DSPs were
easier to program, they were adopted early on for low-volume applications where the
time and cost of software development were of greater concern than unit manufactur-
ing costs. These applications were found in research, development prototyping, military
applications such as radar, image recognition, three-dimensional graphics accelerators
for workstations and other areas.

Today the early differences in cost and ease of use, while not altogether erased, are
considerably less pronounced. Scores of transistors can now fit into the same space
required by a single transistor a decade ago, leading to SOC integration that reduces
the impact of a single DSP core on die size and expense. Many DSP-based products,
such as TI’s broadband, camera imaging, wireless baseband and OMAP™ wireless
application platforms, leverage the advantages of rescaling by integrating more than a
single core in a product targeted at a specific market. Fixed-point DSPs continue to
benefit more from cost reductions of scale in manufacturing, since they are more often
used for high-volume applications; however, the same reductions will apply to floating-
point DSPs when high-volume demand for the devices appears. Today, cost has
increasingly become an issue of SOC integration and volume, rather than a result of
the size of the DSP core itself.

The early gap in ease of use has also been reduced. TI fixed-point DSPs have long
been supported by outstandingly efficient C compilers and exceptional tools that

Cost versus ease of use
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Floating-point accuracy

provide visibility into code execution. The advantage of implementing real arithmetic
directly in floating-point hardware still remains; but today advanced mathematical mod-
eling tools, comprehensive libraries of mathematical functions, and off-the-shelf algo-
rithms reduce the difficulty of developing complex applications—with or without real
numbers—for fixed-point devices. Overall, fixed-point DSPs still have an edge in cost
and floating-point DSPs in ease of use, but the edge has narrowed until these factors
should no longer be overriding in the design decision.

Floating-point accuracy

As the cost of floating-point DSPs has continued to fall, Tthe choice of using a fixed- or
floating-point DSP boils down to whether floating-point math is needed by the applica-
tion data set. In general, designers need to resolve two questions: What degree of
accuracy is required by the data set? and How predictable is the data set?

The greater accuracy of the floating-point format results from three factors. First, the
24-bit word width in TI C67x™ floating-point DSPs yields greater precision than the
C62x™ 16-bit fixed-point word width, in integer as well as real values. Second, expo-
nentiation vastly increases the dynamic range available for the application. A wide
dynamic range is important in dealing with extremely large data sets and with data sets
where the range cannot be easily predicted. Third, the internal representations of data
in floating-point DSPs are more exact than in fixed-point, ensuring greater accuracy in
end results.

The final point deserves some explanation. Three data word widths are important to
consider in the internal architecture of a DSP. The first is the I/O signal word width,
already discussed, which is 24 bits for C67x floating-point, 16 bits for C62x fixed-point,
and can be 8, 16, or 32 bits for C64x™ fixed-point DSPs. The second word width is
that of the coefficients used in multiplications. While fixed-point coefficients are 16 bits,
the same as the signal data in C62x DSPs, floating-point coefficients can be 24 bits or
53 bits of precision, depending whether single or double precision is used. The preci-
sion can be extended beyond the 24 and 53 bits in some cases when the exponent
can represent significant zeroes in the coefficient.

Finally, there is the word width for holding the intermediate products of iterated multiply-
accumulate (MAC) operations. For a single 16-bit by 16-bit multiplication, a 32-bit prod-
uct would be needed, or a 48-bit product for a single 24-bit by 24-bit multiplication.
(Exponents have a separate data path and are not included in this discussion.)
However, iterated MACs require additional bits for overflow headroom. In C62x fixed-
point devices, this overflow headroom is 8 bits, making the total intermediate product
word width 40 bits (16 signal + 16 coefficient + 8 overflow). Integrating the same



proportion of overflow headroom in C67x floating-point DSPs would require 64 interme-
diate product bits (24 signal + 24 coefficient + 16 overflow), which would go beyond
most application requirements in accuracy. Fortunately, through exponentiation the
floating-point format enables keeping only the most significant 48 bits for intermediate
products, so that the hardware stays manageable while still providing more bits of inter-
mediate accuracy than the fixed-point format offers. These word widths are summa-
rized in Table 1 for several TI DSP architectures.

Table 1. Word widths for TI DSPs

Video and audio data set requirements

The advantages of using the fixed- and floating-point formats can be illustrated by con-
trasting the data set requirements of two common signal-processing applications: video
and audio. Video has a high sampling rate that can amount to tens or even hundreds
of megabits per second (Mbps) in pixel data, depending on the application. Pixel data
is usually represented in three words, one for each of the red, green and blue (RGB)
planes of the image. In most systems, each color requires 8 to 12 bits, though
advanced applications may use up to 14 bits per color. Key mathematical operations of
the industry-standard MPEG video compression algorithms include discrete cosine
transforms (DCTs) and quantization, and there is limited filtering.

Audio, by contrast, has a more limited data flow of about 1 Mbps that results from 24
bits sampled at 48 kilosamples per second (ksps). A higher sampling rate of 192 ksps
will quadruple this data flow rate in the future, yet it is still significantly less than video.
Operations on audio data include infinite impulse response (IIR) and intensive filtering.

Video and audio data set requirements
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TI DSP(s) Format

Word Width

Signal I/O Coefficient
Intermediate

result
C25x fixed 16 16 40

C5x™/C62x™ fixed 16 16 40

C64x™ fixed 8/16/32 16 40

C3x™ floating 24 (mantissa) 24 32

C67x™(SP) floating 24 (mantissa) 24 24/53

C67x(DP) floating 53 53 53



Video thus has much more raw data to process than audio. DCTs and quantization are
handled effectively using integer operations, which together with the short data words
make video a natural application for C62x and C64x fixed-point DSPs. The massive
parallelism of the C64x makes it a excellent platform for applications that run multiple
video channels, and some C64x DSP products have been designed with on-chip video
interfaces that provide seamless data throughput.

Video may have a larger data flow, but audio has to process its data more accurately.
While the eye is easily fooled, especially when the image is moving, the ear is hard to
deceive. Although audio has usually been implemented in the past using fixed-point
devices, high-fidelity audio today is transistioning to the greater accuracy of the float-
ing-point format. Some C67x DSP products further this trend by integrating a multi-
channel audio serial port (McASP) in order to make audio system design easier. As the
newest audio innovations become increasingly common in consumer electronics,
demand for floating-point DSPs will also rise, helping to drive costs closer to parity with
fixed-point DSPs.

The wider words (24-bit signal, 24-bit coefficient, 53-bit intermediate product) of C67x
DSPs provide much greater accuracy in audio output, resulting in higher sound quality.
Sampling sound with 24 bits of accuracy yields 144 dB of dynamic range, which pro-
vides more than adequate coverage for the full amplitude range needed in sound
reproduction. Wide coefficients and intermediate products provide a high degree of
accuracy for internal operations, a feature that audio requires for at least two reasons.

First, audio typically use cascaded IIR filters to obtain high performance with minimal
latency., But, in doing so, each filtering stage propagates the errors of previous stages.
So a high degree of precision in both the signal and coefficients are required to mini-
mize the effects of these propagated errors. Second, signal accuracy must be main-
tained, even as it approaches zero (this is necessary because of the sensitivity of the
human ear). The floating-point format by its nature aligns well with the sensitivity of the
human ear and becomes more accurate as floating point numbers  approach 0.  This is
the result of the exponent’s keeping track of the significant zeros after the binary point
and before the significant data in the mantissa. This is in contrast to a fixed point sys-
tem for very small fractional numbers. All of these aspects of floating-point real arith-
metic are essential to the accurate reproduction of audio signals.

Other application areas

The data sets of other types of applications also lend themselves better to either fixed-
or floating-point computations. Today, one of the heaviest uses of DSPs is in wired and
wireless communications, where most data is transmitted serially in octets that are then

Other application areas
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expanded internally for 16-bit processing based on integer operations. Obviously, this
data set is extremely well-suited for the fixed-point format, and the enormous demand
for DSPs in communications has driven much of fixed-point product development and
manufacturing.

Floating-point applications are those that require greater computational accuracy and
flexibility than fixed-point DSPs offer. For example, image recognition used for medicine
is similar to audio in requiring a high degree of accuracy. Many levels of signal input
from light, x-rays, ultrasound and other sources must be defined and processed to cre-
ate output images that provide useful diagnostic information. The greater precision of
C67x signal data, together with the device’s more accurate internal representations of
data, enable imaging systems to achieve a much higher level of recognition and defini-
tion for the user.

Radar for navigation and guidance is a traditional floating-point application since it
requires a wide dynamic range that cannot be defined ahead of time and either uses
the divide operator or matrix inversions. The radar system may be tracking in a range
from 0 to infinity, but need to use only a small subset of the range for target acquisition
and identification. Since the subset must be determined in real time during system
operation, it would be all but impossible to base the design on a fixed-point DSP with
its narrow dynamic range and quantization effects..

Wide dynamic range also plays a part in robotic design. Normally, a robot functions
within a limited range of motion that might well fit within a fixed-point DSP’s dynamic
range. However, unpredictable events can occur on an assembly line. For instance, the
robot might weld itself to an assembly unit, or something might unexpectedly block its
range of motion. In these cases, feedback is well out of the ordinary operating range,
and a system based on a fixed-point DSP might not offer programmers an effective
means of dealing with the unusual conditions. The wide dynamic range of a floating-
point DSP, however, enables the robot control circuitry to deal with unpredictable cir-
cumstances in a predictable manner.

A data set decision

In recent years, as the world of digital signal processing has become much larger,
DSPs have become application-driven. SOC integration means that, along with applica-
tion-specific peripherals, different cores can be integrated on the same device, enabling
DSP products to be tailored for the requirements of specific markets. In this environ-
ment, floating-point capabilities have become another element in the overall DSP prod-
uct mix.

A data set decision
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There are still some differences in cost and ease of use between fixed- and floating-
point DSPs, but these have become less significant over time. The critical feature for
designers is the greater mathematical flexibility and accuracy of the floating-point for-
mat. For application data sets that require real arithmetic, greater precision and a wider
dynamic range, floating-point DSPs offer the best solution. Application data sets that do
not require these computational features can normally use fixed-point DSPs. Once the
data set requirements have been determined, it should no longer be difficult to decide
whether to use a fixed- or floating-point DSP.

A data set decision
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Unit area:   

Sifting  

  provided g(t) is defined at t = 0  

Scaling:  

• We will leave d(0) undefined   

1
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2
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

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Review 

   tPt 


d
0

lim




  t 



1


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
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
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a
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
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


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Unit Impulse 

• We will leave d(0) undefined 

Some signals and systems textbooks assign d(0) = ∞ 

• Plot Dirac delta as arrow at origin 

Undefined amplitude at origin 

Denote area at origin as (area) 

Height of arrow is irrelevant 

Direction of arrow indicates sign of area 

• With d(t) = 0 for t  0, it is tempting to think 

f(t) d(t) = f(0) d(t) 

f(t) d(t-T) = f(T) d(t-T) 

t 

 td
(1) 

0 

Simplify unit impulse 

under integration only 
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Unit Impulse 

• Simplifying d(t) under 

integration 

 

Assuming f(t) is defined at t=0 

• What about? 

 

• What about? 

 

By substitution of variables, 

• Other examples 

 

 

 

• What about at origin? 

     

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 0fdf dttt
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

1

?dttt df
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 t
dt

du
d 

 tu

t

t

t

d
t
















 

01

0

0

?

0

 
 

 
d

Unit Impulse 

• Relationship between unit impulse and unit step 

 

 

 

• What happens at the origin for u(t)? 

u(0-) = 0 and u(0+) = 1, but u(0) can take any value 

Common values for u(0) are 0, ½, and 1 

u(0) = ½ is used in impulse invariance filter design:  

L. B. Jackson, “A correction to impulse invariance,” IEEE Signal 

Processing Letters, vol. 7, no. 10, Oct. 2000, pp. 273-275. 
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Systems 

• Systems operate on signals to produce new signals 

or new signal representations 

 

 

• Continuous-time system examples 

y(t) = ½ x(t) + ½ x(t-1) 

y(t) = x2(t) 

• Discrete-time system examples 

y[n] = ½ x[n] + ½ x[n-1] 

y[n] = x2[n] 

Review 

Squaring function can be used 

in sinusoidal demodulation 

Average of current input and 

delayed input is a simple filter 

      txTty    ][ ][ nxTny 

T{•} y(t) x(t) T{•} y[n] x[n] 
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Continuous-Time System Properties 

• Let x(t), x1(t), and x2(t) be inputs to a continuous-

time linear system and let y(t), y1(t), and y2(t) be 

their corresponding outputs 

• A linear system satisfies 

Additivity: x1(t) + x2(t)  y1(t) + y2(t) 

Homogeneity: a x(t)  a y(t) for any real/complex constant a 

• For time-invariant system, shift of input signal by 

any real-valued  causes same shift in output 

signal, i.e. x(t - )  y(t - ), for all  

• Example:  Squaring block 

Review 

Quick test to identify 

some nonlinear systems? 

()2 y(t) x(t) 
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        



0

0

            

t t

t

t

duuxduuxduuxty

Role of Initial Conditions 

• Observe a system starting at time t0 

Often use t0 = 0 without loss of generality 

• Integrator 

 

 

• Integrator observed for t  t0 

 

 

Linear system if initial conditions are zero (C0 = 0)  

Time-invariant system if initial conditions are zero (C0 = 0) 

 dt
t

  


x(t) y(t) 

  0 
0

Cdt
t

t


x(t) y(t)  



0

0

t

duuxC

C0 is due 

to initial 

conditions 
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  )( Ttxty 

Continuous-Time System Properties 

• Ideal delay by T seconds.  Linear? 

 

 

• Scale by a constant (a.k.a. gain block) 

Two different ways to express it in a block diagram 

 

 

 

 

Linear?  Time-invariant? 

T
x(t) y(t) 

0a
x(t) y(t) 

  )(   0 txaty 

0a

x(t) y(t) 

Review 

Role of initial 

conditions? 
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   





1

0

  
M

m

m Tmtxaty

Each T represents a 

delay of T time units 

Continuous-Time System Properties 

• Tapped delay line 

 

 

 

 

 

 

 

Linear?  Time-invariant? 

There are M-1 delays  tx
T TT

S 

 ty

0a
1Ma2Ma1a … 

… 

 Ttx 

Coefficients (or taps) 

are a0, a1, …aM-1 

Role of initial 

conditions? 
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Continuous-Time System Properties 

• Amplitude Modulation (AM) 

y(t) = A x(t) cos(2p fc t) 

fc is the carrier 

frequency 

(frequency of 

radio station) 

A is a constant 

Linear?  Time-invariant? 

• AM modulation is AM radio if x(t) = 1 + ka m(t) 

where m(t) is message (audio) to be broadcast 

and | ka m(t) | < 1 (see lecture 19 for more info) 

A x(t) 

cos(2 p fc t) 

y(t) 

3 - 16 

Generating Discrete-Time Signals 

• Many signals originate in continuous time 

Example: Talking on cell phone 

• Sample continuous-time signal 

at equally-spaced points in time 

to obtain a sequence of numbers 

s[n] = s(n Ts)  for  n  {…, -1, 0, 1, …} 

How to choose sampling period Ts ? 

• Using a formula 

x[n] = n2 – 5n + 3 on right for 0 ≤ n ≤ 5 

How does x[n] look in continuous time? 

Sampled analog waveform 

s(t) 

t 

Ts 

Ts 

Review 

n 
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Discrete-Time System Properties 

• Let x[n], x1[n] and x2[n] be inputs to a linear system 

• Let y[n], y1[n] and y2[n] be corresponding outputs 

• A linear system satisfies 

Additivity: x1[n] + x2[n]  y1[n] + y2[n] 

Homogeneity: a x[n]  a y[n] for any real/complex constant a 

• For a time-invariant system, a shift of input signal 

by any integer-valued m causes same shift in output 

signal, i.e. x[n - m]  y[n - m], for all m 

• Role of initial conditions? 

Review 
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





1

0

][ ][
M

m

m mnxany

Each z-1 represents a 

delay of 1 sample 

Discrete-Time System Properties 

• Tapped delay line in discrete time 

 

 

 

 

 

 

 

• Linear?  Time-invariant? 

There are M-1 delays 

][nx
1z

S 

][ny

0a 1Ma
2Ma1a … 

… 
1z1z

]1[ nx

See also slide 5-4 

Coefficients (or taps) 

are a0, a1, …aM-1 

Role of initial 

conditions? 
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Discrete-Time System Properties 

• Let d[n] be a discrete-time impulse function, a.k.a. 

Kronecker delta function: 

 

 

• Impulse response is response of discrete-time LTI 

system to discrete impulse function 

Example: delay by one sample 

• Finite impulse response filter 

Non-zero extent of impulse response is finite 

Can be in continuous time or discrete time 

Also called tapped delay line (slides 3-14, 3-18, 5-4) 

 









00

01

n

n
nd

1z
d[n] h[n] 

]1[][  nnh d

n 

d[n] 
1 

1 -1 2 3 -2 -3 
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Discrete-Time System Properties 

• Continuous time 

 

 

 

 

 

Linear? 

Time-invariant? 

• Discrete time 

 

 

 

 

 

 

Linear? 

Time-invariant? 

 
dt

df(t) y(t) 

    
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dt

d̂f[n] y[n] 

See also 

slide 5-18 
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Conclusion 

• Continuous-time versus discrete-time: 

discrete means quantized in time  

• Analog versus digital: 

digital means quantized in amplitude  

• Digital signal processor 

Discrete-time and digital system 

Well-suited for implementing LTI digital filters 

• Example of discrete-time analog system? 

• Example of continuous-time digital system? 
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Sampling and Aliasing 
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Outline 

• Data conversion 

• Sampling 

Time and frequency domains 

Sampling theorem 

• Aliasing 

• Bandpass sampling 

• Rolling shutter artifacts 

• Conclusion 

Data Conversion 

• Analog-to-Digital Conversion 

Lowpass filter has 
stopband frequency 
less than ½ fs to reduce 
aliasing due to sampling 
(enforce sampling theorem)  

• Digital-to-Analog Conversion 

Discrete-to-continuous 
conversion could be as 
simple as sample and hold 

Lowpass filter has stopband 
frequency less than ½ fs  
reduce artificial high frequencies 

Analog 

Lowpass 

Filter 

Discrete to 

Continuous 

Conversion 

fs 

Lecture 7 

Analog 

Lowpass 

Filter 

 

Quantizer 

 
Sampler at 

sampling 

rate of f s 

Lecture 8 Lecture 4 
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Data Conversion 

4 - 4 

   sTnfnf  

Sampling: Time Domain 

• Many signals originate in continuous-time 

Talking on cell phone, or playing acoustic music 

• By sampling a continuous-time signal at 

isolated, equally-spaced points in time, we 

obtain a sequence of numbers 

 

n  {…, -2, -1, 0, 1, 2,…} 

Ts is the sampling period. 

Sampled analog waveform 

   





n

ssampled Tnttftf  )( 

impulse train 

f(t) 

t 

Ts 

Ts 

 tfsampled

Sampling - Review 
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Sampling: Frequency Domain 

• Sampling replicates spectrum of continuous-time 

signal at integer multiples of sampling frequency 

• Fourier series of impulse train where ws = 2 p fs 

 

 

 

        )  (2cos2  ) (cos2  1 
1

   )( ... 

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T

Tntt ss

sn

sTs
ww

        )  (2cos)(2    ) (cos)(2    )( 
1

 )( )()( ... ttfttftf
T

ttftg ss

s

Ts
ww

w 

G(w) 

ws 2ws 2ws ws 

w 

F(w) 

2pfmax -2pfmax 

maxmaxmax 2222 ifonly  and if gap fffff ss  ppp

Modulation 

by cos(2 ws t) 
Modulation 

by cos(ws t) 

How to 

recover 

F(w)? 

Sampling - Review 
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Sampling Theorem 

• Continuous-time signal x(t) with frequencies no 

higher than fmax can be reconstructed from its 

samples x(n Ts) if samples taken at rate fs > 2 fmax 

Nyquist rate = 2 fmax 

Nyquist frequency =  fs / 2 

• Example: Sampling audio signals 

Normal human hearing is from about 20 Hz to 20 kHz 

Apply lowpass filter before sampling to pass low 

frequencies up to 20 kHz and reject high frequencies 

Lowpass filter needs 10% of maximum passband frequency 

to roll off to zero (2 kHz rolloff in this case) 

What happens 

if fs = 2 fmax? 

Sampling - Review 
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Sampling Theorem 

Assumption 

• Continuous-time signal has 
absolutely no frequency 
content above fmax 

• Sampling time is exactly the 
same between any two 
samples 

• Sequence of numbers 
obtained by sampling is 
represented in exact 
precision 

• Conversion of sequence to 
continuous time is ideal 

In Practice 

Sampling 

4 - 8 

Sampling and Oversampling 

• As sampling rate increases above Nyquist rate, 

sampled waveform looks more like original 

• Zero crossings: frequency content of a sinusoid 

Distance between two zero crossings: one half period 

With sampling theorem satisfied, sampled sinusoid crosses 

zero right number of times per period 

In some applications, frequency content matters not time-

domain waveform shape 

• DSP First, Ch. 4, Sampling/Interpolation demo 

For username/password help  

Sampling 

link 

link 

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/4samplin/demos/pulses/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/serial_number.html
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Aliasing 

• Continuous-time 
sinusoid 

x(t) = A cos(2p f0 t + f) 

• Sample at Ts = 1/fs 

x[n] = x(Tsn) = 
A cos(2p f0 Ts n + f) 

• Keeping the sampling 
period same, sample 
y(t) = A cos(2p (f0 + l fs) t  + f) 

    where l is an integer 

y[n] = y(Tsn) 

 = A cos(2p(f0 + lfs)Tsn + f) 

 = A cos(2pf0Tsn + 2plfsTsn + f) 

 = A cos(2pf0Tsn + 2pln + f) 

 = A cos(2pf0Tsn + f) 

 = x[n] 

Here, fsTs = 1 

Since l is an integer, 
cos(x + 2 p l) = cos(x) 

•  y[n] indistinguishable 
from x[n] 

Aliasing 

4 - 10 

Aliasing 

• Since l is any integer, a countable but infinite 

number of sinusoids give same sampled sequence 

• Frequencies f0 + l fs for l  0 

Called aliases of frequency f0 with respect to fs 

All aliased frequencies appear same as f0 due to sampling 

• Signal Processing First, Continuous to Discrete 

Sampling demo (con2dis) 

Aliasing 

link 
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Aliasing 

• Sinusoid sin(2 p finput t) sampled at fs = 2000 

samples/s with finput varied 

 

 

 

 

 

• Mirror image effect about f input = ½ fs gives rise 

to name of folding 

A
p
p
ar

en
t 

fr
eq

u
en

cy
 (

H
z)

 

Input frequency, finput (Hz) 

1000 

1000 2000 3000 4000 

fs = 2000 samples/s 

Aliasing 
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Bandpass Sampling 

• Reduce sampling rate 

Bandwidth: f2 – f1 

Sampling rate fs must 

be greater than analog 

bandwidth fs > f2 – f1 

For replica to be centered 

at origin after sampling 

fcenter = ½(f1 + f2) = k fs 

• Practical issues 

Sampling clock tolerance:  fcenter = k fs 

Effects of noise 

Ideal Bandpass Spectrum 

f1 f2 
f –f2 –f1 

Sample at fs 

Sampled Ideal Bandpass Spectrum 

f1 f2 
f –f2 –f1 

Lowpass filter to 

extract baseband 

Bandpass Sampling 

http://users.ece.gatech.edu/mcclella/SPFirst/Updates/SPFirstMATLAB.html
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Sampling for Up/Downconversion 

• Upconversion method 

Sampling plus bandpass 

filtering to extract 

intermediate frequency 

(IF) band with fIF = kIF fs 

 

• Downconversion method 

Bandpass sampling plus 

bandpass filtering to extract 

intermediate frequency (IF) 

band with fIF = kIF fs 

f 

fmax -fmax 

f fs fIF fIF fs 

f1 f2 

f 

–f2 –f1 

Sample 

at fs 

f 

–f2 –f1 -fIF fIF 

Bandpass Sampling 

Rolling Shutter Cameras 

• Smart phone and point-and-shoot cameras 

No (global) hardware shutter to reduce cost, size, weight 

Light continuously impinges on sensor array 

Artifacts due to relative motion between objects and camera 

Rolling Shutter Artifacts 

Figure from tutorial by Forssen et al. at 2012 IEEE Conf. on Computer Vision & Pattern Recognition 

• Plucked guitar strings – global shutter camera 

String vibration is (correctly) damped sinusoid vs. time 

• “Guitar Oscillations Captured with iPhone 4” 

Rolling shutter (sampling) artifacts but not aliasing effects 

• Fast camera motion 

Pan camera fast left/right 

Pole wobbles and bends 

Building skewed 

Rolling Shutter Artifacts 

Rolling Shutter Artifacts 

C. Jia and B. L. Evans, “Probabilistic 3-D Motion Estimation for Rolling 

Shutter Video Rectification from Visual and Inertial Measurements,” 

IEEE Multimedia Signal Proc. Workshop, 2012.  Link to article.   

Warped frame Compensated using 

gyroscope readings 

(i.e. camera rotation) 

and video features 

video 

video 
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Conclusion 

• Sampling replicates spectrum of continuous-time 
signal at offsets that are integer multiples of 

sampling frequency 

• Sampling theorem gives necessary condition to 
reconstruct the continuous-time signal from its 

samples, but does not say how to do it 

• Aliasing occurs due to sampling  

Noise present at all frequencies 

A/D converter design tradeoffs to control impact of aliasing 

• Bandpass sampling reduces sampling rate 
significantly by using aliasing to our benefit 

Conclusion 

http://www.youtube.com/watch?v=j7pwP_aM-4U
http://www.youtube.com/watch?v=TKF6nFzpHBU
http://users.ece.utexas.edu/~bevans/papers/2012/rolling/
http://www.reddit.com/r/reddit.com/comments/in2rc/guitar_string_oscillations_captured_on_video/


1 

Prof. Brian L. Evans 

Dept. of Electrical and Computer Engineering 

The University of Texas at Austin 

EE445S Real-Time Digital Signal Processing Lab    Spring 2014 

Lecture 5                     http://www.ece.utexas.edu/~bevans/courses/rtdsp  

Finite Impulse Response Filters 
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Outline 

• Many Roles for Filters 

• Convolution 

• Z-transforms 

• Linear time-invariant systems 

Transfer functions 

Frequency responses 

• Finite impulse response filters 

Cascading FIR filters demonstration 

Symmetric FIR filters 

Filter design 

5 - 3 

Many Roles for Filters 

• Noise removal 

Signal and noise spectrally separated 

Example: bandpass filtering to suppress out-of-band noise 

• Analysis, synthesis, and compression 

Spectral analysis 

Examples: calculating power spectra (slides 14-10 and 14-11) 
and polyphase filter banks for pulse shaping (lecture 13) 

• Spectral shaping 

Data conversion (lectures 10 and 11) 

Channel equalization (slides 16-8 to 16-10) 

Symbol timing recovery (slides 13-17 to 13-20 and slide 16-7) 

Carrier frequency and phase recovery 
5 - 4 







1

0

][ ][ ][
M

m

mnxmhny

Finite Impulse Response (FIR) Filter 

• Same as discrete-time tapped delay line (slide 3-18) 

 

 

 

 

 

 

• Impulse response h[n] has finite extent n = 0,…, M-1 

z-1 z-1 z-1 … 

… 

x[n] 

S y[n] 

h[0] h[1] h[2] h[M-1] 

x[n-1] 

Discrete-time 

convolution 
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Discrete-time Convolution Derivation 

• Output y[n] for input x[n]  

• Any signal can be decomposed 

into sum of discrete impulses 

• Apply linear properties 

• Apply shift-invariance 

• Apply change of variables 

 

y[n] = h[0] x[n] + h[1] x[n-1] 

       = ( x[n] + x[n-1] ) / 2 n 

h[n] 

2

1

Averaging filter 

impulse response 

0 1 2 3 

    nxTny 
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
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mnmxTny  

      mnTmxny
m

 
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

  

     mnhmxny
m

 




  

     mnxmhny
m

 




  

Review 
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Convolution Comparison 

• Continuous-time convolution of x(t) and h(t) 

 

For each t, compute different (possibly) infinite integral 

• In discrete-time, replace integral with summation 

 

For each n, compute different (possibly) infinite summation 

• LTI system 

Characterized uniquely by its impulse response 

Its output is convolution of input and impulse response 

             







  dtxhdthxthtxty     

         mnxmhmnhmxny
mm

 








   

Review 
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Convolution Demos 

• The Johns Hopkins University Demonstrations 

http://www.jhu.edu/~signals 

Convolution applet to animate convolution of simple signals 

and hand-sketched signals 

Convolving two rectangular pulses of same width gives 

triangle with width of twice the width of rectangular pulses 

(see Appendix E in course reader for intermediate work) 

t 

1 

x(t) 

0 Ts 2Ts 

Ts 

t 

1 

h(t) 

0 Ts 

* = y(t) 

Ts 

t 

What about convolving two pulses of different lengths? 
5 - 8 

Z-transform Definition 

• For discrete-time systems, z-transforms play same 

role as Laplace transforms do in continuous-time 

 

 

Inverse transform requires contour integration over closed 

contour (region) R 

Contour integration covered in a Complex Analysis course 

• Compute forward and inverse transforms using 

transform pairs and properties 

 





n

nznhzH   )(

Bilateral Forward z-transform 




R

n dzzzH
j

nh 1 )( 
  2

1
][



Bilateral Inverse z-transform 

Review 

http://www.jhu.edu/~signals
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 Three Common Z-transform Pairs 

• h[n] = [n] 

 

Region of convergence: entire 

z-plane 

• h[n] = [n-1] 

 

Region of convergence: entire 

z-plane except z = 0 

h[n-1]  z-1 H(z) 
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
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





































z

a

z

a

z

a
za

znuazH

n

n

n

nn

n
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• h[n] = an u[n] 

 

 

 

 

 

Region of convergence 

for summation: |z| > |a| 

|z| > |a| is the complement 

of a disk 

Finite extent sequences Infinite extent sequence 
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Region of Convergence 

• Region of the complex z-

plane for which forward z-

transform converges 

 Im{z} 

Re{z} 

Entire 

plane 

Im{z} 

Re{z} 

Complement 

of a disk 

Im{z} 

Re{z} 

Disk 

Im{z} 

Re{z} 

Intersection 

of a disk and 

complement 

of a disk 

• Four possibilities (z = 0 is 

special case that may or 

may not be included) 

Review 
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System Transfer Function 

• Z-transform of system’s impulse response 

Impulse response uniquely represents an LTI system 

• Example: FIR filter with M taps (slide 5-4) 

 

Transfer function H(z) is polynomial in powers of z -1 

Region of convergence (ROC) is entire z-plane except z = 0 

• Since ROC includes unit circle, substitute z = e j w 

into transfer function to obtain frequency response 

    )1(1
1

0

 ]1[     ]1[]0[    )( 
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
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   M
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n

n

n zMhzhhznhznhzH ...

  wwww
w

 )1(  
1

0

   ]1[     ]1[]0[  |)()( 







  Mjj

M

n

nj

ez

j eMhehhenhzHeH j ...
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Example: Ideal Delay 

• Continuous Time 

Delay by T seconds 

 

 

 

Impulse response 

 

Frequency response 

• Discrete Time 

Delay by 1 sample 

 

 

 

Impulse response 

 

Frequency response 

  )( Ttxty 

T
x(t) y(t) 

  )( Ttth  

  TjeH   

]1[][  nxny

1z
x[n] y[n] 

]1[][  nnh 

  ww  jeH 

  1 || H

  TH   

  1 || wH

  ww  H



4 

5 - 13 

Linear Time-Invariant Systems 

• Fundamental Theorem of Linear Systems 

If a complex sinusoid were input into an LTI system, then 
output would be input scaled by frequency response of 
LTI system (evaluated at complex sinusoidal frequency) 

Scaling may attenuate input signal and shift it in phase 

Example in continuous time: see handout F 

Example in discrete time.  Let x[n] = e j w n, 

 

     

    H(w) is discrete-time Fourier transform of h[n] 
H(w) is also called the frequency response 

   wwwww Heemhemheny nj

m

mjnj

m

mnj          ][][][  











H(w) x[n] * h[n] 
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Frequency Response 

• Continuous-time 

LTI system 

• Discrete-time 

LTI system 

• For real-valued impulse response H(e -j ω) = H*(e j ω) 

Input 

Output 

   

    ww

wwww ww

  

  )(   )( 

    cos  2

    

jj

njeHjjnjeHjj

eHω neH

eeeHeeeH
jj



 

) cos(2    nee njnj www 

][nh

nje   w   njj eeH      ww

 n cos w     ww w    cos  jj eHneH 

)(th

tje      tjejH     

     jHtjH  cos   t cos 

          njjnjjnjjnjj eeHeeHeeHeeH       *          wwwwwwww
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Frequency Response 

• System response to complex sinusoid e j w n for all 

possible frequencies w in radians per sample: 

 

 

 

 

Lowpass filter: passes low and attenuates high frequencies 

Linear phase: must be FIR filter with impulse response that is 

symmetric or anti-symmetric about its midpoint 

• Not all FIR filters exhibit linear phase 

w 

|H(w)| 

w 

|H(w)| 

wp wstop wstop wp 

passband 

stopband stopband 
Linear 

phase 

delay)()( kH
d

d
delay  w

w
w
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Filter Design 

• Specify a desired 
piecewise constant 

magnitude response 

• Lowpass filter example 

w  [0, wp], mag  [1-p, 1] 

w  [ws, ], mag  [0, s] 

Transition band unspecified 

• Symmetric FIR filter 

design methods 

Windowing 

Least squares 

Remez (Parks-McClellan) 

1 

s 

1p 

w 

wp ws 

Desired Magnitude Response 

Passband Stopband Transition 

band 

 

Red region 

is forbidden 

Lowpass Filter Example 

p passband ripple 

 s stopband ripple 

forbidden 

forbidden 

forbidden 

Achtung! 
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Example: Two-Tap Averaging Filter 

]1[
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1
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
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jjj
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 
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w 2

1

 
2

cos
j

eH












• Input-output relationship 

 

• Impulse response 

 

• Frequency response 

 

n 

h[n] Two-tap averaging filter 

½

  

2 3 1 

z-1 x[n] 

S y[n] 

h[0] h[1] 

x[n-1] 
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Example: First-Order Difference 
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• Input-output relationship 

 

• Impulse response 

 

• Frequency response 

 

n 

h[n] First-order difference 

½ 

2 3 
- ½ 
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Cascading FIR Filters Demo 

• Five-tap discrete-time averaging FIR filter with 
input x[n] and output y[n] 

 

Standard averaging filtering scaled by 5 

Lowpass filter (smooth/blur input signal) 

Impulse response is {1, 1, 1, 1, 1} 

• First-order difference FIR filter 

 

Highpass filter (sharpens 
input signal)  

Impulse response is {1, -1} 

  ]4[]3[]2[]1[][  nxnxnxnxnxny

  ]1[][  nxnxny

n 

h[n] First-order difference 

impulse response 

1 

-1 
2 3 
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Cascading FIR Filters Demo 

• DSP First, Ch. 6, Freq. Response of FIR Filters 
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/vis ible/chapters/6firfreq/demos/blockd/index.htm 

For username/password help  

• From lowpass filter to highpass filter 

original image  blurred image  sharpened/blurred image 

• From highpass to lowpass filter 

original image  sharpened image  blurred/sharpened image 

• Frequencies that are zeroed out can never be 

recovered (e.g. DC is zeroed out by highpass filter) 

• Order of two LTI systems in cascade can be 
switched under the assumption that computations 

are performed in exact precision 

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/6firfreq/demos/blockd/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/serial_number.html
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Cascading FIR Filters Demo 

• Input image is 256 x 256 matrix 

Each pixel represented by eight-bit number in [0, 255] 

0 is black and 255 is white for monitor display 

• Each filter applied along row then column 

Averaging filter adds five numbers to create output pixel 

Difference filter subtracts two numbers to create output pixel 

• Full output precision is 16 bits per pixel 

Demonstration uses double-precision floating-point data and 

arithmetic (53 bits of mantissa + sign; 11 bits for exponent) 

No output precision was harmed in the making of this demo  
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Importance of Linear Phase 

• Speech signals 

Use phase differences in 

arrival to locate speaker 

Once speaker is located, ears 

are relatively insensitive to 

phase distortion in speech 

from that speaker 

Used in speech compression 

in cell phones) 

• Linear phase crucial 

Audio 

Images 

Communication systems 

• Linear phase response  

Need FIR filters 

Realizable IIR filters 

cannot achieve linear 

phase response over all 

frequencies 
 d = c t 

Importance of Linear Phase 

• For images, vital visual information in phase 

 

 

 

 

 

 

 

• Original image is from Matlab   
5 - 23 

Take FFT of image 

Set phase to zero 

Take inverse FFT 

Take FFT of image 

Set magnitude to one 

Take inverse FFT 

Keep imaginary part 

Take FFT of image 

Set magnitude to one 

Take inverse FFT 

Keep real part 

code 

http://users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/05_FIR_Filters /Original%20Image.tif 5 - 24 

Finite Impulse Response Filters 

• Duration of impulse response h[n] is finite, i.e. 
zero-valued for n outside interval [0, M-1]: 

 

Output depends on current input and previous M-1 inputs 

Summation to compute y[k] reduces to a vector dot product 
between M input samples in the vector 

  

    and M values of the impulse response in vector  

 

• What instruction set architecture features would you 
add to accelerate FIR filtering? 

             









1

0

  
M

mm

mnxmhmnxmhnhnxny

  )]1([ ..., ],1[ ],[  Mnxnxnx

  ]1[ ..., ],1[ ],0[ Mhhh

http://users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/05_FIR_Filters/Original Image.tif
http://users.ece.utexas.edu/~bevans/courses/rtdsp/lectures/05_FIR_Filters/ImagePhaseDemo.m
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Outline 

• Many roles for filters 

• Two IIR filter structures 

Biquad structure 

Direct form implementations 

• Stability 

• Z and Laplace transforms 

• Cascade of biquads 

Analog and digital IIR filters 

Quality factors 

• Conclusion 

Many Roles for Filters 

• Noise removal 

Signal and noise spectrally separated 

Example: bandpass filtering to suppress out-of-band noise 

• Analysis, synthesis, and compression 

Spectral analysis 

Examples: calculating power spectra (slides 14-10 and 14-11) 
and polyphase filter banks for pulse shaping (lecture 13) 

• Spectral shaping 

Data conversion (lectures 10 and 11) 

Channel equalization (slides 16-8 to 16-10) 

Symbol timing recovery (slides 13-17 to 13-20 and slide 16-7) 

Carrier frequency and phase recovery 
6 - 3 6 - 4 

Digital IIR Filters 

• Infinite Impulse Response (IIR) filter has impulse 

response of infinite duration, e.g. 

 

 

• How to implement the IIR filter by computer? 

Let x[k] be the input signal and y[k] the output signal, 
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Recursively compute output y[n], n ≥ 0, given y[-1] and x[n] 
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Different Filter Representations 

• Difference equation 

 

Recursive computation 

needs y[-1] and y[-2] 

For the filter to be LTI, 

y[-1] = 0 and y[-2] = 0 

• Transfer function 

Assumes LTI system 

• Block diagram 

representation 

 

 

 

 

 

Second-order filter section 

(a.k.a. biquad) with 2 

poles and 0 zeros 

][]2[
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1
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Poles at –0.183 and +0.683  6 - 6 

Discrete-Time IIR Biquad 

• Two poles, and zero, one, or two zeros 

 

 

 

 

 

• Overall transfer function 

 

Real a1, a2 : poles are conjugate symmetric (  j ) or real 

Real b0, b1, b2 : zeros are conjugate symmetric or real 
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b1 

 y[n] b0 

Biquad is short for 

biquadratic− transfer 

function is ratio of two 

quadratic polynomials 
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Discrete-Time IIR Filter Design 

• Biquad w/ zeros z0 and z1 

and poles p0 and p1 

Magnitude response 

|a – b| is distance between 

complex numbers a and b 

|ej – p0| is distance from point 

on unit circle ej and pole location p0 

• When poles and zeros are separated in angle 

Poles near unit circle indicate filter’s passband(s) 

Zeros on/near unit circle indicate stopband(s) 
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Discrete-Time IIR Biquad Examples 

• Transfer function 

• When transfer function coefficients are real-valued 

Poles (X) are conjugate symmetric or real-valued 

Zeros (O) are conjugate symmetric or real-valued 

• Filters below have what magnitude responses? 

Re(z) 

Im(z) 

X O 
O X 

Re(z) 

Im(z) 

O 

O 
X 
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Im(z) 
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  

  
  1

1

1

0

1

1

1

0

10

10

11

11
 )(













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C
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lowpass 

highpass 

bandpass 

bandstop 

allpass 

notch? 

Poles have radius r 

Zeros have radius 1/r 

Zeros are on the unit circle 
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A Direct Form IIR Realization 

• IIR filters having rational transfer functions 

 
 

 

• Direct form realization 

Dot product of vector of N +1 
coefficients and vector of current 
input and previous N inputs (FIR section) 

Dot product of vector of M coefficients and vector of previous 
M outputs (“FIR” filtering of previous output values) 

Computation: M + N + 1 multiply-accumulates (MACs) 

Memory: M + N words for previous inputs/outputs and 
M + N + 1 words for coefficients 
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Filter Structure As a Block Diagram 
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a2 

y[n-1] 
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Delay 
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Delay 

aM 

Feedback 

M and N may 

be different 

Full Precision 

Wordlength of 

y[0] is 2 words. 

Wordlength of 

y[n] increases 

with n for n > 0. 
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Yet Another Direct Form IIR 

• Rearrange transfer function to be cascade of an 
all-pole IIR filter followed by an FIR filter 

 

 
Here, v[n] is the output of an all-pole filter applied to x[n]: 

 

 

 

• Implementation complexity (assuming M  N) 

Computation: M + N + 1 MACs 

Memory: M double words for past values of v[n] and 
M + N + 1 words for coefficients 
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)(
)(    where)()(

)(

)()(
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zX
zVzBzV

zA

zBzX
zY 













N
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k

M

m

m
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1
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Filter Structure As Block Diagram  

 x[n] 

Unit 

Delay 

Unit 

Delay 

 

 v[n-1] 

v[n-2] 

v[n] 

b2 

a1 

a2 

b1 

 y[n] b0 

Unit 

Delay 

v[n-M] 
bN aM 

Feed-

forward 
Feedback 

M=2 yields 

a biquad 













N

k

k

M

m

m

knvbny

mnvanxnv

0

1

][  ][

][ ][][

M and N may 

be different 

Full Precision 

Wordlength of y[0] is 

2 words and wordlength 

of v[0] is 1 word. 

Wordlength of v[n] and 

y[n] increases with n. 
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Demonstrations 

• Signal Processing First, PEZ Pole Zero Plotter 

(pezdemo) 

• DSP First demonstrations, Chapter 8 

IIR Filtering Tutorial (Link) 

Connection Betweeen the Z and Frequency Domains (Link)  

Time/Frequency/Z Domain Movies for IIR Filters (Link)  

For username/password help 
link 

link 

link 

6 - 14 

Stability 

• A discrete-time LTI system is bounded-input 
bounded-output (BIBO) stable if for any bounded 

input x[n] such that | x[n] |  B1 < , then the filter 
response y[n] is also bounded | y[n] |  B2 <   

• Proposition: A discrete-time filter with an impulse 

response of h[n] is BIBO stable if and only if 

 

 

Every finite impulse response LTI system (even after 
implementation) is BIBO stable 

A causal infinite impulse response LTI system is BIBO stable 
if and only if its poles lie inside the unit circle 






  |][| nh
n

Review 
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  az
za

nua
Z

n 





for        
 1

1
 

1

BIBO Stability 

• Rule #1: For a causal sequence, poles are inside the 

unit circle (applies to z-transform functions that 

are ratios of two polynomials)  OR 

• Rule #2: Unit circle is in the region of convergence. 

(In continuous-time, imaginary axis would be in 

region of convergence of Laplace transform.) 

• Example: 

 

Stable if |a| < 1 by rule #1 or equivalently 

Stable if |a| < 1 by rule #2 because |z|>|a| and |a|<1 

Review 

6 - 16 

Z and Laplace Transforms 

• Transform difference/differential equations into 

algebraic equations that are easier to solve 

• Are complex-valued functions of a complex 

frequency variable 

Laplace:  s =  + j 2  f 

Z:            z = r e j  

• Transform kernels are complex exponentials: 

eigenfunctions of linear time-invariant systems 

Laplace:  e–s t = e– t –  j 2  f t    =    e – t         e – j 2  f t  

Z:             z –n = (r e j ) –n            =    r – n       e – j  n  

dampening factor oscillation term 

http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/recur/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/z2freq/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/3_domain/index.htm
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/8feedbac/demos/overview.htm
http://users.ece.gatech.edu/mcclella/SPFirst/Updates/SPFirstMATLAB.html
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/serial_number.html
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Z and Laplace Transforms 

• No unique mapping from Z to Laplace domain 

or from Laplace to Z domain 

Mapping one complex domain to another is not unique 

• One possible mapping is impulse invariance  

Make impulse response of a discrete-time linear time-

invariant (LTI) system be a sampled version of the 

impulse response for the continuous-time LTI system 

H(z) y[n] f[n] 

Z 

H(s)  tf
~  ty~

Laplace 

Tsez
zHsH  |)()(



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Impulse Invariance Mapping 

• Mapping is z = e s T where T is sampling time Ts 

Laplace Domain Z Domain 

Left-hand plane Inside unit circle 

Imaginary axis Unit circle 

Right-hand plane Outside unit circle 
 

 

1 

Im{z} 

Re{z} 

Poles: s = -1  j  z = 0.198  j 0.31 (T = 1 s) 

Zeros:  s = 1  j    z = 1.469  j 2.287 (T = 1 s) 



1

2

1
1 maxmax  sffω

1 

1 

-1 

-1 

Im{s} 

Re{s} 

fjs   2 
lowpass, highpass 

bandpass, bandstop 

allpass or notch? 

Let fs = 1 Hz 

6 - 19 

Continuous-Time IIR Biquad 

• Second-order filter section with 2 poles & 0-2 zeros 

Transfer function is a ratio of two real-valued polynomials 

Poles and zeros occur in conjugate symmetric pairs 

• Quality factor: technology independent measure of 

sensitivity of pole locations to perturbations 

For an analog biquad with poles at a ± j b, where a < 0, 

 

 

Real poles: b = 0 so Q = ½ (exponential decay response) 

Imaginary poles: a = 0 so Q =  (oscillatory response) 





 Q

a

ba
Q

2

1
   where

2

22
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Continuous-Time IIR Biquad 

• Impulse response with biquad with poles a ± j b 
with a < 0 but no zeroes: 

Pure sinusoid when a = 0 and pure decay when b = 0 

• Breadboard implementation 

Consider a single pole at –1/(R C). With 1% tolerance on 
breadboard R and C values, tolerance of pole location is 2% 

How many decimal digits correspond to 2% tolerance? 

How many bits correspond to 2% tolerance? 

Maximum quality factor is about 25 for implementation of 
analog filters using breadboard resistors and capacitors. 

Switched capacitor filters: Qmax  40  (tolerance  0.2%) 

Integrated circuit implementations can achieve Qmax  80  

)      cos( )(   tbeCth ta
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Discrete-Time IIR Biquad 

• For poles at a ± j b = r e ± j , where                    is 

the pole radius (r < 1 for stability), with y = –2 a: 

 

 

Real poles: b = 0 and 1 < a < 1, so r = |a| and y = 2 a and 

Q = ½ (impulse response is C0 a
n u[n] + C1 n a 

n u[n]) 

Poles on unit circle: r = 1 so Q =  (oscillatory response) 

Imaginary poles: a = 0 so 

r = |b| and y = 0, and 

16-bit fixed-point digital signal processors with 40-bit 

accumulators: Qmax  40 





 Q

r

yr
Q

2

1
     where

)1( 2

)1(
2

222

 22 bar 

2

2

2

2

1

1
 

2

1

1

1
 

2

1

b

b

r

r
Q











Filter design programs often use r as approximation of quality factor 6 - 22 

IIR Filter Implementation 

• Same approach in discrete and continuous time 

• Classical IIR filter designs 

Filter of order n will have n/2 conjugate roots if n is even or 
one real root and (n-1)/2 conjugate roots if n is odd  

Response is very sensitive to perturbations in pole locations 

• Rule-of-thumb for implementing IIR filter 

Decompose IIR filter into second-order sections (biquads) 

Cascade biquads from input to output in order of ascending 
quality factors 

For each pair of conjugate symmetric poles in a biquad, 
conjugate zeroes should be chosen as those closest in 
Euclidean distance to the conjugate poles 

6 - 23 

Classical IIR Filter Design 

• Classical IIR filter designs differ in the shape of 
their magnitude responses  

Butterworth: monotonically decreases in passband and 
stopband (no ripple)  

Chebyshev type I: monotonically decreases in passband but 
has ripples in the stopband  

Chebyshev type II: has ripples in passband but monotonically 
decreases in the stopband  

Elliptic: has ripples in passband and stopband  

• Classical IIR filters have poles and zeros, except 

Continuous-time lowpass Butterworth filters only have poles 

• Classical filters have biquads with high Q factors 
6 - 24 

Analog IIR Filter Optimization 

• Start with an existing (e.g. classical) filter design 

• IIR filter optimization packages from UT Austin 

(in Matlab) simultaneously optimize 

Magnitude response 

Linear phase in passband 

Peak overshoot in step response 

Quality factors 
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Analog IIR Filter Optimization 

• Analog lowpass IIR filter design specification 

dpass= 0.21 at pass= 20 rad/s and dstop= 0.31 at stop= 30 rad/s 

Minimized deviation from linear phase in passband 

Minimized peak overshoot in step response 

Maximum quality factor per second-order section is 10 

Linearized 
phase in 

passband 

Minimized 
peak 

overshoot 

Elliptic 

Optimized 

Q poles zeros 

1.7 -5.3533±j16.9547 0.0±j20.2479 

61.0 -0.1636±j19.9899 0.0±j28.0184 el
li

p
ti

c Q poles zeros 

0.68 -11.4343±j10.5092 -3.4232±j28.6856 

10.00 -1.0926±j21.8241 -1.2725±j35.5476 o
p
ti

m
iz

ed
 

Elliptic 

Optimized 

MATLAB Demos Using fdatool #1 

• Filter design/analysis 

• Lowpass filter design 

specification (all demos) 

fpass = 9600 Hz 

fstop = 12000 Hz 

fsampling = 48000 Hz 

Apass = 1 dB  

Astop = 80 dB  

• Under analysis menu 

Show magnitude response 

 

• FIR filter – equiripple 

Also called Remez Exchange or 

Parks-McClellan design 

Minimum order is 50 

Change Wstop to 80 

Order 100 gives Astop 100 dB 

Order 200 gives Astop 175 dB 

Order 300 does not converge –

how to get higher order filter? 

• FIR filter – Kaiser window 

Minimum order 101 meets spec 

MATLAB Demos Using fdatool #2 

• IIR filter – elliptic 

Use second-order sections 

Filter order of 8 meets spec 

Achieved Astop of ~80 dB  

Poles/zeros separated in angle  

– Zeros on or near unit circle 

indicate stopband  

– Poles near unit circle 

indicate passband  

– Two poles very close to 

unit circle  

• IIR filter – elliptic 

Use second-order sections 

Increase filter order to 9 

Eight complex symmetric 

poles and one real pole: 

 

 

 

 

Same observations on left  

 6 - 27 

MATLAB Demos Using fdatool #3 

• IIR filter – elliptic 

Use second-order sections 

Increase filter order to 20 

Two poles very close to unit 

circle but BIBO stable  

 

Use single section (Edit menu)  

– Oscillation frequency ~9 

kHz appears in passband 

– BIBO unstable: two pairs of 

poles outside unit circle  

IIR filter design algorithms return poles-zeroes-gain (PZK format): 

Impact on response when expanding polynomials in transfer 

function from factored to unfactored form 
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MATLAB Demos Using fdatool #4 

• IIR filter - constrained 

least pth-norm design 

Use second-order sections 

Limit pole radii ≤ 0.95  

Increase weighting in 

stopband (Wstop) to 10 

Filter order 8 does not meet 

stopband specification 

Filter order 10 does meet 

stopband specification 

Filter order might increase but worth it 

for more robust implementation 6 - 29 6 - 30 

Conclusion 

FIR Filters IIR Filters 

Implementation 

complexity (1) 

Higher Lower (sometimes by 

factor of four) 

Minimum order 

design 

Parks-McClellan (Remez 

exchange) algorithm (2) 

Elliptic design algorithm 

Stable? Always May become unstable 

when implemented (3) 

Linear phase If impulse response is 

symmetric or anti-

symmetric about midpoint 

No, but phase may made 

approximately linear over 

passband (or other band) 

(1) For same piecewise constant magnitude specification 

(2) Algorithm to estimate minimum order for Parks-McClellan algorithm by 

      Kaiser may be off by 10%.  Search for minimum order is often needed. 

(3) Algorithms can tune design to implementation target to minimize risk 

6 - 31 

Conclusion 

• Choice of IIR filter structure matters for both 

analysis and implementation 

• Keep roots computed by filter design algorithms 

Polynomial deflation (rooting) reliable in floating-point 

Polynomial inflation (expansion) may degrade roots 

• More than 20 IIR filter structures in use 

Direct forms and cascade of biquads are very common choices 

• Direct form IIR structures expand zeros and poles 

May become unstable for large order filters (order > 12) due 

to degradation in pole locations from polynomial expansion 

6 - 32 

Conclusion 

• Cascade of biquads (second-order sections) 

Only poles and zeros of second-order sections expanded 

Biquads placed in order of ascending quality factors 

Optimal ordering of biquads requires exhaustive search 

• When filter order is fixed, there exists no solution, 

one solution or an infinite number of solutions 

• Minimum order design not always most efficient 

Efficiency depends on target implementation 

Consider power-of-two coefficient design 

Efficient designs may require search of infinite design space 
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Lecture 7 

Interpolation and Pulse Shaping 

7 - 2 

Outline 

• Discrete-to-continuous conversion 

• Interpolation 

• Pulse shapes 

Rectangular 

Triangular 

Sinc  

Raised cosine 

• Sampling and interpolation demonstration 

• Conclusion 

7 - 3 

Data Conversion 

• Analog-to-Digital Conversion 

Lowpass filter has 
stopband frequency 
less than ½ fs to reduce 
aliasing due to sampling 
(enforce sampling theorem)  

• Digital-to-Analog Conversion 

Discrete-to-continuous 
conversion could be as 
simple as sample and hold 

Lowpass filter has stopband 
frequency less than ½ fs  to 
reduce artificial high frequencies 

Analog 

Lowpass 

Filter 

Discrete to 

Continuous 

Conversion 

fs 

Lecture 7 

Analog 

Lowpass 

Filter 

 

Quantizer 

 
Sampler at 

sampling 

rate of f s 

Lecture 8 Lecture 4 
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Discrete-to-Continuous Conversion 

• Input: sequence of samples y[n] 

• Output: smooth continuous-time function obtained 
through interpolation (by “connecting the dots”) 

If  f0 < ½ fs , then   
 
 
would be converted to 

 

 

Otherwise, aliasing has occurred, and the converter would 
reconstruct a cosine wave whose frequency is equal to the 
aliased positive frequency that is less than ½ fs 

       2cos][  0  nTfA ny s

       2cos)(~
0  tfA ty

1 2 

3 4 5 6 7 
n 

)(~ ty

][ny
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Discrete-to-Continuous Conversion 

• General form of interpolation is sum of weighted 

pulses  

 

Sequence y[n] converted into continuous-time signal that is an 

approximation of y(t) 

Pulse function p(t) could be rectangular, triangular, parabolic, 

sinc, truncated sinc, raised cosine, etc. 

Pulses overlap in time domain when pulse duration is greater 

than or equal to sampling period Ts 

Pulses generally have unit amplitude and/or unit area 

Above formula is related to discrete-time convolution 







n

s nTtpnyty )   ( ][)(~
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Interpolation From Tables 

• Using mathematical tables of 

numeric values of functions to 

compute a value of the function 

• Estimate f(1.5) from table 

Zero-order hold: take value to be f(1) 

to make f(1.5) = 1.0 (“stairsteps”) 

Linear interpolation: average values of 

nearest two neighbors to get f(1.5) = 2.5  

Curve fitting: fit four points in table to 

polynomal a0 + a1 x + a2 x
2 + a3 x

3  

which gives f(1.5) = x2 = 2.25 

x f(x) 

0 0.0 

1 1.0 

2 4.0 

3 9.0 

x 

0 1 2 3 

1 

4 

9 )(
~

xf
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Rectangular Pulse 

• Zero-order hold 

Easy to implement in hardware or software 
 

 

 

The Fourier transform is 

 

 

In time domain, no overlap between p(t) and adjacent pulses 
p(t - Ts) and p(t + Ts)  

In frequency domain, sinc has infinite two-sided extent; hence, 
the spectrum is not bandlimited 



















otherwise0
2

1

2

1
 if1

rect)( ss

s

TtT

T

t
tp

 
 
x

x
x

Tf

Tf
TTfTfP

s

s
sss

sin
)(sinc    where

  

)  sin(
  sinc )( 






t 

1 

p(t) 

-½ Ts ½ Ts 
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Sinc Function 

 

 

 

 

 

Even function (symmetric at origin) 

Zero crossings at 

Amplitude decreases proportionally to 1/x 

 
 

it?  handle    toHow  0.  to

goingboth    arer  denominato

and numerator  0, As

sinc(0)?  compute    toHow

sin
sinc





x

x

x
x

0 

1 

x 

sinc(x) 

  2 3 2 3 

... ,3 ,2 ,  x
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Triangular Pulse 

• Linear interpolation 

It is relatively easy to implement in hardware or software, 
although not as easy as zero-order hold 

 

 

Overlap between p(t) and its adjacent pulses p(t - Ts) and 
p(t + Ts) but with no others 

• Fourier transform is 

How to compute this?  Hint: Triangular pulse is equal to 1 / Ts 
times the convolution of rectangular pulse with itself 

In frequency domain, sinc2(f Ts) has infinite two-sided extent; 
hence, the spectrum is not bandlimited 



















otherwise0

 if
||

1
)( ss

s
s

TtT
T

t

T

t
tp

 ss TfTfP  sinc )( 2

t 

1 

p(t) 

-Ts Ts 
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Sinc Pulse 

• Ideal bandlimited interpolation 

 

 

 

In time domain, infinite overlap between other pulses  

Fourier transform has extent f  [-W, W], where 

P(f) is ideal lowpass frequency response with bandwidth W  

In frequency domain, sinc pulse is bandlimited 

• Interpolate with infinite extent pulse in time?  

Truncate sinc pulse by multiplying it by rectangular pulse 

Causes smearing in frequency domain (multiplication in time 
domain is convolution in frequency domain) 

t
T

t
T

t
T

tp

s

s

s




 


















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sinc)( 









ss T

f

T
fP

 
rect 

1
)(

sT
W

 2

1

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Raised Cosine Pulse: Time Domain 

• Pulse shaping used in communication systems 

 

 

 

 

W is bandwidth of an  
ideal lowpass response 

  [0, 1] rolloff factor 

Zero crossings at 
t =  Ts ,  2 Ts , … 

• See handout G in reader on raised cosine pulse 

 
222    161

   2cos
  

 
sinc    )(

tW

tW

T

t
tp

s 















ideal lowpass filter 

impulse response 

Attenuation by 1/t2 for 

large t to reduce tail 
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Raised Cosine Pulse Spectra 

• Pulse shaping used in communication systems 

Bandwidth increased 

by factor of (1 + ): 

(1 + ) W = 2 W – f1 

f1 marks transition from 

passband to stopband 

 

 

 

 

 

Bandwidth generally scarce in communication systems 

 
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Sampling and Interpolation Demo 

• DSP First, Ch. 4, Sampling and interpolation, 
http://www.ece.gatech.edu/research/DSP/DSPFirstCD/ 

Sample sinusoid y(t) to form y[n] 

Reconstruct sinusoid using 

rectangular, triangular, or 

truncated sinc pulse p(t) 

• Which pulse gives the best reconstruction? 

• Sinc pulse is truncated to be four sampling periods 

long.  Why is the sinc pulse truncated? 

• What happens as the sampling rate is increased? 







n

s nTtpnyty )   ( ][)(~
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Conclusion 

• Discrete-to-continuous time conversion involves 

interpolating between known discrete-time samples 

y[n] using pulse shape p(t) 

 

• Common pulse shapes 

Rectangular for same-and-hold interpolation 

Triangular for linear interpolation 

Sinc for optimal bandlimited linear interpolation but impractical 

Truncated raised cosine for practical bandlimited interpolation 

• Truncation causes smearing in frequency domain 







n

s nTtpnyty )   ( ][)(~

1 2 

3 4 5 6 7 
n 
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http://www.ece.gatech.edu/research/DSP/DSPFirstCD/visible/chapters/4samplin/demos/pulses/index.htm
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Lecture 8 

Quantization 

8 - 2 

Outline 

• Introduction 

• Uniform amplitude quantization 

• Audio 

• Quantization error (noise) analysis 

• Noise immunity in communication systems 

• Conclusion 

• Digital vs. analog audio (optional) 

8 - 3 

Resolution 

• Human eyes 

Sample received light on 2-D grid  

Photoreceptor density in retina 

falls off exponentially away 

from fovea (point of focus) 

Respond logarithmically to 

intensity (amplitude) of light 

• Human ears 

Respond to frequencies in 20 Hz to 20 kHz range 

Respond logarithmically in both intensity (amplitude) of 

sound (pressure waves) and frequency (octaves) 

Log-log plot for hearing response vs. frequency  

Foveated grid: 

point of focus in middle 

Data Conversion 

• Analog-to-Digital Conversion 

Lowpass filter has 
stopband frequency 
less than ½ fs to reduce 
aliasing due to sampling 
(enforce sampling theorem)  

System properties: Linearity 

                   Time-Invariance 

                              Causality 

                               Memory 

• Quantization is an interpretation of a continuous 

quantity by a finite set of discrete values 

Analog 

Lowpass 

Filter 

 

Quantizer 

 
Sampler at 

sampling 

rate of f s 

Lecture 8 Lecture 4 

8 - 4 
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Uniform Amplitude Quantization 

• Round to nearest integer (midtread) 

Quantize amplitude to levels {-2, -1, 0, 1} 

Step size D for linear region of operation 

Represent levels by {00, 01, 10, 11} or 

{10, 11, 00, 01} … 

Latter is two's complement representation 

• Rounding with offset (midrise) 

Quantize to levels {-3/2, -1/2, 1/2, 3/2} 

Represent levels by {11, 10, 00, 01} … 

Step size 

1
3

3

12

2

3

2

3

2














D

1
3

3

12

)2(1
2





D

x 

Q[x] 

1 -2 

-2 

1 

x 

Q[x] 

1 -2 -1 

1 

2 
Used in 

slide 8-10 
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Handling Overflow 

• Example: Consider set of integers {-2, -1, 0, 1}  

Represented in two's complement system {10, 11, 00, 01}. 

Add (–1) + (–1) + (–1) + 1 + 1 

Intermediate computations are – 2, 1, –2, –1 for wraparound 
arithmetic and –2, –2, –1, 0 for saturation arithmetic 

• Saturation: When to use it? 

If input value greater than maximum, 
set it to maximum; if less than minimum, set it to minimum 

Used in quantizers, filtering, other signal processing operators 

• Wraparound: When to use it? 

Addition performed modulo set of integers 

Used in address calculations, array indexing 

Native support in 

MMX and DSPs 

Standard two’s 

complement 

behavior 

8 - 7 

Audio Compact Discs (CDs) 

• Analog lowpass filter 

Passband 0–20 kHz 

Transition band 20–22 kHz 

Stopband frequency at 22 kHz (i.e. 10% rolloff) 

Designed to control amount of aliasing that occurs 

(and hence called an anti-aliasing filter) 

• Signal-to-noise ratio when quantizing to B bits 

1.76 dB + 6.02 dB/bit * B = 98.08 dB 

This loose upper bound is derived later in slides 8-10 to 8-14 

In practice, audio CDs have dynamic range of about 95 dB 

Analog 

Lowpass 

Filter 

 

Quantizer 

 
Sample at 

44.1 kHz 

16 

8 - 8 

Dynamic Range 

• Signal-to-noise ratio in dB 

 

 

 

• For linear systems, 

dynamic range equals SNR 

• Lowpass anti-aliasing filter for audio CD format 

Ideal magnitude response of 0 dB over passband 

Astopband = 0 dB  Noise Power in dB = -98.08 dB  

Power Noiselog 10               

 Power   Signallog 10            

Power Noise

Power Signal
log 10SNR

10

10

10dB





Why 10 log10 ? 

For amplitude A, 

|A|dB = 20 log10 |A| 

With power P  |A|2 , 

PdB = 10 log10 |A|2 

PdB = 20 log10 |A| 
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Dynamic Range in Audio 

• Sound Pressure Level (SPL) 

Reference in dB SPL is 20 Pa 
(threshold of hearing) 

  40 dB SPL noise in typical living room 

120 dB SPL threshold of pain 

  80 dB SPL resulting dynamic range 

• Estimating dynamic range 

(a) Find maximum RMS output of the linear system with some 
specified amount of distortion, typically 1% 

(b)Find RMS output of system with small input signal (e.g. 
-60 dB of full scale) with input signal removed from output 

(c) Divide (b) into (a) to find the dynamic range 

Anechoic room  10 dB 

Whisper  30 dB  

Rainfall  50 dB  

Dishwasher  60 dB  

City Traffic  85 dB 

Leaf Blower  110 dB  

Siren 120 dB  

Slide by Dr. Thomas D. 

Kite, Audio Precision 

8 - 10 

Quantization Error (Noise) Analysis 

• Quantization output 

Input signal plus noise 

Noise is difference of 

output and input signals 

• Signal-to-noise ratio 

(SNR) derivation 

Quantize to B bits 

 

 

Quantization error 

• Assumptions 

m  (-mmax, mmax) 

Uniform midrise quantizer 

Input does not overload 

quantizer 

Quantization error (noise) 

is uniformly distributed 

Number of quantization 

levels L = 2B is large 

enough 

so that 

QB[ · ] m v 

mvmmQq B  ][

LL

1

1

1




8 - 11 

Quantization Error (Noise) Analysis 

• Deterministic signal x(t) 

w/ Fourier transform X(f) 

Power spectrum is square of 

absolute value of magnitude 

response (phase is ignored) 

 

Multiplication in Fourier domain 

is convolution in time domain 

Conjugation in Fourier domain is 

reversal & conjugation in time 

 

• Autocorrelation of x(t) 

 

Maximum value (when it 

exists) is at Rx(0) 

Rx(t) is even symmetric, 

i.e. Rx(t) = Rx(-t)  

 

)( )()()( *2
fXfXfXfPx 

   )(*)( )( )( ** tt  xxFfXfX

 )(*)()( * ttt  xxRx

t 

1 

x(t) 

0 Ts 

t 

Rx(t) 

-Ts Ts 

Ts 

8 - 12 

Quantization Error (Noise) Analysis 

• Two-sided random signal n(t) 

Fourier transform may not exist, but power spectrum exists 

 

 

For zero-mean Gaussian random process n(t) with variance s2 

 

• Estimate noise power 

spectrum in Matlab 

  )(  )( )( )( 2* tstt  tntnERn

   )( )( tnn RFfP 

N = 16384;    % finite no. of samples 

gaussianNoise = randn(N,1); 

plot( abs(fft(gaussianNoise)) .^ 2 ); 

approximate 

noise floor 

  



 dttntntntnERn  )( )( )( )( )( ** ttt

  )(*)( )( )( )( )( )( *** ttttt  



nndttntntntnERn

  0  when  0 )( )( )( *  ttt tntnERn

2)( sfPn
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Quantization Error (Noise) Analysis 

• Quantizer step size 

 

• Quantization error 

 

q is sample of zero-mean 

random process Q 

q is uniformly distributed 

• Input power: Paverage,m 

 

 

 

 

 

 

SNR exponential in B 

Adding 1 bit increases SNR 

by factor of 4 

• Derivation of SNR in 

deciBels on next slide 

L

m

L

m maxmax  2

1

 2



D

22

D


D
 q

 


B

Q

zero

QQ

m

QE

22

max

2
2

222

2  
3

1

12

  


D





s

s

B

Q m

PP
2

2

max

maverage,

2

maverage,
2 

3
SNR

 PowerNoise

 PowerSignal
SNR













s
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Quantization Error (Noise) Analysis 

• SNR in dB = constant + 6.02 dB/bit * B 

 

 

 

 

• What is maximum number of bits of resolution for 

Audio CD signal with SNR of 95 dB 

TI TLV320AIC23B stereo codec used on TI DSP board 

– ADC 90 dB SNR (14.6 bits) and 80 dB THD (13 bits) page 2-2  

– DAC has 100 dB SNR (16 bits) and 88 dB THD (14.3 bits) page 2-3  

 

   

    BmP

mP

m

P
B

 02.6log 20log 10477.0

)2(logB 20log 20log 103log 10

 2 
3

log 10SNR log 10

max10maverage,10

10max10maverage,1010

2

2

max

maverage,

1010































1.76 and 1.17 are common constants used in audio 

Loose 

upper 

bound 

Total Harmonic Distortion (THD) 

• A measure of nonlinear distortion in a system 

Input is a sinusoidal signal of a single fixed frequency 

From output of system, the input sinusoid signal is subtracted 

SNR measure is then taken 

• In audio, sinusoidal signal is often at 1 kHz 

“Sweet spot” for human hearing – strongest response 

• Example 

“System” is ADC 

Calibrated DAC 

Signal is x(t) 

“Noise” is n(t) 

A/D 

Converter ~ 

1 kHz 

D/A 

Converter 

~ 

f s 

+ 

− 

Delay 

x(t) n(t) 

+ 

8 - 16 

Noise Immunity at Receiver Output 

• Depends on modulation, average transmit power, 
transmission bandwidth and channel noise 

• Analog communications (receiver output SNR) 

“When the carrier to noise ratio is high, an increase in the 
transmission bandwidth BT provides a corresponding 
quadratic increase in the output signal-to-noise ratio or 
figure of merit of the [wideband] FM system.” 
 – Simon Haykin, Communication Systems, 4th ed., p. 147. 

• Digital communications (receiver symbol error rate) 

“For code division multiple access (CDMA) spread spectrum 
communications, probability of symbol error decreases 
exponentially with transmission bandwidth BT” 
 – Andrew Viterbi, CDMA: Principles of Spread 
Spectrum Communications, 1995, pp. 34-36. 

http://www.ti.com/lit/ds/symlink/tlv320aic23b.pdf
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Conclusion 

• Amplitude quantization approximates its input by 

a discrete amplitude taken from finite set of values 

• Loose upper bound in signal-to-noise ratio of a 

uniform amplitude quantizer with output of B bits 

Best case: 6 dB of SNR gained for each bit added to quantizer 

Key limitation: assumes large number of levels L = 2B 

• Best case improvement in noise immunity for 

communication systems 

Analog: improvement quadratic in transmission bandwidth 

Digital: improvement exponential in transmission bandwidth 

8 - 18 

Digital vs. Analog Audio 

• An audio engineer claims to notice differences 

between analog vinyl master recording and the 

remixed CD version. Is this possible? 

When digitizing an analog recording, the maximum voltage 

level for the quantizer is the maximum volume in the track 

Samples are uniformly quantized (to 216 levels in this case 

although early CDs circa 1982 were recorded at 14 bits) 

Problem on a track with both loud and quiet portions, which 

occurs often in classical pieces 

When track is quiet, relative error in quantizing samples grows 

Contrast this with analog media such as vinyl which responds 

linearly to quiet portions  

Optional 

8 - 19 

Digital vs. Analog Audio 

• Analog and digital media response to voltage v 

 

 

 

• For a large dynamic range 

Analog media: records voltages above V0 with distortion 

Digital media: clips voltages above V0 to V0  

• Audio CDs use delta-sigma modulation 

Effective dynamic range of 19 bits for lower frequencies but 

lower than 16 bits for higher frequencies 

Human hearing is more sensitive at lower frequencies  
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Accumulator architecture 

Load-store architecture 

Memory-register architecture 

9-2 

Outline 

 C6000 instruction set architecture review 

 Vector dot product example 

 Pipelining 

 Finite impulse response filtering 

 Vector dot product example 

 Conclusion 

9-3 

Program RAM 
Data RAM 

or Cache 

Internal Buses 

Control Regs 

R
e

g
s
 (B

0
-B

1
5

) 

R
e

g
s
 (A

0
-A

1
5

) 

.D1 

.M1 

.L1 

.S1 

.D2 

.M2 

.L2 

.S2 

CPU 

Addr 

Data 

External 
Memory 

  -Sync 

  -Async 

DMA 
 

Serial Port 

 

Host Port 

 
Boot Load 

 

Timers 

 

Pwr Down 

 TI TMS320C6000 DSP Architecture (Review) 

Simplified 

Architecture 

C6200 fixed point 
C6400 fixed point 

C6700 floating point 

9-4 

TI TMS320C6000 DSP Architecture (Review) 

 Address 8/16/32 bit data + 64-bit data on C67x 

 Load-store RISC architecture with 2 data paths 

16 32-bit registers per data path (A0-A15 and B0-B15) 

48 instructions (C6200) and 79 instructions (C6700) 

 Two parallel data paths with 32-bit RISC units 

Data unit - 32-bit address calculations (modulo, linear)  

Multiplier unit - 16 bit x 16 bit with 32-bit result 

Logical unit - 40-bit (saturation) arithmetic & compares 

Shifter unit - 32-bit integer ALU and 40-bit shifter 

Conditionally executed based on registers A1-2 & B0-2 

Can work with two 16-bit halfwords packed into 32 bits 
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9-5 

TI TMS320C6000 DSP Architecture (Review) 

 .M multiplication unit 

16 bit x 16 bit signed/unsigned packed/unpacked 

 .L arithmetic logic unit 

Comparisons and logic operations (and, or, and xor) 

Saturation arithmetic and absolute value calculation 

 .S shifter unit 

Bit manipulation (set, get, shift, rotate) and branching 

Addition and packed addition 

 .D data unit  

Load/store to memory 

Addition and pointer arithmetic 

9-6 

C6000 Restrictions on Register Accesses 

 Function unit access to register files 

Data path 1 (2) units read/write A (B) registers 

Data path 2 (1) can read one A (B) register per instruction 

cycle with one-cycle latency 

Two simultaneous memory accesses cannot use registers 

of same register file as address pointers 

Limit of four 32-bit reads per register per inst. cycle 

 40-bit longs stored in adjacent even/odd registers 

Extended precision accumulation of 32-bit numbers 

Only one 40-bit result can be written per cycle  

40-bit read cannot occur in same cycle as 40-bit write 

4:1 performance penalty using 40-bit mode 

9-7 

Other C6000 Disadvantages 

 No ALU acceleration for bit stream manipulation 

50% computation in MPEG-2 decoder spent on variable 

length decoding on C6200 in C 

C6400 direct memory access controllers shred bit streams 

(for video conferencing & wireless basestations) 

 Branch in pipeline disables interrupts: 

Avoid branches by using conditional execution 

 No hardware protection against pipeline hazards: 

Programmer and tools must guard against it 

 Must emulate many conventional DSP features 

No hardware looping: use register/conditional branch 

No bit-reversed addressing: use fast algorithm by Elster 

No status register: only saturation bit given by .L units 

9-8 

FIR Filter 

 Difference equation (vector dot product) 

y(n) = 2 x(n) + 3 x(n - 1) + 4 x(n - 2) + 5 x(n - 3) 

y(n) 

x(n) 

3 4 2 5 

 Dot product of inputs vector and coefficient vector 

 Store input in circular buffer, coefficients in array 

Tapped 

delay line 







1

0

)()()(
N

i

inxiany Signal flow graph 

z
-1

 z
-1

 z
-1
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FIR Filter  

 Each tap requires 

Fetching data sample 

Fetching coefficient 

Fetching operand 

Multiplying two numbers 

Accumulating multiplication result 

Possibly updating delay line (see below) 

 Computing an FIR tap in one instruction cycle 

Two data memory and one program memory accesses 

Auto-increment or auto-decrement addressing modes 

Modulo addressing to implement delay line as circular buffer 

z-1 z-1 z-1 

One 

tap 

9-10 

Example: Vector Dot Product (Unoptimized) 

 A vector dot product is common in filtering 

Store a(n) and x(n) into an array of N elements 

 C6000 peaks at 8 RISC instructions/cycle 

For 300-MHz C6000, RISC instructions per sample 

300,000 for speech (sampling rate 8 kHz) 

  54,421 for audio CD (sampling rate 44.1 kHz) 

       230 for luminance NTSC digital video 

          (sampling rate 10,368 kHz) 

Generally requires hand coding for peak performance 





N

n

nxnaY
1

)()(

9-11 

Example: Vector Dot Product (Unoptimized) 

 Prologue 

 Initialize pointers: A5 for a(n), A6 for x(n), and A7 for Y 

Move number of times to loop (N) into A2 

Set accumulator (A4) to zero 

 Inner loop 

Put a(n) into A0 and x(n) into A1  

Multiply a(n) and x(n)  

Accumulate multiplication result into A4 

Decrement loop counter (A2) 

Continue inner loop if counter is not zero 

 Epilogue 

Store the result into Y 

Reg Meaning 

A0 

A1 
a(n ) 

x(n ) 

A2 

A3 

N  - n  

a(n ) x(n ) 

A4 

A5 

Y  

&a 

A6 

A7 
&x 

&Y  
 

 

Assuming 

coefficients & 

data are 16 

bits wide 

9-12 

Example: Vector Dot Product (Unoptimized) 

; clear A4 and initialize pointers A5, A6, and A7 

 MVK  .S1  40,A2 ; A2 = 40 (loop counter) 

loop LDH  .D1  *A5++,A0 ; A0 = a(n), H = halfword 

 LDH  .D1  *A6++,A1 ; A1 = x(n), H = halfword 

 MPY  .M1  A0,A1,A3 ; A3 = a(n) * x(n) 

 ADD  .L1  A3,A4,A4 ; Y = Y + A3 

 SUB  .L1  A2,1,A2 ; decrement loop counter 

[A2] B    .S1  loop ; if A2 != 0, then branch 

 STH  .D1  A4,*A7 ; *A7 = Y  

Coefficients a(n) 

Data x(n) 

Using A data path only 

Reg Meaning 

A0 

A1 
a(n) 

x(n) 

A2 

A3 

N - n 

a(n) x(n) 

A4 

A5 

Y 

&a 

A6 

A7 
&x 

&Y 
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Example: Vector Dot Product (Unoptimized) 

 MoVeKonstant 

MVK  .S 40,A2 ; A2 = 40 

Lower 16 bits of A2 are loaded  

 Conditional branch  

 [condition]  B   .S  loop  

 [A2] means to execute instruction if A2 != 0 (same as C 

language) 

Only A1, A2, B0, B1, and B2 can be used (not symmetric) 

 Loading registers 

LDH  .D  *A5, A0  ;Loads half-word into A0 from memory  

 Registers may be used as pointers (*A1++) 

 Implementation not efficient due to pipeline effects 
9-14 

Pipelining 

 CPU operations 

Fetch instruction from (on-chip) program memory 

Decode instruction 

Execute instruction including reading data values  

 Overlap operations to increase performance 

Pipeline CPU operations to increase clock speed over a 

sequential implementation 

Separate parallel functional units 

Peripheral interfaces for I/O do not burden CPU 

9-15 

Pipelining 

Managing Pipelines 

•compiler or programmer 

  (TMS320C6000) 

•pipeline interlocking 

  in processor (TMS320C30) 

•hardware instruction 

  scheduling 

Sequential (Motorola 56000) 

Pipelined (Most conventional DSP processors) 

Superscalar (Pentium, MIPS) 

Superpipelined (TMS320C6000) 

Fetch      Read   Execute Decode 

Fetch Decode    Execute 

Fetch Read   Execute Decode 

Fetch Read   Execute Decode 

9-16 

TMS320C6000 Pipeline 

 One instruction cycle every clock cycle 

 Deep pipeline 

7-11 stages in C62x: fetch 4, decode 2, execute 1-5 

7-16 stages in C67x: fetch 4, decode 2, execute 1-10 

 If a branch is in the pipeline, interrupts are disabled 

Avoid branches by using conditional execution 

 No hardware protection against pipeline hazards 

Compiler and assembler must prevent pipeline hazards 

 Dispatches instructions in packets 
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Program Fetch (F) 

 Program fetching consists of 4 phases 

Generate fetch address (FG) 

Send address to memory (FS) 

Wait for data ready (FW) 

Read opcode (FR) 

 Fetch packet consists of 8 32-bit instructions 

C6000 

Memory FG 
FS 

FW 

FR 

9-18 

Decode Stage (D) 

 Decode stage consists of two phases 

Dispatch instruction to functional unit (DP) 

 Instruction decoded at functional unit (DC) 

C6000 

Memory FG 
FS 

FW 

FR DC DP 

9-19 

Execute Stage (E) 

Type Description # Instr Delay 

ISC Single cycle 38 0 

IMPY Multiply 2 1 

LDx Load 3 4 

B Branch 1 5 
 

 

Execute 

Phase 
Description 

E1 ISC instructions completed 

E2 Int. mult. instructions completed 

E3  

E4  

E5 Load memory value into register 

E6 Branch to destination complete 
 

 

9-20 

Vector Dot Product with Pipeline Effects 

pipeline 

; clear A4 and initialize pointers A5, A6, and A7 

 MVK  .S1  40,A2 ; A2 = 40 (loop counter) 

loop LDH  .D1  *A5++,A0 ; A0 = a(n), H = halfword 

 LDH  .D1  *A6++,A1 ; A1 = x(n), H = halfword 

 MPY  .M1  A0,A1,A3 ; A3 = a(n) * x(n) 

 ADD  .L1  A3,A4,A4 ; Y = Y + A3 

 SUB  .L1  A2,1,A2 ; decrement loop counter 

[A2] B    .S1  loop ; if A2 != 0, then branch 

 STH  .D1  A4,*A7 ; *A7 = Y  

Load has a 

delay of four cycles 

Multiplication has a 

delay of 1 cycle 
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Fetch packet 

MVK 

LDH 

LDH 

MPY 

ADD 

SUB 

B 

STH 

 

(F1-4) 

 

 

F DP E1 

 

 

 

 
 

 

 

 

 

 

 

 

DC 

 

 

 

 

 

 

 

 

 

 

 

 

E2 E3 E4 E5 E6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (t) = 4 clock cycles 
9-22 

Dispatch 

 

 

 

 

F(2-5) 

 

 

 

 

 

 

 

F DP E1 

 

MVK 

LDH 

LDH 

MPY 

ADD 

SUB 

B 

STH 

 

 

 

DC 

 

 

 

 

 

 

 

 

 

 

 

 

E2 E3 E4 E5 E6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (t) = 5 clock cycles 

9-23 

Decode 

 

 

 

 

F(2-5) 

 

 

 

 

 

 

 

F DP E1 

 

 

LDH 

LDH 

MPY 

ADD 

SUB 

B 

STH 

 

 

 

DC 

 

MVK 

 

 

 

 

 

 

 

 

 

 

E2 E3 E4 E5 E6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (t) = 6 clock cycles 
9-24 

Execute (E1) 

 

 

 

 

F(2-5) 

 

 

 

 

 

 

 

F DP E1 

 

 

 

LDH 

MPY 

ADD 

SUB 

B 

STH 

 

 

 

DC 

 

 

LDH 

 

 

 

 

 

 

 

 

 

E2 E3 E4 E5 E6 

 

MVK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (t) = 7 clock cycles 
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Execute (MVK done LDH in E1)  

 

 

 

 

F(2-5) 

 

 

 

 

 

 

 

F DP E1 

 

 

 

 

MPY 

ADD 

SUB 

B 

STH 

 

 

 

DC 

 

 

 

LDH 

 

 

 

 

 

 

 

 

E2 E3 E4 E5 E6 
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Time (t) = 8 clock cycles 

MVK Done 

9-26 

Vector Dot Product with Pipeline Effects 

; clear A4 and initialize pointers A5, A6, and A7 

 MVK  .S1  40,A2 ; A2 = 40 (loop counter) 

loop LDH  .D1  *A5++,A0 ; A0 = a(n) 

 LDH  .D1  *A6++,A1 ; A1 = x(n) 

 NOP  4 

 MPY  .M1  A0,A1,A3 ; A3 = a(n) * x(n) 

 NOP 

 ADD  .L1  A3,A4,A4 ; Y = Y + A3 

 SUB  .L1  A2,1,A2 ; decrement loop counter 

[A2] B    .S1  loop ; if A2 != 0, then branch 

 NOP  5 

 STH  .D1  A4,*A7 ; *A7 = Y  

Assembler will automatically insert NOP instructions 

Assembler can also make sequential code parallel 

9-27 

Optimized Vector Dot Product on the C6000 

 Split summation into two summations 

 Prologue 

 Initialize pointers: A5 for a(n), B6 for x(n), A7 for y(n)  

Move number of times to loop (N) divided by 2 into A2 

 Inner loop 

Put a(n) and a(n+1) in A0 and 

x(n) and x(n+1) in A1 (packed data) 

Multiply a(n) x(n) and a(n+1) x(n+1)  

Accumulate even (odd) indexed 

terms in A4 (B4) 

Decrement loop counter (A2) 

 Store result 

Reg Meaning 

A0 

B1 
a(n) ||a(n+1) 

x(n) || x(n+1) 

A2 (N – n)/2 

A3 

B3 

a(n) x(n) 

a(n+1) x(n+1) 

A4 

B4 

yeven(n) 

yodd(n) 

A5 

B6 

A7 

&a 

&x 

&Y 
 

 

16-bit data/ 

coefficients 
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 FIR Filter Implementation on the C6000 

 MVK  .S1 0x0001,AMR ; modulo block size 2^2 

 MVKH .S1 0x4000,AMR ; modulo addr register B6 

 MVK  .S2 2,A2  ; A2 = 2 (four-tap filter) 

 ZERO .L1 A4  ; initialize accumulators 

 ZERO .L2 B4 

; initialize pointers A5, B6, and A7 

fir LDW  .D1  *A5++,A0 ; load a(n) and a(n+1) 

 LDW  .D2  *B6++,B1 ; load x(n) and x(n+1) 

 MPY  .M1X A0,B1,A3 ; A3 = a(n) * x(n) 

 MPYH .M2X A0,B1,B3 ; B3 = a(n+1) * x(n+1) 

 ADD  .L1  A3,A4,A4 ; yeven(n) += A3 

 ADD  .L2  B3,B4,B4 ; yodd(n) += B3 

[A2] SUB  .S1  A2,1,A2 ; decrement loop counter 

[A2] B    .S2  fir  ; if A2 != 0, then branch 

 ADD  .L1  A4,B4,A4 ; Y = Yodd + Yeven 

 STH  .D1  A4,*A7 ; *A7 = Y  

Throughput of two multiply-accumulates per instruction cycle  
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Conclusion 

 Conventional digital signal processors 

High performance vs. power consumption/cost/volume 

Excel at one-dimensional processing 

Have instructions tailored to specific applications 

 TMS320C6000 VLIW DSP 

High performance vs. cost/volume 

Excel at multidimensional signal processing 

Maximum of 8 RISC instructions per cycle 
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Conclusion 

 Web resources 

comp.dsp news group: FAQ 

www.bdti.com/faq/dsp_faq.html 

embedded processors and systems: www.eg3.com 

on-line courses and DSP boards: www.techonline.com 

 References 
R. Bhargava, R. Radhakrishnan, B. L. Evans, and L. K. John, 

“Evaluating MMX  Technology Using DSP and Multimedia 

Applications,” Proc. IEEE Sym. Microarchitecture, pp. 37-46, 

1998.http://www.ece.utexas.edu/~ravib/mmxdsp/ 

B. L. Evans, “EE345S Real-Time DSP Laboratory,” UT Austin. 
http://www.ece.utexas.edu/~bevans/courses/realtime/ 

B. L. Evans, “EE382C Embedded Software Systems,” UT 

Austin.http://www.ece.utexas.edu/~bevans/courses/ee382c/ 

9-31 

FIR Filter on a TMS320C5000 

COEFFP .set 02000h       ; Program mem address 

X      .set 037Fh        ; Newest data sample 

LASTAP .set 037FH        ; Oldest data sample 

 

       … 

       LAR AR3, #LASTAP    ; Point to oldest sample 

       RPT #127            ; Repeat next inst. 126 times 

       MACD COEFFP, *-     ; Compute one tap of FIR 

       APAC  

       SACH Y,1            ; Store result -- note shift  

Coefficients 

Data 

Supplemental Slides  
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TMS320C6200 vs. StarCore S140 

Feature C6200 S140 

Functional Units 

  multipliers 

  adders 

  other 

8 

2 

6 

-- 

16 

4 

4 

8 

Instructions/cycle 

  RISC instructions * 

  conditionals 

8 

8 

8 

6 + branch 

11 

2 

Instruction width (bits) 256 128 

Total instructions 48 180 

Number of registers  32 51 

Register size (bits) 32 40 

Accumulation precision (bits) ** 32 or 40 40 

Pipeline depth (cycle) 7-11 5 
 

 
*   Does not count equivalent RISC operations for modulo addressing 

** On the C6200, there is a performance penalty for 40-bit accumulation   

Supplemental Slides  
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Image Halftoning 

• Handout J on noise-shaped feedback coding 

Different ways to perform one-bit quantization (halftoning) 

Original image has 8 bits per pixel original image (pixel values 
range from 0 to 255 inclusive) 

• Pixel thresholding: Same threshold at each pixel 

Gray levels from 128-255 become 1 (white) 

Gray levels from 0-127 become 0 (black)  

• Ordered dither: Periodic space-varying thresholding 

Equivalent to adding spatially-varying dither (noise) 
at input to threshold operation (quantizer) 

Example uses 16 different thresholds in a 4  4 mask 

Periodic artifacts appear as if screen has been overlaid  

No noise 

shaping 

No noise 

shaping 

10 - 3 

Image Halftoning 

• Error diffusion: Noise-shaping feedback coding 

Contains sharpened original plus high-frequency noise 

Human visual system less sensitive to high-frequency noise 
(as is the auditory system) 

Example uses four-tap Floyd-Steinberg noise-shaping 
(i.e. a four-tap IIR filter) 

• Image quality of halftones 

Thresholding (low): error spread equally over all freq. 

Ordered dither (medium): resampling causes aliasing 

Error diffusion (high): error placed into higher frequencies 

• Noise-shaped feedback coding is a key principle in 

modern A/D and D/A converters  
10 - 4 

Digital Halftoning Methods 

Clustered Dot Screening 

AM Halftoning 

Blue-noise Mask 

FM Halftoning 1993 

Dispersed Dot Screening 

FM Halftoning 

Green-noise Halftoning 

AM-FM Halftoning 1992 

Error Diffusion 

FM Halftoning 1975 

Direct Binary Search 

FM Halftoning 1992 

mailto:tomk@audioprecision.com


2 

10 - 5 

Screening (Masking) Methods 

• Periodic array of thresholds smaller than image 

Spatial resampling leads to aliasing (gridding effect) 

Clustered dot screening produces a coarse image that is more 
resistant to printer defects such as ink spread 

Dispersed dot screening has higher spatial resolution 

256*
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Error Diffusion 

Halftone 

Grayscale Error Diffusion 

• Shapes quantization error (noise) 

into high frequencies 

• Type of sigma-delta modulation 

• Error filter h(m) is lowpass 

current pixel 

weights 

3/16 

7/16 

5/16 1/16 

b(m) 
+ 

_ 

_ 

+ e(m) 

x(m) 

difference threshold 

compute 

error (noise) 

shape 

error (noise) 

u(m) 

)(mh

Floyd-Steinberg filter h(m) 

Spectrum 
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Old-Style A/D and D/A Converters 

• Used discrete components (before mid-1980s) 

• A/D Converter 

Lowpass filter has 
stopband frequency 
of ½ fs 

• D/A Converter 

Lowpass filter has 
stopband frequency 
of ½ fs 

Discrete-to-continuous 
conversion could be as 
simple as sample and hold 

Analog 

Lowpass 

Filter 

 

Quantizer 

 
Sampler at 

sampling 

rate of f s 

Analog 

Lowpass 

Filter 

Discrete to 

Continuous 

Conversion 

fs 
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A B 

C D 
Pohlmann Fig. 3-5 Two examples of passive Chebyshev lowpass filters and their 

frequency responses. A. A passive low-order filter schematic. B. Low-order filter 

frequency response. C. Attenuation to -90 dB is obtained by adding sections to 

increase the filter’s order.  D. Steepness of slope and depth of attenuation are improved. 

Cost of Multibit Conversion Part I: 

Brickwall Analog Filters 
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Pohlmann Fig. 4-3 An example of a low-level linearity measurement of a 

D/A converter showing increasing non-linearity with decreasing amplitude. 

Cost of Multibit Conversion Part II: 

Low- Level Linearity 

10 - 10 

Solutions 

• Oversampling eases analog filter design 

Also creates spectrum to put noise at inaudible frequencies 

• Add dither (noise) at quantizer input 

Breaks up harmonics (idle tones) caused by quantization 

• Shape quantization noise into high frequencies 

Auditory system is less sensitive at higher frequencies 

• State-of-the-art in 20-bit/24-bit audio converters 

Oversampling 64x  256x  512x 

Quantization 8 bits  6 bits  5 bits 

Additive dither 2-bit  PDF 2-bit  PDF 2-bit  PDF 

Noise shaping 5th  / 7th order  5th  / 7th order  5th  / 7th order 

Dynamic range 110 dB  120 dB  120 dB 

10 - 11 

  

 

A. A brick-wall filter must  

sharply bandlimit the 

output spectra. 

  

B. With four-times 

oversampling, images 

appear only at the 

oversampling frequency. 

 

C. The output sample/hold 

(S/H) circuit can be used to 

further suppress the 

oversampling spectra. 

Solution 1: Oversampling 

Pohlmann Fig. 4-15 Image spectra of nonoversampled and oversampled reconstruction. 

Four times oversampling simplifies reconstruction filter. 

10 - 12 

Pohlmann Fig. 2-8 Adding dither at quantizer input alleviates effects of quantization error. 

A. An undithered input signal with amplitude on the order of one LSB. 

B. Quantization results in a coarse coding over two levels. C. Dithered input signal. 

D. Quantization yields a PWM waveform that codes information below the LSB. 

Solution 2: Add Dither 
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A  A 1 kHz sinewave with amplitude of 

one-half LSB without dither produces a 

square wave.  

C Modulation carries the encoded 

sinewave information, as can be seen 

after 32 averagings. 

B Dither of one-third LSB rms amplitude is 

added to the sinewave before quantization, 

resulting in a PWM waveform. 

D Modulation carries the encoded 

sinewave information, as can be seen after 

960 averagings. 

Pohlmann Fig. 2-9 Dither permits encoding of information below the least significant bit. 
Vanderkooy and Lipshitz. 

Time Domain Effect of Dither 

10 - 14 

undithered dithered undithered dithered 

Pohlmann Fig. 2-10 Computer-simulated quantization of a low-level 1- kHz sinewave 

without, and with dither. A. Input signal. B. Output signal (no dither). C. Total error signal 

(no dither). D. Power spectrum of output signal (no dither). E. Input signal. F. Output signal 

(triangualr pdf dither). G. Total error signal (triangular pdf dither). H. Power spectrum of 

output signal (triangular pdf dither) Lipshitz, Wannamaker, and Vanderkooy 

Frequency Domain Effect of Dither 

10 - 15 

We have a two-bit DAC and four-bit input signal words.  Both are unsigned. 

1 sample 

delay 

Input 

signal 

words 

To 

DAC 

4 2 

2 2 

Assume input = 1001 constant 

             Adder Inputs              Output 

Time  Upper  Lower     Sum   to DAC 

   1      1001       00        1001     10 

   2      1001       01        1010     10 

   3      1001       10        1011     10 

   4      1001       11        1100     11 
Periodic 

Average output = 1/4(10+10+10+11)=1001 

4-bit resolution at DC! 

Going from 4 bits down to 2 bits increases 

noise by ~ 12 dB.  However, the shaping 

eliminates noise at DC at the expense of  

increased noise at high frequency. 

added 

noise 

f 

12 dB 

(2 bits) 

If signal is in 

this band, you are 

better off! 

Let’s  hope this is 

above the passband! 

(oversample) 

Solution 3: Noise Shaping Putting It All Together 

• A/D converter samples at fs and quantizes to B bits 

• Sigma delta modulator implementation 

Internal clock runs at M fs 

FIR filter expands wordlength of b[m] to B bits 

b[m] + 

_ 

_ 

+ e[m] 

v[m] 

][mh

dither 

quantizer 

x[m] 
FIR 

Filter 

x(t) 
Sample 

and hold 

 

  M 
 

M fs 

10 - 16 
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Solutions 

• Oversampling eases analog filter design 

Also creates spectrum to put noise at inaudible frequencies 

• Add dither (noise) at quantizer input 

Breaks up harmonics (idle tones) caused by quantization 

• Shape quantization noise into high frequencies 

Auditory system is less sensitive at higher frequencies 

• State-of-the-art in 20-bit/24-bit audio converters 

Oversampling 64x  256x  512x 

Quantization 8 bits  6 bits  5 bits 

Additive dither 2-bit  PDF 2-bit  PDF 2-bit  PDF 

Noise shaping 5th  / 7th order  5th  / 7th order  5th  / 7th order 

Dynamic range 110 dB  120 dB  120 dB 
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Digital 4x Oversampling Filter 

 

 

• Upsampling by 4 (denoted by   4) 

For each input sample, output the input 

sample followed by three zeros 

Four times the samples on output as input 

Increases sampling rate by factor of 4 

• FIR filter performs interpolation 

Multiplying 16-bit data and 8-bit coefficient: 24-bit result 

Adding two 24-bit numbers: 25-bit result 

Adding 16 24-bit numbers: 28-bit result 

Digital 4x Oversampling Filter 

16 bits 

44.1 kHz 

28 bits 

176.4 kHz 4 FIR Filter 16 bits 

176.4 kHz 

1 2 

Input to Upsampler by 4 

n 

n’ 

Output of Upsampler by 4 

1 2 3 4 5 6 7 8 

1 2 

Output of FIR Filter 

3 4 5 6 7 8 

n’ 
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Pohlmann Fig. 4-17 Noise shaping following oversampling decreases in-band quantization 

error.  A. Simple noise-shaping loop. B. Noise shaping suppresses noise in the audio band; 

boosted noise outside the audio band is filtered out.  

Oversampling Plus Noise Shaping 

176 kHz 

mailto:tomk@audioprecision.com
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Pohlmann Fig. 16-4 With 1-bit conversion, quantization noise is quite high. 

In-band noise is reduced with oversampling. With noise shaping, quantization 

noise is shifted away from the audio band, further reducing in-band noise. 

Oversampling and Noise Shaping 
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Pohlmann Fig. 16- 6 Higher orders of noise shaping result 

in more pronounced shifts in requantization noise. 

Oversampling and Noise Shaping 
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Discrete time:   11

1


 z

+ 

_ 

+ x y 
Assume quantizer adds 

uncorrelated white noise n 

(model nonlinearity as 

additive noise) 

)(
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1
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



 








Higher-order modulators 

•  Add more integrators 

•  Stability is a major issue 

First-Order Delta-Sigma Modulator 

Continuous time:  
s

1


)(
)()(

)( sN
s

sYsX
sY 




)(
1

    )(
1

1
)( sN

s

s
sX

s
sY







 

1 1 

Lowpass Highpass 

Lowpass Highpass 

STF NTF 

signal transfer 

function (STF) 
noise transfer 

function (NTF) 
signal transfer 

function (STF) 

noise transfer 

function (NTF) 
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Noise-Shaped Feedback Coder 

• Type of sigma-delta modulator (see slide 9-6) 

• Model quantizer as LTI [Ardalan & Paulos, 1988] 

Scales input signal by a gain by K (where K > 1) 

Adds uncorrelated noise n(m) 

K 

us(m) 

Signal Path 

K us(m) 

un(m) 

+ 

n(m) 

un(m) + n(m) 

 Noise Path 

 
)(1

)(
zH

zN

zB
NTF n 

 
   zHK

K

zX

zB
STF s

 11)( 


Q[·] 

u(m) b(m) { 
NTF is highpass        H(z) is lowpass        STF passes 

low frequencies and amplifies high frequencies  

 



3 

11 - 9 

Pohlmann Fig. 16-13  Reproduction of a 20 kHz waveform showing 

the effect of  third-order noise shaping.  Matsushita Electric 

Third-order Noise Shaper Results 
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19-Bit Resolution from a CD: Part I 

Poh1man Fig. 6-27 An 

example of noise shaping 

showing a 1 kHz sinewave 

with -90 dB amplitude; 

measurements are made with 

a 16 kHz lowpass filter. 

A. Original 20 bit recording. 

B. Truncated 16 bit signal. 

C. Dithered 16 bit signal. 

D. Noise shaping preserves 

information in lower 4 bits. 
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19-Bit Resolution from a CD: Part II 

Pohlmann Fig. 16-28 An 

example of noise shaping 

showing the spectrum of a 1 

kHz, -90 dB sinewave (from 

Fig. 16-27). 

A. Original 20-bit recording 

B. Truncated 16-bit signal 

C. Dithered 16-bit signal 

D. Noise shaping reduces low 

and medium frequency noise. 

Sony’s Super Bit Mapping 

uses psycho-acoustic noise 

shaping (instead of sigma-

delta modulation) to convert 

studio masters recorded at 20-

24 bits/sample into CD audio 

at 16 bits/sample.  All Dire 

Straits albums are available in 

this format. 
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Open Issues in Audio CD Converters 

• Oversampling systems used in 44.1 kHz converters 

Digital anti-imaging filters (anti-aliasing filters in the case of 
A/D converters) can be improved (from paper by J. Dunn) 

• Ripple: Near-sinusoidal ripple of passband can be 

interpreted as due to sum of original signal and 
smaller pre- and post-echoes of original signal 

Ripple magnitude and no. of cycles in passband correspond to 
echoes up to 0.8 ms either side of direct signal and between -
120 and -50 dB in amplitude relative to direct 

Post-echo masked by signal, but pre-echo is not masked 

Solution is to reduce passband ripple. Human hearing is no 
better than 0.1 dB at its most sensitive, but associated pre-
echo from 0.1 dB passband ripple is audible. 
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Open Issues in Audio CD Converters 

• Stopband rejection (A/D Converter) 

Anti-aliasing filters are often half-band type with only 6 dB 
attenuation at 1/2 of sampling rate. 

Do not adequately reject frequencies that will alias. 

Ideal filter rolls off at 20 kHz and attenuates below the noise 
floor by 22.05 kHz, but many converter designs do not 
achieve this 

• Stopband rejection (D/A Converter) 

Same as for A/D converters 

Additional problem: intermodulation products in passband. 
Signal from the D/A converter fed to a (power) amplifier 
which may have nonlinearity, especially at high frequencies 
where the open loop gain is falling. 
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Audio-Only DVDs 

• Sampling rate of 96 kHz with resolution of 24 bits 

Dynamic range of 6.02 B + 1.17 = 145.17 dB 

Marketing ploy to get people to buy more disks 

• Cannot provide better performance than CD 

Hearing limited to 20 kHz: sampling rates > 40 kHz wasted 

Dynamic range in typical living room is 70 dB SPL 
Noise floor 40 dB Sound Pressure Level (SPL) 

Most loudspeakers will not produce even 110 dB SPL 

Dynamic range in a quiet room less than 80 dB SPL 

No audio A/D or D/A converter has true 24-bit performance 

• Why not release a tiny DVD with the same capacity 

as a CD, with CD format audio on it?  
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Super Audio CD (SACD) Format 

• One-bit digital audio bitstream 

Being promoted by Sony and Philips (CD patents expired) 

SACD player uses a green laser (rather than CD's infrared) 

Dual-layer format for play on an ordinary CD player 

• Direct Stream Digital (DSD) bitstream 

Produced by 1-bit 5th-order sigma-delta converter operating at 
2.8224 MHz (oversampling ratio of 64 vs. CD sampling) 

Problems with 1-bit converters: distortion, noise modulation, 
and high out-of-band noise power. 

• Problems with 1-bit stream (S. Lipshitz, AES 2000) 

Cannot properly add dither without overloading quantizer 

Suffers from distortion, noise modulation, and idle tones 
11 - 16 

Conclusion on Audio Formats 

• Audio CD format 

Fine as a delivery format 

Converters have some room for improvement 

• Audio DVD format 

Not justified from audio perspective 

Appears to be a marketing ploy 

• Super Audio CD format 

Good specifications on paper 

Not needed: conventional audio CD is more than adequate 

1-bit quantization cannot be made to work correctly 

Another marketing ploy (17-year patents expiring) 
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Channel Impairments 
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Outline 

• Analog communication systems 

• Channel impairments 

• Hybrid communication systems 

• Analog pulse amplitude modulation 
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Communication System Structure 

• Information sources 

Voice, music, images, video, and data (baseband signals) 

• Transmitter 

Signal processing block lowpass filters message signal 

Carrier circuits block upconverts baseband signal and bandpass 

filters to enforce transmission band 

m(t) 

Signal 

Processing 

Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Signal 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

)(ˆ tm

CHANNEL 

Communication Systems 

baseband baseband bandpass bandpass baseband baseband 
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Communication Channel 

• Transmission medium  

Wireline (twisted pair, coaxial, fiber optics)  

Wireless (indoor/air, outdoor/air, underwater, space)  

• Propagating signals degrade over distance 

• Repeaters can strengthen signal and reduce noise  

m(t) 

Signal 

Processing 

Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Signal 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

)(ˆ tm

CHANNEL 

Review 

baseband baseband bandpass bandpass baseband baseband 
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Wireline Channel Impairments 

• Linear time-invariant effects 

Attenuation: dependent on channel frequency response 

Spreading: finite extent of each transmitted pulse increases 

Th t 

)(th

1 

Tb t 

)(1 tx

A 

Tb 

)(0 tx

-A 

Model channel as 

LTI system with 

impulse response 

h(t) 

Communication 

Channel 

input output 

x(t) y(t) t 

)(0 ty

-A Th 

t 
Th+Tb Th 

Assume that Th < Tb 

t 

)(1 ty

Th+Tb Th 

A Th 

Bit of ‘0’ or ‘1’ 

Wireline Channel Impairments 

• Linear time-varying effects 

Phase jitter: sinusoid at same fixed frequency experiences 
different phase shifts when passing through channel 

Visualize phase jitter in periodic waveform by plotting it over 
one period, superimposing second period on the first, etc. 

• Nonlinear effects 

Harmonics: due to quantization, voltage rectifiers, squaring 
devices, power amplifiers, etc. 

Additive noise: arises from many sources in transmitter, 
channel, and receiver (e.g. thermal noise) 

Additive interference: arises from other systems operating in 
transmission band (e.g. microwave oven in 2.4 GHz band) 
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Wireless Channel Impairments 

• Same as wireline channel impairments plus others 

• Fading: multiplicative noise 

Talking on a mobile phone and reception fades in and out 

Represented as time-varying gain that follows a particular 

probability distribution 

• Simplified channel model for fading, LTI effects 

and additive noise 

 

 
0a FIR + 

noise 
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Hybrid Communication Systems 

• Mixed analog and digital signal processing in the 

transmitter and receiver 

Example: message signal is digital but broadcast over an 

analog channel (compressed speech in digital cell phones)  

• Signal processing in the transmitter 

 

 

• Signal processing in the receiver 

m(t) 

A/D 

Converter 

Error 

Correcting 

Codes 

Digital 

Signaling 

Decoder 

 

Waveform 

Generator 

Equalizer 

 

Detection 

 

digital 

sequence 

digital 

sequence 

code 

baseband signal 

D/A 

Converter 

A/D 

 

D/A 
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Pulse Amplitude Modulation (PAM) 

• Amplitude of periodic pulse train is varied with a 

sampled message signal m(t) 

Digital PAM: coded pulses of the sampled and quantized 

message signal are transmitted (lectures 13 and 14) 

Analog PAM: periodic pulse train with period Ts is the carrier 

(below) 

t 

Ts T T+Ts 2Ts 

p(t) 

m(t) s(t) = p(t) m(t)  

Optional 
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Analog PAM 

• Pulse amplitude varied 

with amplitude of 

sampled message 

Sample message every Ts 

Hold sample for T seconds 

(T < Ts)  

Bandwidth  1/T 

• Transmitted signal 

 

 

h(t) is a rectangular pulse 

of duration T units 
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tth
T

T
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

sample hold 

Optional 
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Analog PAM 

• Transmitted signal 

 

 

 

 

• Fourier transform 

 

 

• Equalization of sample 

and hold distortion 

added in transmitter 

H(f) causes amplitude 

distortion and delay of T/2 

Equalize amplitude 

distortion by post-filtering 

with magnitude response 

 

 

Negligible distortion 

(less than 0.5%) if  
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Analog PAM 

• Requires transmitted pulses to 

Not be significantly corrupted in amplitude 

Experience roughly uniform delay 

• Useful in time-division multiplexing 

public switched telephone network T1 (E1) line  
time-division multiplexes 24 (32) voice channels 

Bit rate of 1.544 (2.048) Mbps for duty cycle < 10% 

• Other analog pulse modulation methods 

Pulse-duration modulation (PDM), 
a.k.a. pulse width modulation (PWM) 

Pulse-position modulation (PPM): used 
in some optical pulse modulation systems.  

Optional 
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Outline 

• Introduction 

• Pulse shaping 

• Pulse shaping filter bank 

• Design tradeoffs 

• Symbol recovery 
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Introduction 

• Convert bit stream into pulse stream 

Group stream of bits into symbols of J bits 

Represent symbol of bits by unique amplitude 

Scale pulse shape by amplitude 

• M-level PAM or simply M-PAM (M = 2J) 

Symbol period is Tsym and bit rate is J fsym  

Impulse train has impulses separated by Tsym 

Pulse shape may last one or more symbol periods 

 

 

4-PAM 

Constellation 

Map 

d 

d 

3 d 

3 d 

00 

01 

10 

11 

input  output  

Serial/ 

Parallel 

Map to PAM 

constellation an 1 J 

bit 

stream 

J bits per 

symbol 

Pulse 

shaper 

gTsym(t) s*(t) 

symbol 

amplitude 

baseband 

waveform 

Impulse 

modulator 

impulse 

train 13 - 4 

Pulse Shaping 

• Without pulse shaping 

One impulse per symbol period 

Infinite bandwidth used (not practical) 

• Limit bandwidth by pulse shaping (FIR filtering) 

Convolution of discrete-time signal ak  

and continuous-time pulse shape 

For a pulse shape lasting Ng Tsym seconds, Ng pulses overlap in 

each symbol period 

 
symT

k

k Tktgats
sym

   )(*  




) (  )(*

sym

k

k Tktats  






k is a symbol index 

Serial/ 

Parallel 

Map to PAM 

constellation an 1 J 

bit 

stream 

J bits per 

symbol 

Pulse 

shaper 

gTsym(t) s*(t) 

symbol 

amplitude 

baseband 

waveform 

Impulse 

modulator 

impulse 

train 
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2-PAM Transmission 

• 2-PAM example (right) 

Raised cosine pulse with 

peak value of 1 

What are d and Tsym ? 

How does maximum 

amplitude relate to d? 

• Highest frequency ½ fsym  

Alternating symbol amplitudes +d, -d, +d, … 

13 - 5 

Serial/ 

Parallel 

Map to PAM 

constellation an 1 J 

bit 

stream 

J bits per 

symbol 

Pulse 

shaper 

gTsym(t) s*(t) 

symbol 

amplitude 

baseband 

waveform 

Impulse 

modulator 

impulse 

train 

time (ms) 

PAM Transmission 

• Transmitted signal 

 

• Sample at sampling time Ts : let t = (n L + m) Ts 

L samples per symbol period Tsym i.e. Tsym = L Ts 

n is the index of the current symbol period being transmitted 

m is a sample index within nth symbol (i.e., m = 0, 1, …, L-1) 

 ])( [  ]  [* mknLgamLns
symT

k
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 
symT
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  L Serial/ 

Parallel 

Map to PAM 
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Pulse 
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gTsym[m] s*(t) 

symbol 

amplitude 

baseband 

waveform 

impulse 

train 

D/A 

baseband 

waveform 
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Pulse Shaping Block Diagram 

 

 

 

 

• Upsampling by L denoted as   L 

Outputs input sample followed by L-1 zeros 

Upsampling by L converts symbol rate to sampling rate 

• Pulse shaping (FIR) filter gTsym[m] 

Fills in zero values generated by upsampler 

Multiplies by zero most of time (L-1 out of every L times) 

D/A 
Transmit 

Filter 

an 
gTsym[m]   L 

symbol 

rate 

sampling 

rate 

sampling 

rate 

cont. 

time 

cont. 

time 

s*(t) 
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Digital Interpolation Example 

 

 

 

• Upsampling by 4 (denoted by   4) 

Output input sample followed by 3 zeros 

Four times the samples on output as input 

Increases sampling rate by factor of 4 

• FIR filter performs interpolation 

Lowpass filter with stopband frequency wstopband  p / 4 

For fsampling = 176.4 kHz, w = p / 4 corresponds to 22.05 kHz 

Digital 4x Oversampling Filter 

16 bits 

44.1 kHz 

28 bits 

176.4 kHz 4 FIR Filter 16 bits 

176.4 kHz 

1 2 

Input to Upsampler by 4 

n 

0 

n’ 

Output of Upsampler by 4 

1 2 3 4 5 6 7 8 0 

1 2 

Output of FIR Filter 

3 4 5 6 7 8 

n’ 

0 
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Pulse Shaping Filter Bank Example 

• L = 4 samples per symbol 

• Pulse shape g[m] lasts for 2 symbols (8 samples) 

encoding ↑4 g[m] 
bits …a2a1a0 …000a1000a0 

s[m] x[m] 

s[m] = x[m] * g[m] s[0] = a0 g[0] 

s[1] = a0 g[1] 

s[2] = a0 g[2] 

s[3] = a0 g[3] 

s[4] = a0 g[4] + a1 g[0] 

s[5] = a0 g[5] + a1 g[1] 

s[6] = a0 g[6] + a1 g[2] 

s[7] = a0 g[7] + a1 g[3] 
L polyphase filters 

{g[0],g[4]} 

{g[1],g[5]} 

{g[2],g[6]} 

{g[3],g[7]} 

s[m] 

…,s[4],s[0] 

…,s[5],s[1] 

…,s[6],s[2] 

…,s[7],s[3] 

…,a1,a0 

m=0 

Commutator 

(Periodic) 

Filter 

Bank 
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Pulse Shaping Filter Bank 

 

 

 

• Simplify by avoiding multiplication by zero 

Split long pulse shaping filter into L short polyphase filters 

operating at symbol rate 

 
gTsym,0[n] 

gTsym,1[n] 

gTsym,L-1[n] 

an 
D/A 

Transmit 

Filter 

s(Ln) 

s(Ln+1) 

s(Ln+(L-1)) 

Filter Bank 

Implementation 

D/A 
Transmit 

Filter 

an 
gTsym[m]   L 

symbol 

rate 

sampling 

rate 

sampling 

rate 

cont. 

time 

cont. 

time 
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Pulse Shaping Filter Bank Example 

• Pulse length 24 samples and L = 4 samples/symbol 

 

• Derivation: let t = (n + m/L) Tsym 

 

• Define mth polyphase filter 

 

• Four six-tap polyphase filters (next slide) 
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1,...,1 ,0  Lm
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Pulse Shaping Filter Bank Example 

24 samples 

in pulse 

x marks 

samples of 

polyphase 

filter 

4 samples 

per symbol 

Polyphase filter 0 response 

is the first sample of the 

pulse shape plus every 

fourth sample after that 

Polyphase filter 0 has only one non-zero sample. 

gTsym,0[n] 
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Pulse Shaping Filter Bank Example 

24 samples 

in pulse 

x marks 

samples of 

polyphase 

filter 

4 samples 

per symbol 

Polyphase filter 1 response 

is the second sample of the 

pulse shape plus every 

fourth sample after that 

gTsym,1[n] 
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Pulse Shaping Filter Bank Example 

24 samples 

in pulse 

x marks 

samples of 

polyphase 

filter 

4 samples 

per symbol 

Polyphase filter 2 response 

is the third sample of the 

pulse shape plus every 

fourth sample after that 

gTsym,2[n] 
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Pulse Shaping Filter Bank Example 

24 samples 

in pulse 

x marks 

samples of 

polyphase 

filter 

4 samples 

per symbol 

Polyphase filter 3 response 

is the fourth sample of the 

pulse shape plus every 

fourth sample after that 

gTsym,3[n] 
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Pulse Shaping Design Tradeoffs 

Computation 

in MACs/s 

Memory 

size in 

words 

Memory 

reads in 

words/s 

Memory 

writes in 

words/s 

Direct 

structure 

(slide 13-7) 

 

(L Ng)(L fsym) 

Filter bank 

structure 

(slide 13-10) 

 

L Ng fsym 

fsym symbol rate 

L samples/symbol 

Ng duration of pulse shape in symbol periods 
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Symbol Clock Recovery 

• Transmitter and receiver normally have different 

oscillator circuits 

• Critical for receiver to sample at correct time 

instances to have max signal power and min ISI 

• Receiver should try to synchronize with 

transmitter clock (symbol frequency and phase) 

First extract clock information from received signal 

Then either adjust analog-to-digital converter or interpolate 

• Next slides develop adjustment to A/D converter 

• Also, see Handout M in the reader 

Optional 

13 - 18 

Symbol Clock Recovery 

• g1(t) is impulse response of LTI composite channel 

of pulse shaper, noise-free channel, receive filter 
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B(w) 
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BPF 

H(w) 
PLL x(t) 

q(t) q2(t) 

p(t) 

z(t) 

E{ak am} = a2 [k-m] 

g1(t) is 

deterministic 

s*(t) is transmitted signal 

Periodic with period Tsym   
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Symbol Clock Recovery 

• Fourier series representation of E{ p(t) } 

 

• In terms of g1(t) and using Parseval’s relation 

 

• Fourier series representation of E{ z(t) } 
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Symbol Clock Recovery 

• With G1(w ) = X(w ) B(w ) 

Choose B(w) to pass  ½wsym   pk = 0 except k = -1, 0, 1 

 

 

Choose H(w) to pass wsym   Zk = 0 except k = -1, 1 

 

• B(w ) is lowpass filter with w passband = ½ w sym 

• H(w ) is bandpass filter with center frequency w sym 

Optional 

   )cos(2 teeeZtzE sym

tjtj

k

tjk

k
symsymsym w

www






       




 wwww
p

ww dkGG
T

a
kHkHpZ sym

sym

symsymkk 11

2

 2

Receive 

B(w) 
Squarer 

BPF 

H(w) 
PLL x(t) 

q(t) q2(t) 

p(t) 

z(t) 



6 

 



1 

Slides by Prof. Brian L. Evans and Dr. Serene Banerjee 

Dept. of Electrical and Computer Engineering 

The University of Texas at Austin 

EE445S Real-Time Digital Signal Processing Lab    Spring 2014 

Lecture 14 

Matched Filtering and Digital 
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Outline 

• Transmitting one bit at a time 

• Matched filtering 

• PAM system 

• Intersymbol interference 

• Communication performance 

Bit error probability for binary signals 

Symbol error probability for M-ary (multilevel) signals 

• Eye diagram 

14 - 3 

Transmitting One Bit 

• Transmission on communication channels is analog 

• One way to transmit digital information is called 

2-level digital pulse amplitude modulation (PAM)  

Tb t 

)(1 tx

A 

‘1’ bit 

Additive Noise 

Channel 

input output 

x(t) y(t) 

Tb 

)(0 tx

-A 

‘0’ bit 

t 

How does the 

receiver decide 

which bit was sent? 

receive

‘1’ bit 

Tb t 

)(1 ty

A 

receive 

‘0’ bit 

)(0 ty

Tb 

-A 

t 
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Transmitting One Bit 

• Two-level digital pulse amplitude modulation over 

channel that has memory but does not add noise 

Th t 

)(tc

1 

Tb t 

)(1 tx

A 

‘1’ bit 

Tb 

)(0 tx

-A 

‘0’ bit 

Model channel as 

LTI system with 

impulse response 

c(t) 

LTI 

Channel 

input output 

x(t) y(t) t 

)(0 ty

-A Th 

receive 

‘0’ bit 

t 
Th+Tb Th 

Assume that Th < Tb 

t 

)(1 ty
receive

‘1’ bit 

Th+Tb Th 

A Th 
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Transmitting Two Bits (Interference) 

• Transmitting two bits (pulses) back-to-back 

will cause overlap (interference) at the receiver 

 

 

 

 

• Sample y(t) at Tb, 2 Tb, …, and 

threshold with threshold of zero 

• How do we prevent intersymbol 

interference (ISI) at the receiver? 

Th t 

)(tc

1 

Assume that Th < Tb 

t Tb 

)(tx

A 

‘1’ bit ‘0’ bit 

2Tb 

* = 
)(ty

-A Th 

t Tb 

‘1’ bit ‘0’ bit 

Th+Tb 

Intersymbol 

interference 
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Preventing ISI at Receiver 

• Option #1: wait Th seconds between pulses in 
transmitter (called guard period or guard interval) 

 

 

 

 

Disadvantages? 

• Option #2: use channel equalizer in receiver 

FIR filter designed via training sequences sent by transmitter 

Design goal: cascade of channel memory and channel 
equalizer should give all-pass frequency response 

Th t 

)(tc

1 

Assume that Th < Tb 
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t Tb 

)(tx
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‘1’ bit ‘0’ bit 

Th+Tb 

t 
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-A Th 

Tb 
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Th+Tb 

Th 

14 - 7 

 
k

bk Tktgats ) ( )(

Digital 2-level PAM System 

 

 

 

 

 

 

 

• Transmitted signal 

• Requires synchronization of clocks 

between transmitter and receiver 

Transmitter Channel Receiver 

bi 

Clock Tb 

PAM g(t) c(t) h(t) 
1 

0 


ak{-A,A} s(t) x(t) y(t) y(ti) 

AWGN 
w(t) 

Decision 

Maker 

Threshold l 

Sample at 

t=iTb 

bits 

Clock Tb 

pulse 

shaper 

matched 

filter 
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00 ln
4 p

p

AT

N

b

optl
N(0, N0/2) 

p0 is the 

probability 

bit ‘0’ sent 

bits 
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Matched Filter 

• Detection of pulse in presence of additive noise 

Receiver knows what pulse shape it is looking for 

Channel memory ignored (assumed compensated by other 

means, e.g. channel equalizer in receiver) 

Additive white Gaussian 

noise (AWGN) with zero 

mean and variance N0 /2 

g(t) 

Pulse 

signal 
w(t) 

x(t) h(t) y(t) 

t = T 

y(T) 

Matched 

filter 

)()(       

)(*)()(*)()(

0 tntg

thtwthtgty





T is the 

symbol 

period 
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power ousinstantane

)}({
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SNR pulsepeak  is   where,max 

2

2

0 
tnE

Tg




Matched Filter Derivation 

• Design of matched filter 

Maximize signal power i.e. power of                              at t = T 

Minimize noise i.e. power of  

• Combine design criteria 

g(t) 

Pulse 

signal 
w(t) 

x(t) h(t) y(t) 

t = T 

y(T) 

Matched 

filter 

)(*)()( thtwtn 

)(*)()(0 thtgtg 

T is the 

symbol 

period 
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Power Spectra 

• Deterministic signal x(t) 

w/ Fourier transform X(f) 

Power spectrum is square of 

absolute value of magnitude 

response (phase is ignored) 

 

Multiplication in Fourier domain 

is convolution in time domain 

Conjugation in Fourier domain is 

reversal & conjugation in time 

 

• Autocorrelation of x(t) 

 

Maximum value (when it 

exists) is at Rx(0) 

Rx(t) is even symmetric, 

i.e. Rx(t) = Rx(-t)  

 

)( )()()( *2
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x(t) 

0 Ts 

t 

Rx(t) 

-Ts Ts 

Ts 

Power Spectra 

• Two-sided random signal n(t) 

Fourier transform may not exist, but power spectrum exists 

 

 

For zero-mean Gaussian random process n(t) with variance s2 

 

• Estimate noise power 

spectrum in Matlab 
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approximate 

noise floor 

  

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Matched Filter Derivation 

 

 

 

• Noise 

 

 

• Signal 










 dffH
N

dffStnE N

202 |)(|
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 )(} )( {

f 

2

0N

Noise power 

spectrum SW(f) 
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




 dfefGfHtg tfj   )( )(  )(    2 

0



20 |)(|
2

)( )()( fH
N

fSfSfS HWN 

 

g(t) 

Pulse 

signal w(t) 

x(t) h(t) y(t) 

t = T 

y(T) 

Matched filter 

)(*)()(0 thtgtg 

)(*)()( thtwtn 

AWGN Matched 

filter 

T is the 

symbol 

period 



4 

14 - 13 












dffH
N

dfefGfH Tfj

20

2   2 

|)(|
2

|  )( )(| 



Matched Filter Derivation 

• Find h(t) that maximizes pulse peak SNR  

 

 

• Schwartz’s inequality 

For vectors: 

 

For functions: 
 
upper bound reached iff 

||||  ||||
cos    ||||  ||||  | | *
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Matched Filter Derivation 

T is the 

symbol 

period 
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Matched Filter 

• Impulse response is hopt(t) = k g*(T - t)  

Symbol period T, transmitter pulse shape g(t) and gain k 

Scaled, conjugated, time-reversed, and shifted version of g(t) 

Duration and shape determined by pulse shape g(t)  

• Maximizes peak pulse SNR 

 

 

Does not depend on pulse shape g(t)  

Proportional to signal energy (energy per bit) Eb 

Inversely proportional to power spectral density of noise 

SNR
2

|)(|  
2

  |)(|  
2

0

2

0

2

0

max  







N

E
dttg

N
dffG

N

b
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t=nT T 

Matched Filter for Rectangular Pulse 

• Matched filter for causal rectangular pulse shape 

Impulse response is causal rectangular pulse of same duration 

• Convolve input with rectangular pulse of duration 

T sec and sample result at T sec is same as 

First, integrate for T sec 

Second, sample at symbol period T sec 

Third, reset integration for next time period 

• Integrate and dump circuit 

  

Sample and dump 

h(t) = ___ 
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 
k

bk Tktgats ) ( )(

Digital 2-level PAM System 

 

 

 

 

 

 

 

• Transmitted signal 

• Requires synchronization of clocks 

between transmitter and receiver 

Transmitter Channel Receiver 

bi 

Clock Tb 

PAM g(t) c(t) h(t) 
1 

0 


ak{-A,A} s(t) x(t) y(t) y(ti) 

AWGN 
w(t) 

Decision 

Maker 

Threshold l 

Sample at 

t=iTb 

bits 

Clock Tb 

pulse 

shaper 

matched 

filter 











1

00 ln
4 p

p

AT

N

b

optl
N(0, N0/2) 

p0 is the 

probability 

bit ‘0’ sent 

bits 
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,

i

ikk

bkbiii

k

bk

tnTkipaiTtpaty

thtwtntnkTtpaty















 
k

bk Tktats ) ()( 

Digital 2-level PAM System 

• Why is g(t) a pulse and not an impulse? 

Otherwise, s(t) would require infinite bandwidth 

 

We limit its bandwidth by using a pulse shaping filter 

• Neglecting noise, would like y(t) = g(t) * c(t) * h(t) 

to be a pulse, i.e. y(t) =  p(t) , to eliminate ISI 

actual value 

(note that ti = i Tb) 

intersymbol 

interference (ISI) 
noise 

p(t) is 

centered 

at origin 
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)
 2
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 2

1
 )(
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 2

1

)(

W

f

W
fP

Wf

WfW
WfP
















Eliminating ISI in PAM 

• One choice for P(f) is a 
rectangular pulse 

W is the bandwidth of the 
system 

Inverse Fourier transform 
of a rectangular pulse is 
is a sinc function 

 

• This is called the Ideal Nyquist Channel 

• It is not realizable because pulse shape is not 
causal and is infinite in duration 

)   2(sinc)( tWtp 
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
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1

1



Eliminating ISI in PAM 

• Another choice for P(f) is a raised cosine spectrum 

 

 

 

• Roll-off factor gives bandwidth in excess 

of bandwidth W for ideal Nyquist channel 

• Raised cosine pulse 

has zero ISI when 

sampled correctly 

• Let g(t) and h(t) be square root raised cosine pulses 

W

f11

 
222    161

   2cos
  

 
sinc    )(

tW

tW

T

t
tp

s 















ideal Nyquist channel 

impulse response 

dampening adjusted by 

rolloff factor   
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Bit Error Probability for 2-PAM 

• Tb is bit period (bit rate is fb = 1/Tb) 

 

 

 

 

w(t) is AWGN with zero mean and variance s2
 

• Lowpass filtering a Gaussian random process 

produces another Gaussian random process 

Mean scaled by H(0) 

Variance scaled by twice lowpass filter’s bandwidth 

• Matched filter’s bandwidth is ½ fb 

h(t) 
s(t) 

Sample at 

t = nTb Matched 

filter w(t) 

r(t) r(t) rn  
k

bk Tktgats ) ( )(

)()()( twtstr 

r(t) = h(t) * r(t) 

Bit Error Probability for 2-PAM 

• Noise power at matched filter output 
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Noise power 

T = Tsym Filtered noise 

s 2 (t1–t2) 
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Bit Error Probability for 2-PAM 

• Symbol amplitudes of +A and -A 

• Rectangular pulse shape with amplitude 1 

• Bit duration (Tb) of 1 second 

• Matched filtering with gain of one (see slide 14-15) 

Integrate received signal over nth bit period and sample 
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dttwA
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Probability density function (PDF) 
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
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ss
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Bit Error Probability for 2-PAM  

• Probability of error given that 

transmitted pulse has amplitude –A 

 

• Random variable 

     is Gaussian with 

zero mean and 

variance of one 


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Q Function 

• Q function 

 

 

• Complementary error 

 function erfc 

 

 

• Relationship 






x

y dyexQ 2/2
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1
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
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


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22

1
)(

x
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Erfc[x] in Mathematica 

erfc(x) in Matlab 
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Bit Error Probability for 2-PAM 

• Probability of error given that 
transmitted pulse has amplitude A 

 

• Assume that 0 and 1 are equally likely bits 

 

 

 

 

• Probability of error exponentially 

decreases with SNR (see slide 8-16) 

)/())(|error( sAQAnTsP b 
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PAM Symbol Error Probability 

• Set symbol time (Tsym) to 1 second 

• Average transmitted signal power 

 

GT() square root raised cosine spectrum 

• M-level PAM symbol amplitudes 

 

• With each symbol equally likely 

}{|)(| 
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PAM Symbol Error Probability 

• Noise power and SNR 

 

 

 

 

 

 

• Assume ideal channel, 

i.e. one without ISI 

• Consider M-2 inner 

levels in constellation 

Error only if 

where  

Probability of error is 

 

• Consider two outer 

levels in constellation 
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PAM Symbol Error Probability 

• Assuming that each symbol is equally likely, 

symbol error probability for M-level PAM 

 

 

 

• Symbol error probability in terms of SNR 
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Visualizing ISI 

• Eye diagram is empirical measure of signal quality 

 

 

• Intersymbol interference (ISI): 

 

 

Raised cosine filter has zero 

ISI when correctly sampled 
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Eye Diagram for 2-PAM 

• Useful for PAM transmitter and receiver analysis 
and troubleshooting 

 

 

 

 

 

 

 

• The more open the eye, the better the reception 

M=2 

t - Tsym 

Sampling instant 

Interval over which it can be sampled 

Slope indicates 

sensitivity to 

timing error 

Distortion over 

zero crossing 

Margin over noise 

t + Tsym t 

14 - 32 

Eye Diagram for 4-PAM  

3d 

d 

-d 

-3d 

Due to 

startup 

transients. 

Fix is to 

discard first 

few symbols 

equal to 

number of 

symbol 

periods in 

pulse shape. 
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Introduction 

• Digital Pulse Amplitude Modulation (PAM) 

Modulates digital information onto amplitude of pulse 

May be later upconverted (e.g. to radio frequency) 

• Digital Quadrature Amplitude Modulation (QAM) 

Two-dimensional extension of digital PAM 

Baseband signal requires sinusoidal amplitude modulation 

May be later upconverted (e.g. to radio frequency) 

• Digital QAM modulates digital information onto 
pulses that are modulated onto 

Amplitudes of a sine and a cosine, or equivalently 

Amplitude and phase of single sinusoid 

Amplitude Modulation by Cosine 

• y1(t) = x1(t) cos(wc t) 

Assume x1(t) is an ideal lowpass signal with bandwidth w1 

Assume w1 << wc 

Y1(w) is real-valued if X1(w) is real-valued 

 

 

 

 

 

• Demodulation: modulation then lowpass filtering 

w 
0 

1 

w1 -w1 

X1(w) 

w 

 
0 

Y1(w) 

½ 

-wc - w1 -wc + w1 
-wc 

wc - w1 wc + w1 
wc 

½X1(w - wc) ½X1(w + wc) 

Review 

( ) ( ) ( )cc XXY wwwww -++ 111
2

1

2

1

Baseband signal Upconverted signal 
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Amplitude Modulation by Sine 

• y2(t) = x2(t) sin(wc t) 

Assume x2(t) is an ideal lowpass signal with bandwidth w2 

Assume w2 << wc 

Y2(w) is imaginary-valued if X2(w) is real-valued 

 

 

 

 

 

 

• Demodulation: modulation then lowpass filtering 

w 

Y2(w) 

j ½ 

-wc – w2 -wc + w2 
-wc 

wc – w2 wc + w2 
wc 

-j ½X2(w - wc) j ½X2(w + wc) 

-j ½ 

w 
0 

1 

w2 -w2 

X2(w) 

Review 

( ) ( ) ( )cc X
j

X
j

Y wwwww --+ 222
22

Baseband signal Upconverted signal 
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Baseband Digital QAM Transmitter 

• Continuous-time filtering and upconversion 

15 - 5 

i[n] gT(t) 

+ 

q[n] 
gT(t) 

Serial/ 

parallel 

converter 1 

Bits 
Map to 2-D  

constellation J 

Pulse shapers 

(FIR filters) 

Index 

Impulse 

modulator 

Impulse 

modulator 

s(t) 

Local  

Oscillator 
90o 

Delay 

Delay matches delay through 90o phase shifter 

Delay required but often omitted in diagrams 

4-level QAM 

Constellation 

I 

Q 

d 

d 

-d 

-d 
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Phase Shift by 90 Degrees 

• 90o phase shift performed by Hilbert transformer 

cosine => sine 

sine => – cosine 

• Frequency response 

)(
2

1
)(

2

1
)  2cos( 000 fffftf -++ 

)(
2

)(
2

)  2sin( 000 ff
j

ff
j

tf --+ 

)sgn()( fjfH -

f 

)( fH

-90o 

90o 

f 

|)(| fH

Magnitude Response Phase Response 

All-pass except at origin 
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Hilbert Transformer 

• Continuous-time ideal 

Hilbert transformer 

 

• Discrete-time ideal 

Hilbert transformer 

h(t) =  

1/(  t)   if t  0 

0       if t = 0 

h[n] = 

if n0 

0                 if n=0 

n

n )2/(sin2 2 



Even-indexed 

samples are zero 

t 

h(t) 

)sgn()( fjfH - )sgn()( ww jH -

n 

h[n] 
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Discrete-Time Hilbert Transformer 

• Approximate by odd-length linear phase FIR filter 

Truncate response to 2 L + 1 samples:  L samples left of 

origin, L samples right of origin, and origin 

Shift truncated impulse response by L samples to right to 

make it causal 

L is odd because every other sample of impulse response is 0 

• Linear phase FIR filter of length N has same phase 

response as an ideal delay of length (N-1)/2 

(N-1)/2 is an integer when N is odd (here N = 2 L + 1) 

• Matched delay block on slide 15-5 would be an 

ideal delay of L samples 
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Baseband Digital QAM Transmitter 

i[n] gT(t) 

+ 

q[n] 
gT(t) 

Serial/ 

parallel 

converter 1 

Bits 
Map to 2-D  

constellation J 

Pulse shapers 

(FIR filters) 

Index 

Impulse 

modulator 

Impulse 

modulator 

s(t) 

Local  

Oscillator 
90o 

Delay 

i[n] 
gT[m]   L 

+ 
cos(w0 m) 

q[n] gT[m]   L 

sin(w0 m) 

Serial/ 

parallel 

converter 1 

Bits 
Map to 2-D  

constellation J 

L samples/symbol 

(upsampling factor) 

Pulse shapers 

(FIR filters) 

Index 
s[m] 

D/A 

s(t) 

100% discrete time 
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Performance Analysis of PAM 

• If we sample matched filter output at correct time 

instances, nTsym, without any ISI, received signal 

 

where transmitted signal is 

 

v(t) output of matched filter Gr(w) for input of 

channel additive white Gaussian noise N(0; 2) 

Gr(w) passes frequencies from -wsym/2 to wsym/2 , 

where wsym = 2   fsym = 2 / Tsym 

• Matched filter has impulse response gr(t) 

)()()( symsymsym nTvnTsnTx +

dianTs nsym )12()( - for i = -M/2+1, …, M/2 

v(nT) ~ N(0; 2/Tsym) 

4-level PAM 

Constellation 

d 

-d 

-3 d 

 3 d 
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Performance Analysis of PAM 

• Decision error 

for inner points 

• Decision error 

for outer points  

 

• Symbol error probability 
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Performance Analysis of QAM 

• If we sample matched filter outputs at correct time 

instances, nTsym, without any ISI, received signal 

 

• Transmitted signal 

 

where i,k  { -1, 0, 1, 2 } for 16-QAM 

• Noise 

For error probability analysis, assume noise terms independent 

and each term is Gaussian random variable ~ N(0; 2/Tsym)  

In reality, noise terms have common source of additive noise in 

channel 

)()()( symsymsym nTvnTsnTx +

dkjdibjanTs nnsym )12( )12( )( -+-+

)( )()( symQsymIsym nTvjnTvnTv +
4-level QAM 
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I 

Q 

d 

d 

-d 

-d 
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Performance Analysis of 16-QAM 

• Type 1 correct detection 
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Performance Analysis of 16-QAM 

• Type 2 correct detection 

 

 

 

 

• Type 3 correct detection 
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Performance Analysis of 16-QAM 

• Probability of correct detection 

 

 

 

 

 

• Symbol error probability (lower bound) 

 

• What about other QAM constellations? 
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Average Power Analysis 

• Assume each symbol is equally likely 

• Assume energy in pulse shape is 1 

• 4-PAM constellation 

Amplitudes are in set { -3d, -d, d, 3d } 

Total power 9 d2 + d2 + d2 + 9 d2 = 20 d2 

Average power per symbol 5 d2 

• 4-QAM constellation points 

Points are in set { -d – jd, -d + jd, d + jd, d – jd } 

Total power 2d2 + 2d2 + 2d2 + 2d2 = 8d2 

Average power per symbol 2d2 

 

4-level PAM 

Constellation 

d 

-d 

-3 d 

 3 d 

4-level QAM 

Constellation 

I 

Q 

d 

d 

-d 

-d 
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Outline 

• Introduction 

• Automatic gain control 

• Carrier detection 

• Symbol clock recovery 

• Channel equalization 

• QAM demodulation 

16 - 3 

Introduction 

• Channel impairments 

Linear and nonlinear distortion of transmitted signal 

Additive noise (often assumed to be Gaussian) 

• Mismatch in transmitter/receiver analog front ends 

• Receiver subsystems to compensate for impairments 

Fading    Automatic gain control (AGC) 

Additive noise   Matched filters 

Linear distortion   Channel equalizer 

Carrier mismatch   Carrier recovery 

Symbol timing mismatch  Symbol clock recovery 
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Baseband QAM 

Receive  

Filter 
A/D 

Symbol 

Clock 

Recovery 

LPF 

LPF 

Carrier  

Detect 
AGC 

X 

X 

r0(t) r1(t) r(t) r[m] Channel 

Equalizer 

L 

L 

L samples/symbol 

m sample index 

n symbol index 

QAM Demodulation c(t) 

2 cos(c m) 

-2 sin(c m) 

Receiver 

i[n] 
gT[m]   L 

+ 
cos(c m) 

q[n] gT[m]   L 

sin(c m) 

Serial/ 

parallel 

converter 1 

Bits 
Map to 2-D  

constellation J 

Pulse shapers 

(FIR filters) 

Index 
s[m] 

D/A 

s(t) 

Transmitter 

fs 

Carrier recovery 

is not shown 

][̂mi

][ˆ mq

][̂ni

][ˆ nq

i[m] 

q[m] 
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Automatic Gain Control 

• Scales input voltage to A/D converter 

Increase gain for low signal level 

Decrease gain for high signal level 

• Consider A/D converter with 8-bit signed output 

When c(t) is zero, A/D output is 0 

When c(t) is infinity, A/D output is -128 or 127 

Let f-128, f0 and f127 represent how frequently outputs -128, 0 

and 127 occur over a window of previous samples 

Each frequency value is between 0 and 1, inclusive 

Update:  c(t) = (1 + 2 f0 – f-128 – f127) c(t – t) 

Initial values: f-128 = f0 = f127 = 1 / 256.  Zero also works. 
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A/D 

AGC 

r1(t) r(t) r[m] 

c(t) 
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Carrier Detection 

• Detect energy of received signal (always running) 

 

c is a constant where 0 < c < 1 and r[m] is received signal 

Let x[m] = r2[m].  What is the transfer function? 

What values of c to use? 

• If receiver is not currently receiving a signal 

If energy detector output is larger than a large threshold, 
assume receiving transmission 

• If receiver is currently receiving signal, then it 
detects when transmission has stopped 

If energy detector output is smaller than a smaller threshold, 
assume transmission has stopped 

][ )1(]1[ ][ 2 mrcmpcmp 
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Symbol Clock Recovery 

• Two single-pole bandpass filters in parallel 

One tuned to upper Nyquist frequency u  = c + 0.5 sym  

Other tuned to lower Nyquist frequency l  = c – 0.5 sym 

Bandwidth is B/2 (100 Hz for 2400 baud modem) 

• A recovery method 

Multiply upper bandpass filter output with conjugate of lower 

bandpass filter output and take the imaginary value 

Sample at symbol rate to estimate timing error t 

 

Smooth timing error estimate to compute phase advancement 

tt  ) sin(][ symsymnv  1 tsymwhen 

][ ]1[ ][ nvnpnp   Lowpass 

IIR filter 

Pole 

locations? 

See Reader 

handout M 

Channel Equalizer 

• Mitigates linear distortion in channel 

• When placed after A/D converter 

Time domain: shortens channel impulse response 

Frequency domain: compensates channel distortion over entire 

discrete-time frequency band instead of transmission band 

• Ideal channel 

Cascade of delay D and gain g 

Impulse response:  impulse delayed by D with amplitude g 

Frequency response: allpass and linear phase (no distortion) 

Undo effects by discarding D samples and scaling by 1/g 

16 - 8 

z-D  g 
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Channel Equalizer 

• IIR equalizer 

Ignore noise nm 

Set error em to zero 

H(z) W(z) = g z-D 

W(z) = g z-D  / H(z) 

Issues? 

• FIR equalizer 

Adapt equalizer coefficients when transmitter sends training 

sequence to reduce measure of error, e.g. square of em 
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Discrete-Time Baseband System 

z-D  

h + w 

- 

xm ym em rm 

nm 

+ 

Equalizer Channel 

g 

Ideal Channel 

+ 

Receiver 

generates 

xm  

Training 

sequence 

Adaptive FIR Channel Equalizer 

• Simplest case: w[m] = d[m] + w1 d[m-1] 

Two real-valued coefficients w/ first coefficient fixed at one 

• Derive update equation for w1 during training 

 

 

 

 

 

 

Using least mean squares (LMS) 

Step size 0 < m < 1 ]1[ ][ ][]1[

][
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1
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xm ym em rm 

nm 

+ 

Equalizer Channel 

g 

Ideal Channel 

+ 

Receiver 

generates 

xm  

Training 

sequence 

sm 

Baseband QAM Demodulation 

• Recovers baseband in-phase/quadrature signals 

• Assumes perfect AGC, equalizer, symbol recovery 

• QAM modulation followed by lowpass filtering 

Receiver fmax = 2 fc + B and fs > 2 fmax 

• Lowpass filter has other roles 

Matched filter 

Anti-aliasing filter 

• Matched filters 

Maximize SNR at downsampler output 

Hence minimize symbol error at downsampler output 
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LPF 

LPF 

X 

X 

2 cos(c m) 

-2 sin(c m) 

x[m] 

][̂mi

][ˆ mq
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Baseband QAM Demodulation 

• QAM baseband signal 

• QAM demodulation 

Modulate and lowpass filter to obtain baseband signals 

 

) sin( ][) cos( ][][ mmqmmimx cc  
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baseband high frequency component centered at 2 c 

baseband high frequency component centered at 2 c 
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Discrete-Time Fourier Transform 

• Forward transform of discrete-time signal x[n] 

 

 

Assumes that x[n] is two-sided and infinite in duration 

Produces X(w) that is periodic in w (in units of rad/sample) 
with period 2 p due to exponential term  

• Inverse discrete-time 
Fourier transform 

• Basic 

transform 
pairs 
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Discrete Fourier Transform (DFT) 

• Discrete Fourier transform (DFT) of a discrete-

time signal x[n] with finite extent n  [0, N-1] 

 

 

X[k] periodic with period N due to exponential 

Also assumes x[n] periodic with period N 

• Inverse discrete 

Fourier transform 

• Twiddle factor 

k
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Two-Point DFT 

 

 

]1[]0[]0[ xxX 
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Discrete Fourier Transform (con’t) 

• Forward transform 

 

 

for k = 0, 1, …, N-1 

Exponent of WN has period N 

• Memory usage 

x[n]: N complex words of RAM 

X[k]: N complex words of RAM  

WN : N complex words of ROM 

• Halve memory usage 
Allow output array X[k] to write 

over input array x[n] 

Exploit twiddle factors symmetry 

• Computation 

N2 complex multiplications 

N (N –1) complex additions 

N2 integer multiplications 

N2 modulo indexes into lookup 

table of twiddle factors 

• Inverse transform 

 

 

for n = 0, 1, …, N-1 

Memory usage? 

Computational complexity? 


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Fast Fourier Transform Algorithms 

• Communication system application: multicarrier 

modulation using harmonically related carriers 

Discrete multitone modulation in ADSL & VDSL modems 

OFDM in IEEE 802.11a/g Wi-Fi and cellular LTE 

• Efficient divide-and-conquer algorithm 

Compute discrete Fourier transform of length N = 2n 

½ N log2 N complex multiplications and additions 

How many real complex multiplications and additions? 

• Derivation: Assume N is even and power of two 

 
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Fast Fourier Transform (cont’d) 

• Substitute n = 2r for n even and n = 2r+1 for odd 

 

 

 

 

• Using the property 

 

 

One FFT length N => two FFTs length N/2 

Repeat process until two-point FFTs remain 

Computational complexity of two-point FFT? 
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Linear Convolution by FFT 

• Linear convolution 

x[n] has length Nx and h[n] has length Nh 

y[n] has length Nx+Nh-1 

• Linear convolution requires NxNh real-valued 
multiplications and 2Nx + 2Nh - 1 words of memory 

• Linear convolution by FFT of length N = Nx+Nh - 1 

Zero pad x[n] and h[n] to make each N samples long 

Compute forward DFTs of length N to obtain X[k] and H[k] 

Y[k] = H[k] X[k] for k = 0…N-1: may overwrite X[k] with Y[k] 

Take inverse DFT of length N of Y[k] to obtain y[n] 

• If h[n] is fixed, then precompute and store H[k] 

 
m

mnxmhny ][ ][][
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Linear Convolution by FFT 

• Implementation complexity using N-length FFTs 

3 N log2 N complex multiplications and additions 

2 N complex words of memory if Y[k] overwrites X[k] 

• FFT approach requires fewer computations if 

 
• Disadvantages of FFT approach 

Uses twice the memory: 2(Nx +Nh -1) 
complex words vs. 2Nx + 2Nh  - 1 words 

Often requires floating-point arithmetic 

Adds delay of Nx samples to buffer x[n] 
whereas linear convolution is computed sample-by-sample 

Creates discontinuities at boundaries of blocks of input data: 
use overlapping blocks and windowing 

hxhxhx NNNNNN  )1(log)1(12 2

FFT under fixed-

point arithmetic? 
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Outline 

 Introduction 

 Signal processing building blocks 

Filters 

Data conversion 

Rate changers 

 Communication systems 

Design tradeoffs in signal quality vs. implementation complexity 

3 

Introduction 

 Signal processing algorithms 

 Multirate processing: e.g. interpolation 

 Local feedback: e.g. IIR filters 

 Iteration: e.g. phase locked loops 

 Signal representations 

 Bits, symbols 

 Real-valued symbol amplitudes 

 Complex-valued symbol amplitudes (I-Q) 

 Vectors/matrices of scalar data types 

 Algorithm implementation 

 Dominated by multiplication/addition 

 High-throughput input/output 

Do not need 

recursion 

Often iterative 

Bit error rate vs. Signal-
to-noise ratio (Eb/No) 

Communication 

signal quality plot 

4 

Finite Impulse Response Filters 

 Pointwise arithmetic operations (addition, etc.) 

 

 

 Delay by m samples 

 Finite impulse 
response filter 

 Always stable 

 Each input sample 
produces one 
output sample 

 DSP processor 
architecture 

0a
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Infinite Impulse Response Filters 
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Feed-

forward 

 

 a1 

a2 

y[k-1] 

y[k-2] 

Unit 

Delay 

Unit 

Delay 

Unit 

Delay 

aM 

Feedback 

IIR 

 Each input 
sample produces 
one output sample 

 Pole locations 
perturbed when 
expanding transfer 
function into 
unfactored form 

 20+ filter 
structures 

 Direct form 

 Cascade biquads 

 Lattice 

6 

Data Conversion 

 Analog-to-Digital 

 

 

 

 Quantize to B bits 

Quantization error = noise 

SNRdB  C0 + 6.02 B 

Dynamic range  SNR 

 Digital-to-Analog 

 

 
 A/D and D/A lowpass filter 

fstop < ½ fs           fpass  0.9 fstop 

Astop = SNRdB        Apass = dB 

dB = 20 log10 (2mmax / (2B-1)) 

 is quantization step size 

mmax is max quantizer voltage 

Analog 

Lowpass 

Filter 

Discrete to 

Continuous 

Conversion 

f s 

Analog 

Lowpass 

Filter 

 

Quantizer 

 

Sample at 

rate of f s 

noise

dB

signal

dBdB

noisesignal

dB

dB

PP

PP







SNR

log10log10SNR

Power Noise

Power Signal
log10SNR

1010
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Increasing Sampling Rate 

 

 

 Upsampling by L denoted as   L 

Outputs input sample followed by L-1 zeros 

Increases sampling rate by factor of L 

 Finite impulse response (FIR) filter g[m] 

Fills in zero values generated by upsampler 

Multiplies by zero most of time 
(L-1 out of every L times) 

 Sometimes combined into 
rate changing FIR block 

m 

Output of Upsampler by 4 

1 2 3 4 5 6 7 8 0 

1 2 

Output of FIR Filter 

3 4 5 6 7 8 

m 

0 

1 2 

Input to Upsampler by 4 

n 

0 

g[m]   4 

1 4 1 1 

FIR 

1 4 

8 

8 

Polyphase Filter Bank Form 

 

 

 

 

 

 

 Filter bank (right) avoids multiplication by zero 

Split filter g[m] into L shorter polyphase filters operating at the 
lower sampling rate (no loss in output precision) 

Saves factor of L in multiplications and previous inputs stored 
and increases parallelism by factor of L  

g0[n] 

g1[n] 

gL-1[n] 

s(Ln) 

s(Ln+1) 

s(Ln+(L-1)) 

g[m]   L 

Oversampling filter a.k.a. 

sampler + pulse shaper a.k.a. 

linear interpolator 

Multiplies by zero 

(L-1)/L of the time 

1 L 

L 1 
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Decreasing Sampling Rate 

 

 

 Finite impulse response (FIR) filter g[m] 

Typically a lowpass filter 

Enforces sampling theorem 

 Downsampling by L denoted as   L 

Inputs L samples 

Outputs first sample and discards L-1 samples 

Decreases sampling rate by factor of L 

 Sometimes combined into 
rate changing FIR block 

  4 

4 1 

g[m] 
1 1 

1 2 

Input to Downsampler 

3 4 5 6 7 8 

m 

0 

1 2 

Output of Downsampler 

n 

0 

FIR 

4 1 

10 

10 

Polyphase Filter Bank Form 

 

 

 

 

 

 

y[1] = v[L] = h[0] s[L] + h[1] s[L-1] + … + h[L-1] s[1] + h[L] s[0] 

 Filter bank only computes values output by downsampler 

Split filter h[m] into L shorter polyphase filters operating at the 
lower sampling rate (no loss in output precision) 

Reduces multiplications and increases parallelism by factor of L 

h0[n] 

h1[n] 

hL-1[n] 

h[m]   L 

s(Ln) 

s(Ln+1) 

s(Ln+(L-1)) 

Undersampling filter a.k.a. 

Matched filter + sampling a.k.a. 

linear decimator 

Outputs discarded 

(L-1)/L of the time 

1 

1 

L 

M 

s[m] s[m] y[n] 

y[n] 

v[m] 
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Communication Systems 

 Message signal m[k] is information to be sent 

Information may be voice, music, images, video, data 

Low frequency (baseband) signal centered at DC 

 Transmitter baseband processing includes lowpass filtering 
to enforce transmission band 

 Transmitter carrier circuits include digital-to-analog 
converter, analog/RF upconverter, and transmit filter 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

][ˆ km

CHANNEL 

][km

12 

12 

Communication Systems 

 Propagating signals experience 
attenuation & spreading w/ distance 

 Receiver carrier circuits include receive filter, carrier 
recovery, analog/RF downconverter, automatic gain control 
and analog-to-digital converter 

 Receiver baseband processing extracts/enhances baseband 
signal 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

][ˆ km

CHANNEL 

][km

Model the 

environment 
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Quadrature Amplitude Modulation 

i[n] gT[m]   L 

+ cos(0 m) 

q[n] gT[m]   L 

sin(0 m) 

Serial/ 

parallel 

converter 1 

Bits 
Map to 2-D  

constellation J 

L samples per 

symbol (upsampling) 

Transmitter 

Baseband 

Processing 

Pulse 

shaper 

(FIR filter) 

Index 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

][ˆ km

CHANNEL 

][km
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Quad. Amplitude Demodulation 

iest[n] hopt[m]   L 

cos(0 m) 

hopt[m]   L 

sin(0 m) 
L samples per symbol 

(downsampling) 

Matched 

filter 

(FIR filter) 

qest[n] 

Parallel/ 

serial 

converter 
J 

Bits 

Decision 

Device 1 

Symbol 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

][ˆ km

CHANNEL 

][km

heq[m] 

Channel 

equalizer 

(FIR filter) 

Receiver 

Baseband 

Processing 
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Modeling of Points In-Between 

 Baseband discrete-time channel model 

 Combines transmitter carrier circuits, physical channel and 
receiver carrier circuits 

 One model uses cascade 
of gain, FIR filter, and 
additive noise 

Baseband 

Processing 
Carrier 

Circuits 

Transmission 

Medium 

Carrier 

Circuits 

Baseband 

Processing 

TRANSMITTER RECEIVER 
s(t) r(t) 

][ˆ km

CHANNEL 

][km

0a FIR + 

noise 
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QAM Signal Quality 

 Assumptions 

 Each symbol is equally likely 

 Channel only consists of additive noise 

White Gaussian noise with zero mean 
and variance 2 in in-phase and 
quadrature components 

 Total noise power of 22  

 Carrier frequency and phase recovery 

 Symbol timing recovery 

 Probability of symbol error 

 Constellation spacing of 2d 

 Symbol duration of Tsym 
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EE445S Real-Time Digital Signal Processing Lab (Spring 2014)

Lecture: MWF 11:00am{12:00pm in ETC 5.148

Instructor: Prof. Brian L. Evans, ENS 433B, 512-232-1457, bevans@ece.utexas.edu

OÆce Hours: MW 12:00{12:30pm and TH 12:30{2:30pm

Lab Sections: M 6:30{9:30pm (Sinno), T 6:30{9:30pm (Sinno),

(ENS 252B) W 6:30{9:30pm (Jia), F 1:00{4:00pm (Jia)

TA OÆce Hours: Ms. Zeina Sinno, W 3:00{4:30pm and TH 5:30{7:00pm, zeina@utexas.edu

(ENS 137) Mr. Chao Jia, TH 3:30{5:30pm and F 9:30{10:30am, kurtjc@gmail.com

Course Web Page: http://users.ece.utexas.edu/~bevans/courses/rtdsp

This course covers basic discrete-time signal processing concepts and gives hands-on experi-

ence in translating these concepts into real-time digital communications software. The goal

is to understand design tradeo�s in signal quality vs. implementation complexity.

Prerequisites

EE 312 and 319K with a grade of at least C- in each; BME 343 or EE 313 with a grade of

at least C-; credit with a grade of at least C- or registration for BME 333T or EE 333T; and

credit with a grade of at least C- or registration for BME 335 or EE 351K.

Topical Outline

System-level design tradeo�s in signal quality vs. implementation complexity; prototyping

of baseband transceivers in real-time embedded software; addressing nodes, parallel instruc-

tions, pipelining, and interfacing in digital signal processors; sampling, �ltering, quantization,

and data conversion; modulation, pulse shaping, pseudo-noise sequences, carrier recovery,

and equalization; and desktop simulation of digital communication systems.

Required Texts

1. C. R. Johnson Jr., W. A. Sethares and A. G. Klein, Software Receiver Design, Cambridge

University Press, Oct. 2011, ISBN 978-0521189446. Paperback. Matlab code.

2. T. B. Welch, C. H. G. Wright and M. G. Morrow, Real-Time Digital Signal Processing

from MATLAB to C with the TMS320C6x DSPs, CRC Press, 2nd ed., Dec. 2011, ISBN

978-1439883037.

3. B. L. Evans, EE 445S Real-Time DSP Lab Course Reader. Available on course Web page

and on-demand from the HKN OÆce (ENS 129).

Supplemental Texts

4. B. P. Lathi, Linear Systems and Signals, 2nd ed., Oxford, ISBN 0-19-515833-4, 2005.

5. M. J. Roberts, Signals and Systems, McGraw-Hill, ISBN 978-0072930443, June 2003.

6. A. O. Oppenhiem and R. W. Schafer, Signals and Systems, 2nd ed., Prentice Hall, 1999.

7. J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach,

Prentice-Hall, ISBN 0-13-243171-8, 1998. On-line Multimedia CD ROM.

Grading

14% Homework, 21% Midterm #1, 21% Midterm #2, 5% Pre-lab quizzes, 39% Laboratory.

Midterms will be held during lecture, with midterm #1 on Friday, Mar. 7th, and midterm #2



on Friday, May 2nd. Attendance/participation in laboratory is mandatory and graded. Lec-

ture helps connect together all of the pieces of the class| laboratory, reading, and homework

assignments. Lecture attendance is helpful in landing internships and permanent positions,

and allows you to get the most for your tuition dollar. Plus and minus grades will be assigned

for the �nal letter grades. There is no �nal exam. Request for regrading an assignment must

be made in writing within one (1) week of the graded assignment being made available to

students in the class. Discussion of homework questions is encouraged. Please submit your

own independent homework solutions. Late assignments will not be accepted.

University Honor Code

\The core values of The University of Texas at Austin are learning, discovery, freedom,

leadership, individual opportunity, and responsibility. Each member of the University is

expected to uphold these values through integrity, honesty, fairness, and respect toward

peers and community." http://www.utexas.edu/about-ut/mission-core-purpose-honor-code

Religious Holidays

By UT Austin policy, you must notify the instructor of any pending absence at least fourteen

(14) days prior to the date of observance of a religious holy day, or on the �rst class day if the

observance takes place during the �rst fourteen days of the semester. If you must miss class,

lab section, exam, or assignment to observe a religious holiday, you will have an opportunity

to complete the missed work within a reasonable amount of time after the absence.

College of Engineering Drop/Add Policy

The Dean must approve adding or dropping courses after the fourth class day of the semester.

Students with Disabilities

UT provides upon request appropriate academic accommodations for quali�ed students with

disabilities. Please contact OÆce of Dean of Students at 512-471-6259 or ssd@uts.cc.utexas.edu.

Lecture Topics

Introduction

Sinusoidal Generation

Introduction to Digital Signal Processors

Signals and Systems

Sampling and Aliasing

Finite Impulse Response Filters

In�nite Impulse Response Filters

Interpolation and Pulse Shaping

Quantization

Data Conversion

Channel Impairments

Digital PAM

Matched Filtering

Quadrature Amplitude Modulation (QAM) Transmitter

QAM Receiver



EE445S Instructional Sta� and Web Resources

1 Background of the Instructors

Brian L. Evans is Professor of Electrical and Computer Engineering at UT Austin. He is an IEEE

Fellow \for contributions to multicarrier communications and image display". At the undergraduate

level, he teaches Linear Systems and Signals and Real-Time Digital Signal Processing Lab. His

BSEECS (1987) degree is from the Rose-Hulman Institute of Technology, and his MSEE (1988)

and PhDEE (1993) degrees are from the Georgia Institute of Technology. He joined UT Austin in

1996. His �rst programming experience on digital signal processors was in Spring of 1988.

Teaching assistants (TAs) will run lab sections, grade lab reports, answer e-mail and hold oÆce

hours. The TAs are Mr. Chao Jia and Ms. Zeina Sinno. Both conduct research in reducing rolling

shutter artifact in smart phone cameras. Both have been TAs for this course before. A grader will

grade homework assignments for the lecture component of the class.

2 Supplemental Information

Wireless Networking & Communications Seminars generally meet Fridays in ENS 637.

You can search for a topic in Google scholar to �nd papers and patent applications on the topic.

Web address is http://scholar.google.com.

Sometimes, an article found on Google scholar is only available through a speci�c database, e.g.

IEEE Explore. You can access these databases from an on-campus computer. If you are o� campus,

then you can access these databases by �rst connecting to www.lib.utexas.edu, then selecting the

database under Research Tools, and �nally logging in using your UT EID.

Industrial

� Circuit Cellar Magazine http://www.circuitcellar.com

� Electronic Design Magazine http://electronicdesign.com

� Embedded Systems Design Magazine http://www.eetimes.com/design/embedded

� Inside DSP http://www.bdti.com/insideDSP

� Sensors Magazine http://www.sensorsmag.com

� Sensors and Transducers Journal http://www.sensorsportal.com/HTML/DIGEST/New Digest.htm

Academic

� IEEE Communications Magazine

� IEEE Computer Magazine

� EURASIP Journal on Advances in Signal Processing

� IEEE Signal Processing Magazine

� IEEE Transactions on Communications

� IEEE Transactions on Computers

� IEEE Transactions on Signal Processing

� Journal on Embedded Systems

� Proc. IEEE Real-Time Systems Symposium

� Proc. IEEE Workshop on Signal Processing Systems

� Proc. Int. Workshop on Code Generation for Embedded Processors

3 Web Resources (by Ms. Ankita Kaul)

MIT OpenCourseWare:



http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-341-discrete-time-signal-

processing-fall-2005/

*Advantages: Exceptional Lecture Notes! The readings are more in depth than lecture material,

but still quite fascinating.

*Disadvantages: The homework assignments and solutions were Advantages for practice, but many

problems outside the scope of the 445S class

UC-Berkeley DSP Class Page:

http://www-inst.eecs.berkeley.edu/~ee123/fa09/#resources

*Advantages: The articles and applets under 'Resources' are quite interesting and useful

*Disadvantages: Seemingly no actual Berkeley work actually on website, everything taken from

other sources . . .

Carnegie Mellon DSP Class Page:

http://www.ece.cmu.edu/~ee791/

*Advantages: Lectures had a lot of Matlab code for personal demonstration purposes

*Disadvantages: The lecture notes themselves are far more math-y than the context of 445S - still

interesting though

Purdue DSP Class Lecture Notes Page:

http://cobweb.ecn.purdue.edu/~ipollak/ee438/FALL04/notes/notes.html

*Advantages: the notes are super simple and easy to understand

*Disadvantages: only covers ~first half of 445S coursework

Doing a search on Apple's iTunes U[niversity] for DSP provided numerous FREE lectures from

MIT, UNSW, IIT, etc. for download as well.

Youtube Video Resources:

http://www.youtube.com/watch?v=7H4sJdyDztI&feature=related

Ŝignal Processing Tutorial: Nyquist Sampling Theorem and Anti-Aliasing (Part 1)

*Advantages: visuals

*Disadvantages: . . . a bit slow

http://www.youtube.com/watch?v=Fy9dJgGCWZI

Ŝampling Rate, Nyquist Frequency, and Aliasing

*Advantages: visualization of basic concepts

*Disadvantages: very short, would have liked more explanation

http://www.youtube.com/watch?v=RJrEaTJuX A&feature=related

Ŝimple Filters Lecture, IIT-Delhi Lecture

*Advantages: explanations of going to and from magnitude/phase

*Disadvantages: watch out for lecturer's accent

http://www.youtube.com/watch?v=Xl5bJgOkCGU&feature=channel

F̂IR Filter Design, IIT-Delhi Lecture

*Advantages: signi�cantly deeper explanations of math than in class

*Disadvantages: lecturer's accent, video gets stuck about 30 seconds in

http://www.youtube.com/watch?v=vyNyx00DZBc

D̂igital Filter Design

*Advantages: quite Advantages information - especially on design TRADEOFFs

*Disadvantages: sound quality, better o� just reading slides while he lectures



The Learning Resource Center

The ECE Learning Resource Center (LRC) for instructional computing is located in the

second-
oor ENS lab rooms as well as ENS 507. The ECE LRC rooms are open Mondays{

Fridays from 8:00 AM to 10:00 PM, and on Saturday and Sunday from 11:00 AM to 10:00

PM. 24-hour access is available Mondays{Thursdays in ENS 507 with a valid UT Austin ID

card. To activate your ECE LRC accounts, present your UT identi�cation card to an ECE

LRC proctor. The LRCs are described at http://www.ece.utexas.edu/it/labs.

1 Available Hardware

The ECE LRC has about 200 workstations, including Unix workstations and Windows

machines. Several Linux workstations are available for remote connection: browser, daisy,

luigi, mario, peach, thwomp and yoshi. The following Sun Unix workstation is available for

remote connection: sun�re1. All are in the domain ece.utexas.edu. For more information,

see http://www.ece.utexas.edu/it/remote-linux.

2 Available Software on the Unix Workstations

The following programs are installed on all of the ECE LRC machines unless otherwise

noted. On the Unix machines, they are installed in the /usr/local/bin directory.

� Matlab is a number crunching tool for matrix-vector calculations which is well-suited for

algorithm development and testing. It comes with a signal processing toolbox (FFTs, �lter

design, etc.). It is run by typing matlab. Matlab is licensed to run on the Windows PCs

in the ECE LRC, as well as Unix machines luigi, mario and princess in the ECE LRC. On

the Unix machines, be sure to type module load matlab before running Matlab. For more

information about using Matlab, please see Appendix D in this reader.

�Mathematica is a environment for solving algebraic equations, solving di�erential and dif-

ference equations in closed-form, performing inde�nite integration, and computing Laplace,

Fourier, and other transforms. The command-line interface is run by typing math. The

graphical user interface is run by typing mathematica. On ECE LRC machines, Mathe-

matica is only licensed to run on sun�re1.

� The GNU C compiler gcc and GNU C++ compiler g++ are available.

� LabVIEW software environment, which is a graphical programming environment that is

useful for signal processing and communication systems developed at National Instruments,

is also installed. LabVIEW's Mathscript facility can execute many Matlab scripts and func-

tions. We have a site license for LabVIEW that allows faculty, sta� and students to install

LabVIEW on their personally-owned computers. For more information, see

http://users.ece.utexas.edu/~bevans/courses/realtime/homework/index.html#labview
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Introduction to Computation in Matlab 
 

Prof. Brian L. Evans, Dept. of ECE, The University of Texas, Austin, Texas USA 

 

Matlab’s forte is numeric calculations with matrices and vectors.  A vector can be defined as 

vec = [1 2 3 4]; 

The first element of a vector is at index 1.  Hence, vec(1) would return 1.  A way to generate a 

vector with all of its 10 elements equal to 0 is 

zerovec = zeros(1,10); 

Two vectors, a and b, can be used in Matlab to represent the left hand side and right hand side, 

respectively, of a linear constant-coefficient difference equation: 

a(3) y[n-2] + a(2) y[n-1] + a(1) y[n] = b(3) x[n-2] + b(2) x[n-1] + b(1) x[n] 

The representation extends to higher-order difference equations.  Assuming zero initial 

conditions, we can derive the transfer function.   The transfer function can also be represented 

using the two vectors a (negated feedback coefficients) and b (feedforward coefficients).  For the 

second-order case, the transfer function becomes 

21

21
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We can factor a polynomial by using the roots command. 

 

Here is an example of values for vectors a and b: 

a = [ 1   6/8    1/8]; 

b = [ 1     2      3  ]; 

For an asymptotically stable transfer function, i.e. one for which the region of convergence 

includes the unit circle, the frequency response can be obtained from the transfer function by 

substituting z = exp(j ).  The Matlab command freqz implements this substitution: 

[h, w] = freqz(b, a, 1000); 

The third argument for freqz indicates how many points to use in uniformly sampling the points 

on the unit circle.  In this example, freqz returns two arguments:  the vector of frequency 

response values h at samples of the frequency domain given by w.  One can plot the magnitude 

response on a linear scale or a decibel scale: 

plot(w, abs(h)); 

plot(w, 20*log10(abs(h))); 

The phase response can be computed using a smooth phase plot or a discontinous phase plot:  

plot(w, unwrap(angle(h))); 

plot(w, angle(h)); 

One can obtain help on any function by using the help command, e.g. 

help freqz 
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As an example of defining and computing with matrices, the following lines would define a 2 x 3 

matrix A, then define a 3 x 2 matrix B, and finally compute the matrix C that is the inverse of the 

transpose of the product of the two matrices A and B:  

A = [1 2 3; 4 5 6];  

B = [7 8; 9 10; 11 12];  

C = inv((A*B)'); 

Matlab Tutorials and Availability 

Here are excellent Matlab tutorials:  

1. UT Austin:  http://ssc.utexas.edu/training/software-tutorials#matlab  

2. Mathworks:  http://www.mathworks.com/academia/student_center/tutorials/  

The following Matlab tutorial book is a useful reference:  

Duane C. Hanselman and Bruce Littlefield, Mastering MATLAB, ISBN 9780136013303, 

Prentice Hall, 2011. 

Matlab is available in the ECE Learning Resource Centers and through remote login.  A student 

version of Matlab may be purchased at the bookstore for roughly $100. 

Although the first few computer homeworks will help step you through Matlab, it is strongly 

suggested that you take the short courses that the Division of Statistics and Scientific Computing 

will be offering.  The schedule of those courses is available online at  

http://ssc.utexas.edu/training/software-short-courses  

Technical support is provided through free consulting services from the Division of Statistics and 

Scientific Computation. Simple queries can be e-mailed to stats@ssc.utexas.edu. For more 

complicated inquiries, please go in person to their offices located in GDC 7.504. You can walk 

in or schedule an appointment online. 

Running Matlab in Unix 

On the Unix machines in the ECE Learning Resource Center, you can run Matlab by typing  

module load matlab 

matlab 

When Matlab begins running, it will automatically execute the commands in your Matlab 

initialization file, if you have one. On Unix systems, the initialization file must be 

~/matlab/startup.m where ~ means your home directory. 

http://ssc.utexas.edu/training/software-tutorials#matlab
http://www.mathworks.com/academia/student_center/tutorials/
http://www.amazon.com/Mastering-MATLAB-Duane-C-Hanselman/dp/0136013309/ref=sr_1_2?ie=UTF8&qid=1389259292&sr=8-2&keywords=Hanselman+and+Littlefield+Matlab
http://ssc.utexas.edu/training/software-short-courses
http://ssc.utexas.edu/consulting/free-consulting
http://ssc.utexas.edu/
http://ssc.utexas.edu/
mailto:stats@ssc.utexas.edu
http://ssc.utexas.edu/consulting/free-consulting










Fundamental Theorem of Linear Systems

Theorem: Let a linear time-invariant system g has an ef (t) denote the complex sinusoid

ej2�ft. Then, g(ef(:); t) = g(ef(:); 0)ef(t) = c ef(t).

Example: Analog RC Lowpass Filter

x(t) R

C
y(t)

Figure 1: A First-Order Analog Lowpass Filter

The impulse response for the circuit in Fig. 1, i.e. the output measured at y(t) when

x(t) = Æ(t), is

h(t) =
1

RC
e�

1

RC
tu(t)

For a complex sinusoidal input, x(t) = ef (t) = ej2�ft,

y(t) =
Z
1

�1

x(t� �)h(�) d�

=
Z
1

�1

ej2�f(t��)
1

RC
e�

1

RC
�u(�) d�

= ej2�ft
�

1

RC

Z
1

�1

e�j2�f�e�
1

RC
� d�

�

=

"
1
RC

j2�f + 1
RC

#
ej2�ft

= g(ef(:); 0) ef(t)

So, g(ef(:); 0) = H(f), which is the transfer function of the system.
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EE445S Real-Time Digital Signal Processing Laboratory

Raised Cosine Spectrum

Section 7.5, pp. 431{434, Simon Haykin, Communication Systems, 4th ed.

We may overcome the practical diÆculties encounted with the ideal Nyquist channel by

extending the bandwidth from the minimum value W = Rb=2 to an adjustable value between

W and 2W . We now specify the frequency function P (f) to satisfy a condition more elaborate

than that for the ideal Nyquist channel; speci�cally, we retain three terms of (7.53) and restrict

the frequency band of interest to [�W;W ], as shown by

P (f) + P (f � 2W ) + P (f + 2W ) =
1

W
;�W � f � W (1)

We may devise several band-limited functions to satisfy (1). A particular form of P (f) that

embodies many desirable features is provided by a raised cosine spectrum. This frequency

characteristic consists of a 
at portion and a rollo� portion that has a sinusoidal form, as

follows:

P (f) =

8>>>>>><
>>>>>>:

1

2W
for 0 � jf j < f1

1

4W

 
1� sin

�(jf j �W )

2W � 2f1

!
for f1 � jf j < 2W � f1

0 for jf j � 2W � f1

(2)

The frequency parameter f1 and bandwidth W are related by

� = 1�
f1

W
(3)

The parameter � is called the rollo� factor; it indicates the excess bandwidth over the ideal

solution, W . Speci�cally, the transmission bandwidth BT is de�ned by 2W � f1 = W (1 + �).

The frequency response P (f), normalized by multiplying it by 2W , is shown plotted in Fig.

1 for three values of �, namely, 0, 0.5, and 1. We see that for � = 0:5 or 1, the function P (f)

cuts o� gradually as compared with the ideal Nyquist channel (i.e., � = 0) and is therefore

easier to implement in practice. Also the function P (f) exhibits odd symmetry with respect to

the Nyquist bandwidth W , making it possible to satisfy the condition of (1). The time response

p(t) is the inverse Fourier transform of the function P (f). Hence, using the P (f) de�ned in

(2), we obtain the result (see Problem 7.9)

p(t) = sinc(2Wt)

�
cos 2��Wt

1� 16�2W 2t2

�
(4)

which is shown plotted in Fig. 2 for � = 0, 0.5, and 1. The function p(t) consists of the product

of two factors: the factor sinc(2Wt) characterizing the ideal Nyquist channel and a second factor

that decreases as 1=jtj2 for large jtj. The �rst factor ensures zero crossings of p(t) at the desired



sampling instants of time t = iT with i an integer (positive and negative). The second factor

reduces the tails of the pulse considerably below that obtained from the ideal Nyquist channel,

so that the transmission of binary waves using such pulses is relatively insensitive to sampling

time errors. In fact, for � = 1, we have the most gradual rollo� in that the amplitudes of the

oscillatory tails of p(t) are smallest. Thus, the amount of intersymbol interference resulting

from timing error decreases as the rollo� factor � is increased from zero to unity.            

Figure 1: Frequency response for the raised cosine function.

The special case with � = 1 (i.e., f1 = 0) is known as the full-cosine rollo� characteristic,

for which the frequency response of (2) simpli�es to

P (f) =

8>><
>>:

1

4W

 
1 + cos

�f

2W

!
for 0 < jf j < 2W

0 if jf j � 2W

Correspondingly, the time response p(t) simpli�es to

p(t) =
sinc(4Wt)

1� 16W 2t2
(5)

The time response exhibits two interesting properties:

1. At t = �Tb=2 = �1=4W , we have p(t) = 0:5; that is, the pulse width measured at half

amplitude is exactly equal to the bit duration Tb.

2. There are zero crossings at t = �3Tb=2, �5Tb=2,... in addition to the usual zero crossings

at the sampling times t = �Tb;�2Tb; : : :

These two properties are extremely useful in extracting a timing signal from the received signal

for the purpose of synchronization. However, the price paid for this desirable property is the

use of a channel bandwidth double that required for the ideal Nyquist channel corresponding

to � = 0.

2



            

Figure 2: Time response for the raised cosine function.

3
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EE445S Real-Time Digital Signal Processing Laboratory

Analog Sinusoidal Modulation

Many ways exist to modulate a message signal m(t) to produce a modulated (transmitted)

signal x(t). For amplitude, frequency, and phase modulation, modulated signals can be expressed

in the same form as

x(t) = A(t) cos(2�fct+�(t))

where A(t) is a real-valued amplitude function (a.k.a. the envelope), fc is the carrier frequency,

and �(t) is the real-valued phase function. Using this framework, several common modulation

schemes are described below. In the table below, the amplitude modulation methods are dou-

ble sideband larger carrier (DSB-LC), DSB suppressed carrier (DSB-SC), DSB variable carrier

(DSB-VC), and single sideband (SSB). The hybrid amplitude-frequency modulation is quadra-

ture amplitude modulation (QAM). The angle modulation methods are phase and frequency

modulation.

Modulation A(t) �(t) Carrier Type Use

DSB-LC Ac [1 + kam(t)] �0 Yes Amplitude AM radio
DSB-SC Acm(t) �0 No Amplitude

DSB-VC Acm(t) + � �0 Yes Amplitude

SSB Ac

q
m2(t) + [m(t) ? h(t)]2 arctan(�m(t)?h(t)

m(t)
) No Amplitude y Marine radios

QAM Ac

q
m2

1(t) +m2
2(t) arctan(�m2(t)

m1(t)
) No Hybrid Satellite

Phase Ac �0 + kpm(t) No Angle Underwater

modems

Frequency Ac 2�kf
R t
0 m(t) dt No Angle FM radio

TV audio

y h(t) is the impulse response of a bandpass �lter or phase shifter to e�ect a cancellation of one
pair of redundant sidebands. For ideal �lters and phase shifters, the modulation is amplitude
modulation because the phase would not carry any information about m(t).

Each analog TV channel is allocated a bandwidth of 6 MHz. The picture intensity and color
information are transmitted using vestigal sideband modulation. Vestigal sideband modulation
is a variant of amplitude modulation (not shown above) in which the upper sideband is kept and

a fraction of the lower sideband is kept, or vice-versa. In an analog TV signal, the audio portion

is frequency modulated.

The following quantity is known as the complex envelope

~x(t) = A(t) ej�(t) = xI(t) + j xQ(t)

where xI(t) is called the in-phase component and xQ(t) is called the quadrature component. Both

xI(t) and xQ(t) are lowpass signals, and hence, the complex envelope ~x(t) is a lowpass signal.
An alterative representation for the modulated signal x(t) is

x(t) = <ef~x(t) ej2�fctg
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The University of Texas at Austin
Dept. of Electrical and Computer Engineering

Midterm #1

Date: March 9, 2006 Course: EE 345S Arslan

Name:                                                                                                                                                           
Last, First

• The exam is scheduled to last 75 minutes.
• Open books and open notes.  You may refer to your homework assignments and 

the homework solution sets.
• Calculators are allowed.
• You may use any standalone computer system, i.e. one that is not connected to a 

network.
• Please turn off all cell phones, pagers, and personal digital assistants (PDAs).
• All work should be performed on the quiz itself.  If more space is needed, then 

use the backs of the pages.
• Fully justify your answers.  

Problem Point Value Your score Topic
1 20 Digital Filter Analysis
2 20 IIR Filter
3 20 Sampling and Reconstruction
4 20 Linear Systems
5 20 Assembly Language

Total 100

K - 7



Problem 1.1 Digital Filter Analysis.  20 points.

A  causal  discrete-time  linear  time-invariant  filter  with  input  x[k]  and  output  y[k]  is 
governed by the following difference equation:

y[k] = -0.7 y[k-1] + x[k] - x[k-1]

(a) Draw the block diagram for this filter.  4 points.

(b) What are the initial conditions and what values should they be assigned?  4 points.

(c) Find the equation for the transfer function in the z-domain including the region of 
convergence.  4 points.

(d) Find the equation for the frequency response of the filter.  4 points.

(e) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  4 points.
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Problem 1.2 IIR filtering.  20 points.   
For the system shown below  

The input signal ( )x t  to the Continuous-to-Discrete converter is 

( )  4 cos(500 ) -3cos([(2000 / 3) ]x t t tπ π= +

The transfer function for the linear, time-invariant (LTI) system is ( )H z  

( ) ( ) ( ) ( )
( ) ( )

1 / 2 1 / 2 1

2 /3 1 2 / 3 1

1 1 1

1 0.9 1 0.9

j j

j j

z e z e z
H z

e z e z

π π

π π

− − − −

− − −

− − −
=

− −

If 1000sf =  samples/sec, determine an expression for ( )y t , the output of the Discrete-to-
Continuous converter.  

K - 9

C-to-D D-to-C
LTI 

System
H(z)

( )x t [ ]x n [ ]y n ( )y t

1/ sT f= 1/ sT f=



Problem 1.3. Sampling and Reconstruction.  20 points.

Suppose that a discrete-time signal x[n] is given by the formula

[ ] ( )7/2.0cos10 π−π= nnx

and that it was obtained by sampling a continuous-time signal at a sampling rate of fs = 2000 
samples/sec.

a) Determine two different continuous-time signals x1(t) and x2(t) whose samples are equal to 
x[n]; i.e. find x1(t) and x2(t) such that x[n] = x1(nTs) = x2(nTs)

 
b) If x[n] is given by the equation above, what signal will be reconstructed by an ideal D-to-C 

converter operating at sampling rate 2000 samples/sec? That is, what is the output y(t) in the 
following figure if x[n] is as given above?

K - 10

D-to-C
T

s
 = 1/f

s

x[n] y(t)



Problem 1.4. Linear Systems.  20 points.

Two stable discrete-time linear time-invariant (LTI) filters are in cascade as shown below.

a) Show that the end-to-end system from x[k] to y[k] is equivalent to the following system 
where the order of the systems have been replaced, or give a counter-example. 10 points

b) What practical considerations have to be taken into account when switching the order of two 
systems in practice? 10 points

K - 11

][kx
h1[n]

][ky
h2[n]

][kx
h2[n]

][ky
h1[n]



Problem 1.5 Assembly Language.  20 points.
Consider the discrete-time linear time-

invariant filter with x[n] and output y[n] shown on 
the right. Assume that the input signal x[n] and 
the coefficient a represent complex numbers. 

(a) Write the difference equation for this filter. Is 
this an FIR or IIR filter?  4 point.

(b) Sketch the pole-zero plot for this filter.  4 points.

(c) Write a linear TI C6700 assembly language routine to implement the difference equation. 
Assume that the address for x is in A4 and the address to y is in A5.  Assume that the input 
and output data as well as the coefficient consist of single precision floating point complex 
numbers.  Assume that the assembler will insert the correct number of no-operation (NOP) 
instructions to prevent pipeline hazards.  12 points.

K - 12

Σx[n] y[n]

Unit 
Delay

a  y[n-1]



























 

K -  25 

 

The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 

Midterm #1 

 

Date: October 12, 2007     Course: EE 345S Evans 

 

 

 

 

Name:    Set     Solution  

Last,      First   

 

 

 

 

 

• The exam is scheduled to last 50 minutes. 

• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 

• Calculators are allowed. 

• You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system. 

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs). 

• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 

• Fully justify your answers.   
 

 

 

 

Problem Point Value Your score Topic 

1 25  Digital Filter Analysis 

2 30  Upconversion 

3 25  Digital Filter Design 

4 20  Potpourri 

Total 100   



 

K -  26 

Problem 1.1 Digital Filter Analysis.  25 points. 

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is governed by 

the following difference equation 

y[k] = a
2
 y[k – 2] + (1 – a) x[k] 

where a is a real-valued constant with 0 < a < 1. 

Note: The output is a combination of the current input and the output two samples ago. 

(a) Is this a finite impulse response filter or infinite impulse response filter?  Why? 2 points. 

The current output y[k] depends on previous output y[k-2].  Hence, the filter is IIR. 

(b) Draw the block diagram for this filter.  4 points. 

 
(c) What are the initial conditions and what values should they be assigned?  4 points. 

y[0] = a
2
 y[–2] + (1 – a) x[0]       Hence, the initial conditions are y[-1] and y[-2], 

y[1] = a
2
 y[–1] + (1 – a) x[1]       i.e., the initial values of the memory locations for 

y[2] = a
2
 y[0]   + (1 – a) x[2]       y[k – 1] and y[k – 2].  These initial conditions should 

                                                 be set to zero for the filter to be linear & time-invariant  

(d) Find the equation for the transfer function in the z-domain including the region of convergence.  

5 points. 

Take the z-transform of both sides of the difference equation: 

Y(z) = a
2
 z

-2
 Y(z) + (1 – a) X(z) 

Y(z) – a
2
 z

-2
 Y(z) = (1 – a) X(z) 

(1  – a
2
 z

-2
) Y(z) = (1 – a) X(z) 

)1)(1(

1

1

1

)(

)(
)(

1122 −−− +−
−=

−
−==

azaz

a

za

a

zX

zY
zH   Hence, poles are located at z = a and z = –a. 

Since the system is causal, the region of convergence is |z| > a. 

(e) Find the equation for the frequency response of the filter.  5 points. 

System is stable because the two poles are located inside the unit circle since 0 < a < 1. 

Because the system is stable, we can convert the transfer function to a frequency response: 

ωωω
221

1
)()(

jezfreq
ea

a
zHH j −= −

−==  

(f) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  What value of the 

parameter a would you use?  5 points. 

Poles are at angles 0 rad/sample (low frequency) and ππππ rad/sample (high frequency). 

When a ≈≈≈≈ 0, the filter is close to allpass. 

When a ≈≈≈≈ 1, the filter is bandstop.  Poles close to the unit circle indicate the passband(s).   

Σ x[k] y[k] 

Delay 

Delay 

a2 

y[k-1] 

y[k-2] 
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Problem 1.2 Upconversion. 30 points. 

You’re the owner of The Zone AM radio station (AM 1300 kHz), and you’ve just bought KLBJ (AM 

590 kHz).   As a temporary measure, you decide to broadcast the same content (speech/audio) over 

both stations. 

Carrier frequencies for AM radio stations are separated by 10 kHz.  The speech/audio content is 

limited to a bandwidth of 5 kHz. 

 
The output y(t) should contain an AM radio signal at carrier frequency 590 kHz and an AM radio 

signal at carrier frequency 1300 kHz.  The input x(t) = 1 + ka m(t), where m(t) is the speech/audio 

signal to be broadcast.  Since m(t) could come from an audio CD, the bandwidth of m(t) could be as 

high as 22 kHz.  Note:  Filter #1 is anti-aliasing filter.  Filter #2 is a two-passband bandpass filter. 

 

(a) Continuous-Time Analysis.  15 points. 

1) Specify a passband frequency, passband deviation, stopband frequency, and stopband 

attenuation for filter #1.  Speech/audio bandwidth for AM radio is limited to 5 kHz.  

Filter #1 enforces this requirement (see homework problems 2.3 and 3.3).  Assuming 

the ideal passband response is 0 dB, Apass = -1 dB and Astop = -90 dB.   The 90 dB of 

comes from the dynamic range of the audio CD.  Also, fstop < 5 kHz.  We’ll choose 

fpass = 4.3 kHz and fstop = 4.8 kHz.  The transition region is roughly 10% of fpass. 

2) Give the sampling rate fs of the sampler.  We want to produce replicas of filter #1 output 

centered at 590 kHz and 1300 kHz.  Also fs > 2 fmax and fmax = 4.8 kHz.  So, fs = 10 kHz. 

3) Draw the spectrum of w(t).  Each lobe below is 2 fmax wide. 

 
4) Give the filter specifications to design filter #2.  Filter #2 passbands are 585.7−594.3 kHz 

and 1295.7−1304.3 kHz, and stopbands are 0−585 kHz, 595−1295 kHz, and greater 

than 1305 kHz.  These bands have counterparts in negative frequencies. 

5) Draw the spectrum of y(t).  Each lobe below is 2 fmax wide. 

 

f 

Y(f) 

Sampler at 

sampling 

rate of fs 

x(t) Filter #1  

h1(t) 

Filter #2 

h2(t) 

y(t) 
 

w(t) 
 

f 

W(f) 

fs 2fs −2fs −fs 

590 kHz 1300 kHz −590 kHz −1300 kHz 
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The block diagram for the system is repeated here for convenience: 

 

 
 

(b) Discrete-Time Implementation.  15 points. 

1) Give a second sampling rate to convert the continuous-time system to a discrete-time 

system.  There are two conditions on the second sampling rate, as seen in homework 

problem 3.2.  First, we’ll need to pick a second sampling rate fs2 for x(t), w(t), and y(t) 

that minimizes aliasing.  The maximum frequencies of interest for x(t) and y(t) are 22 

kHz and 1305 kHz, respectively.  In theory, w(t) is not bandlimited.  Second, we’ll 

need to pick the second sampling rate to be an integer multiple of fs.  In summary, 

fs2 > 2 (1305 kHz)   and  fs2 = k fs, where k is an integer 

2) Would you use a finite impulse response (FIR) or infinite impulse response (IIR) filter for 

filter #1?  Why?  In audio, phase is important.  AM radio stations generally broadcast 

single-channel audio.  (AM stereo had gains in popularity in the 1990s, but has been in 

decline due to digital radio.)  Assuming single-channel transmission, filter #1 should 

have linear phase.  Hence, filter #1 should be FIR.  

3) What filter design method would you use to design filter #1?  Why? 

I would use the Parks-McClellan (Remez exchange) algorithm to design the shortest 

linear phase FIR filter. 

4) Would you use a finite impulse response (FIR) or infinite impulse response (IIR) filter for 

filter #2?  Why?   As per part (2), filter #2 should have linear phase, and hence be FIR.  

Also, filter #2 is a multiband bandpass filter.  It is not clear how to use classical IIR 

filter design methods to design such a filter. 

5) What filter design method would you use to design filter #2?  Why?  Through homework 

assignments, we have designed multiband FIR filters using the Parks-McClellan 

(Remez exchange) algorithm.  The Kaiser window method is for lowpass FIR filters.  

The FIR Least Squares method could be used.  I would use the Parks-McClellan 

(Remez exchange) algorithm to design the shortest multiband linear phase FIR filter. 

 

Sampler at 

sampling 

rate of fs 

x(t) Filter #1  

h1(t) 

Filter #2 

h2(t) 

y(t) 
 

w(t) 
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Problem 1.3 Digital Filter Design. 25 points. 

Consider the following cascade of two causal discrete-time linear time invariant (LTI) filters with 

impulse responses h1[n] and h2[n], respectively: 

 

 
 

Filter #1 has the following impulse response: 

 
 

The (group) delay through filter #1 is ½ sample.  Note: Filter #1 is a first-order difference filter. 

Design filter #2 so that it satisfies all three of the following conditions: 

   a. Cascade of filter #1 and filter #2 has a bandpass magnitude response, 

   b. Cascade of filter #1 and filter #2 has (group) delay that is an integer number of samples, and 

   c. Filter #2 has minimum computational complexity. 

Group delay is defined as the negative of the derivative (with respect to frequency) of the phase 

response.  As discussed in lecture, a linear phase FIR filter with N coefficients has a group delay 

of (N-1)/2 samples for all frequencies.  So, a first-order difference filter has a delay of ½ samples. 

As we saw in the mandrill (baboon) image processing demonstration, a cascade of a highpass 

filter (first-order differencer) and a lowpass filter (averaging filter) has a bandpass response, 

provided that there is overlap in their passbands. 

A two-tap averaging filter has a group delay of ½ samples.  A cascade of a first-order difference 

filter and a two-tap averaging filter would have a group delay of 1 sample. 

A two-tap averaging filter with coefficients equal to one would only require 1 addition per 

output sample.  No multiplications required.  This is indeed low computational complexity. 

h2[n] = 
�

[n] + 
�

[n-1] 

x[n] 

Filter #1  

h1[n] 

Filter #2 

h2[n] y[n] w[n] 

n 

h1[n] 
1 

-1 
2 3 
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Problem 1.4. Potpourri.  20 points. 

 

Please determine whether the following claims are true or false and support each answer with a brief 

justification.  If you give a true or false answer without any justification, then you will be awarded 

zero points for that answer. 

 

(a) The automatic order estimator for the Parks-McClellan (a.k.a. Remez Exchange) algorithm always 

gives the shortest length FIR filters to meet a piecewise constant magnitude response specification.  

4 points.  False, for two different reasons.  First, the Parks-McClellan algorithm designs the 

shortest length linear phase FIR filters with floating-point coefficients to meet a piecewise 

constant magnitude response specification.  Second, the automatic order estimator is an 

important but nonetheless empirical formula developed by Jim Kaiser.  It can be off the 

mark by as much as 10%.  Sometimes, the order returned by the automatic order estimator 
does not meet the filter specifications.  

(b) All linear phase finite impulse response (FIR) filters have even symmetry in their coefficients.  

Assume that the FIR coefficients are real-valued.  4 points.  False.  It true that FIR filters that 

have even symmetry in their coefficients (about the mid-point) have linear phase.  However, 

as mentioned in lecture, FIR filters with coefficients that have odd symmetry (about the mid-

point) also have linear phase. 

(c) If  linear phase finite impulse response (FIR) floating-point filter coefficients were converted to 

signed 16-bit integers by multiplying by 32767 and rounding the results to the nearest integer, the 

resulting filter would still have linear phase.  4 points.  True.  An FIR filter has linear phase if 

the coefficients have either odd symmetry or even symmetry about the mid-point.  

Multiplying the coefficients by a constant does not change the symmetry about the mid-point.  

In addition, round(−x) = −round(x).  Hence, rounding does not affect symmetry either. 

(d) Floating-point programmable digital signal processors are only useful in prototyping systems to 

determine if a fixed-point version of the same system would be able to run in real time.  

4 points.  False, due to the word “only”.  It is true that floating-point programmable DSPs are 

useful in feasibility studies become committing the design time and resources to map a 

system into fixed-point arithmetic and data types.  Beyond that, however, floating-point 

programmable DSPs are commonly used in low-volume products (e.g. sonar imaging systems 

and radar imaging systems) and in high-end audio products (e.g. pro-audio, car audio, and 

home entertainment systems). 

(e) In the TMS320C6000 family of programmable digital signal processors, consider an equivalent 

fixed-point processor and floating-point processor, i.e. having the same clock speed, same on-chip 

memory sizes and types, etc.  The fixed-point processor would have lower power consumption.  4 

points.  This one could go either way.  True.  If the data types in a floating-point program 

were converted from 32-bit floats to 16-bit short integers, and the floating-point 

computations were converted to fixed-point computations, then the fixed-point processor 

would consume less power.  The fixed-point processor would only need to load from on-chip 

memory half as often, and multiplication (addition) would take 2 cycles (1 cycle) instead of 4 

cycles.  Fixed-point multipliers and adders take far fewer gates than their floating-point 

counterparts, which saves on power consumption.  False.  If a floating-point program were 

run by emulating floating-point computations to the same level of precision on a fixed-point 

processor, then the fixed-point processor would actually consume more power. 
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Problem 1.1 Digital Filter Analysis.  25 points. 

A causal discrete-time linear time-invariant filter with input x[k] and output y[k] is 

governed by the following equation 

y[k] = x[k] + a x[k-1] + x[k-2] 

where a is a real-valued constant with 1 ≤ a ≤ 2. 

(a) Is this a finite impulse response filter or infinite impulse response filter?  Why? 2 points. 

 

 

 

(b) Draw the block diagram for this filter.  4 points. 

 

 

 

 

 

 

(c) What are the initial conditions and what values should they be assigned?  4 points. 

 

 

 

 

(d) Find the equation for the transfer function in the z-domain including the region of 

convergence.  5 points. 

 

 

 

 

 

 

 

 

(e) Find the equation for the frequency response of the filter.  5 points. 

 

 

 

 

 

 

(f) Is this filter lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  5 points. 
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Problem 1.2 Sinusoidal Generation. 25 points. 

Some programmable digital signal processors have a ROM table in on-chip memory that 

contains values of cos(θ) at uniformly spaced values of θ. 

Consider the array c[n] of cosine values taken at one degree increments in θ and stored in ROM: 








= nnc
180

cos][
π

  for n = 0, 1, ..., 359. 

(a) If the array c[n] were repeatedly sent through a digital-to-analog (D/A) converter with a 

sampling rate of 8000 Hz, what continuous-time frequency would be generated?  5 points. 

 

 

 

(b) How would you most efficiently use the above ROM table c[n] to compute s[n] given below.   

5 points. 








= nns
180

sin][
π

 for n = 0, 1, ..., 359? 

 

 

 

 

(c) How would you most efficiently use the above ROM table c[n] to compute d[n] given below. 

5 points. 








= nnd
90

cos][
π

 for n = 0, 1, ..., 179 

 

 

 

(d) How would you most efficiently use the above ROM table c[n] to compute x[n] given below. 

10 points. 








= nnd
360

cos][
π

 for n = 0, 1, ..., 719 
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Problem 1.3 Digital Filter Design. 30 points. 

Consider the following cascade of two causal discrete-time linear time invariant (LTI) filters 

with impulse responses h1[n] and h2[n], respectively: 

 

 
 

(a) Poles (X) and zeros (O) for filter #1 are shown below.  Assume that the poles have radii of 

0.9, and the zeros have radii of 1.2.  Is filter #1 a lowpass, highpass, bandpass, bandstop, 

allpass or notch filter?  Why?  10 points. 

 

(b) Give the transfer function for H1(z).  5 points. 

 

(c) Design filter #2 by placing the minimum number of poles and zeros on the pole-zero 

diagram below so that the cascade of filter #1 and filter #2 is allpass.  10 points. 

 
(d) Give the transfer function H2(z).  5 points.

x[n] 

Filter #1  

h1[n] 

Filter #2 

h2[n] y[n] w[n] 

Re(z) 

Im(z) 

X X 

O 

O 

H1(z) 

Re(z) 

Im(z) H2(z) 
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Problem 1.4. Potpourri.  20 points. 

 

Please determine whether the following claims are true or false and support each answer with a 

brief justification.  If you give a true or false answer without any justification, then you will 

be awarded zero points for that answer. 

 

(a) Assume that a particular linear phase finite impulse response (FIR) filter design meets a 

magnitude specification and that no lower-order linear phase FIR filter exists to meet the 

specification.  The linear phase FIR filter will always have the lowest implementation 

complexity on the TI TMS320C6713 programmable digital signal processor among all filters 

that meet the same specification.  5 points. 

 

 

 

 

 

 

(b) Consider the cascade of two discrete-time linear time-invariant systems shown below. 

 
If the order of the filters in cascade is switched, then the relationship between x[n] and y[n] 

will always be the same as in the original system.  5 points. 

 

 

 

 

 

 

(c) Continuous-time analog signals conform nicely to the Nyquist Sampling Theorem because 

they are always ideally bandlimited.  5 points. 

 

 

 

 

 

 

 

(d) If 
�
[n] were input to a discrete-time system and the output were also 

�
[n], then system could 

only be the identity system, i.e. the output is always equal to the input.  5 points. 

 

 

 

 

x[n] 

Filter #1  

h1[n] 

Filter #2 

h2[n] y[n]  
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Problem 1.1 Digital Filter Analysis.  28 points. 

A causal discrete-time linear time-invariant filter with input x[n] and output y[n] is governed by 

the following equation, where a is real-valued, 

y[n] = x[n] – a
2
 x[n-2] 

(a) Is this a finite impulse response filter or an infinite impulse response filter?  Why? 2 points. 

The impulse response can be computed by letting the input be discrete-time impulse, 

i.e. x[n] = δδδδ[n].  The response (output) is h[n] = δδδδ[n] – a
2
 δδδδ[n-2].  The impulse response is 

finite in extent (3 samples in extent).  Hence, the filter is a finite impulse response filter. 

(b) Draw the block diagram for this filter.  4 points.  Adapting a tapped delay block diagram, 

 

 

 

 

 

 

 

 

(c) What are the initial conditions? What values should they be assigned and why?  4 points. 

y[0] = x[0] −−−− a
2
 x[-2]       Hence, the initial conditions are x[-1] and x[-2], 

y[1] = x[1] −−−− a
2
 x[-1]       i.e., the initial values of the memory locations for 

y[2] = x[2] −−−− a
2
 x[0]        x[n– 1] and x[n – 2].  These initial conditions should 

                               be set to zero for the filter to be linear & time-invariant  

(d) Find the equation for the transfer function of the filter in the z-domain including the region of 

convergence.  5 points.  Taking z-transform of both sides of difference equation gives 

Y(z) = X(z) −−−− a
2
 z

-2
 X(z), which gives Y(z) = (1 −−−− a

2
 z

-2
) X(z):  221

)(

)(
)( −−== za

zX

zY
zH    

Two zeros at z=a and z=–a, and two poles at origin.  ROC is entire z plane except origin. 

(e) Find the equation for the frequency response of the filter. 5 points.  Since the ROC includes 

the unit circle, we can convert the transfer function to a frequency response as follows: 
ω

ωω 221)()( j

ezfreq eazHH j

−
=

−==  

(f) For this part, assume that 0.9 < a < 1.1.  Draw the pole-zero diagram. Would the frequency 

selectivity of the filter be best described as lowpass, bandpass, bandstop, highpass, notch, or 

allpass?  Why?  8 points.   Zeros on or near the unit circle indicate the stopband.  There 

are two zeros at z = a and z = –a, which correspond to 

frequencies ωωωω = 0 rad/sample and ωωωω = ππππ rad/sample, 

respectively.  This corresponds to a bandpass filter. 

 

z
-1 z

-1 x[n] 

+ 

-a
2 

x[n-1] x[n-2] 

y[n] 

Re(z) 

Im(z) 

O O 



Problem 1.2 Filter Design Tradeoffs. 30 points. 

Consider the following filter specification for a narrowband lowpass discrete-time filter: 

• Sampling rate fs of 1000 Hz 

• Passband frequency fpass of 10 Hz with passband ripple of 1 dB 

• Stopband frequency fstop of 40 Hz with stopband attenuation of 60 dB 

Evaluate the following filter implementations on the C6700 digital signal processor in terms of 

linear phase, bounded-input bounded-output (BIBO) stability, and number of instruction cycles 

to compute one output value.  Assume that the filter implementations below use only single-

precision floating-point data format and arithmetic, and are written in the most efficient C6700 

assembly language possible. 

(a) .Finite impulse response (FIR) filter of order 83 designed using the Parks-McClellan 

algorithm and implemented as a tapped delay line.  9 points.   Problem implies that the 

Parks-McClellan algorithm has converged.   After convergence, the Parks-McClellan 

algorithm always gives an FIR filter whose impulse response is even symmetric about 

the midpoint, which guarantees linear phase over all frequencies.  

Linear phase:  In passband?   Yes, see above. 

In stopband?   Yes, see above. 

BIBO stability:  YES or NO.   Why?  An FIR filter is always BIBO stable.  Each 

 output sample is a finite sum of weighted current and previous 

input samples.  Each weight is finite in value, and each input 

sample is finite in value.  A finite sum of finite values is bounded. 

Instruction cycles: 83+1+28 = 112 cycles, by means of Appendix N in course reader. 

(b) Infinite impulse response (IIR) filter of order 4 designed using the elliptic algorithm and 

implemented as cascade of biquads.  One pole pair has radius 0.992 and quality factor 3.9. 

The other has radius 0.9785 and quality factor of 0.8.  9 points.  Homework problem 3.3 

concerned the design of IIR filters using the elliptic design algorithm.  The solution to 

homework problem 3.3 plotted magnitude and phase response of an elliptic design. 

Linear phase:  In passband?  Approximate linear phase over some of passband 

In stopband?  Approximate linear phase over some of stopband 

BIBO stability:  YES or NO.   Why?   Yes, the poles are inside the unit circle.  The 

    quality factors are quite low; hence, the poles are unlikely to  

    become BIBO unstable when implemented. 

Instruction cycles: 2 (5 + 28) = 66 cycles by means of Appendix N in course reader.  

(An efficient implementation could overlap the implementation 

for biquad #2 after data reads are finished for biquad #1, which 

would save 11 instruction cycles.) 



(c) IIR filter with 2 poles and 62 zeros.  Poles were manually placed to correspond to 10 Hz and 

have radii of 0.95.  Zeros were designed using the Parks-McClellan algorithm with the above 

specifications.  Implementation is a tapped delay line followed by all-pole biquad.  12 points. 

Linear phase:  In passband?   Approximate linear phase over some of passband 

In stopband?   Approximate linear phase over some of stopband 

BIBO stability:  YES or NO.   Why?   Yes, the poles are inside the unit circle.  The 

    quality factor is quite low; hence, the poles are unlikely to  

    become BIBO unstable when implemented. 

Instruction cycles: (62+1+28) + (2 + 28) = 121 cycles by means of Appendix N in 

course reader.  (An efficient implementation can remove the 

second 28 cycles of overhead to give a total of 93 cycles.) 

Pole locations:  Angle of first pole: ωωωω0 = 2 ππππ f0 / fs = 2 ππππ (10 Hz) / (1000 Hz). 

Pole locations are at 0.95 exp(j ωωωω0) and  0.95 exp(-j ωωωω0). 

 

Matlab code to design the filter for part (c), which was not required for the test: 

numerCoeffs = firpm(62, [0 .02 0.08 1], [1 1 0 0]) / 165; 

denomCoeffs = conv([1 -0.95*exp(j*2*pi*10/1000)], [1 -0.95*exp(-j*2*pi*10/1000)]); 

freqz(numerCoeffs, denomCoeffs) 



Problem 1.3 Downconversion.  24 points. 

Consider the bandpass continuous-time 

analog signal x(t).  Its spectrum is shown 

on the right.  The signal x(t) was formed 

through upconversion.  Our goal will be 

to recover the baseband message signal 

m(t) by processing x(t) in discrete time. 

Let B be the bandpass bandwidth in Hz of x(t) given by B = f2 – f1 

       fc be the carrier frequency in Hz given by fc = ½ (f1 + f2) where fc > 2 B. 

       fs be the sampling rate in Hz for sampling x(t) to produce x[n] 

      ωpass be the passband frequency of a discrete-time filter in rad/sample 

      ωstop be the stopband frequency of a discrete-time filter in rad/sample 

(a) Downconversion method #1.  12 points, 

Uses sinusoidal amplitude demodulation. 

Give formulas for ω0, ωpass, ωstop and fs. 

Analyze in continuous-time first. 

 

s

c

f

fπω 20 =          )2/2(2 Bff cs +>  

sf

B 2/
2pass πω =      

s

c

f

ff 1
stop 2

+= πω   

(b)  

(c) Downconversion method #2.  12 points. 

Uses a squaring device.  Assume that output values of the lowpass filter are non-negative. 

Give formulas for ωpass, ωstop and fs. 

Analyze in continuous time first. 

W(f) = X(f) * X(f) 

sf

Bπω 2pass =  

s

c

f

Bf −
=

2
2stop πω  

 

)2(2 Bff cs +>  

f 

X(f) 

f1 f2 –f2 –f1 

)   cos( 0 nω

][nx
][nv

Lowpass 

filter 

][ˆ nm

][nx ][nw
Lowpass 

filter (·)
2 

][ˆ nm

 ( )•

f 

V(f) 

fc+f1 

fc+f2 

B/2 –B/2 – fc – f1 

– fc – f2 

f 

W(f) 

2fc – B 

2fc+B 

B –B – 2fc +B 

– 2fc – B 



Problem 1.4. Potpourri.  18 points. 

Please determine whether the following claims are true or false.  If you believe the claim to be 

false, then provide a counterexample.  If you believe the claim to be true, then give supporting 

evidence that may include formulas and graphs as appropriate.  If you give a true or false answer 

without any justification, then you will be awarded zero points for that answer.  If you answer 

by simply rephrasing the claim, you will be awarded zero points for that answer. 

(a) Consider an infinite impulse response (IIR) filter with four complex-valued poles (occurring 

in conjugate symmetric pairs) and no zeros.  When implemented in handwritten assembly on 

the C6713 digital signal processor using only single-precision floating-point data format and 

arithmetic, a cascade of four first-order IIR sections would be more efficient in computation 

than implementing the filter as a cascade of two second-order IIR sections. 9 points. 

False. Assume input x[n] is real-valued. Poles located at p1, p2, p3 and p4.  Outputs for 

the four first-order sections follow: 

y1[n] = x[n] + p1  y1[n-1] 

y2[n] = y1[n] + p2  y2[n-1] 

y3[n] = y2[n] + p3  y3[n-1] 

y4[n] = y3[n] + p4  y4[n-1] 

For the cascade of first-order sections, the final output value can be calculated as 

y4[n] = x[n] + p1  y1[n-1] + p2  y2[n-1] + p3  y3[n-1] + p4  y4[n-1] 

Cascade of biquads has real-valued feedback coefficients.  Its final output value is 

v2[n] = x[n] + b1  v1[n-1] + b2  v1[n-2] + b3  v2[n-1] + b4  v2[n-2] 

Case #1:  All poles are real-valued.  Cascade of first-order sections requires the same 

execution time as a tapped delay line with five coefficients, or 33 instruction cycles, 

according to Appendix N in course reader.  Same goes for the cascade of biquads. 

Case #2:  Poles are complex-valued and occur in conjugate symmetric pairs.  Cascade 

of biquads still takes 33 instruction cycles.  For cascade of first-order sections, the 

first section output x[n] + p1 y1[n-1] is complex-valued.  In subsequent sections, the 

complex-valued multiply-add operation will require four times the number of real-

valued multiply-add operations.  Cascade of biquads will hence require fewer cycles. 
 

(b) Consider implementing an infinite impulse response (IIR) filter solely in single-precision 

floating-point data format and arithmetic.  There are no conditions under which the 

implemented filter would be linear and time-invariant.  9 points. 

False.  Counterexample:  y[n] = x[n] + y[n-1]  where y[-1] = 0 and x[n] = δδδδ[n].  The 

system passes the all-zero test.  The system is linear and time-invariant only for a 

limited set of input signals. 

True.  Although a necessary condition for linear and time-invariance is that the initial 

conditions are zero, exact precision calculations in IIR filters require increasing 

precision as n increases in the worst case. (This is mentioned in lecture 6 slides when 

the block diagram for each of the three IIR direct form structures was discussed).  

Eventually, the increase in precision will exceed the precision of the single-precision 

floating-point data format.  The clipping that results will cause linearity to be lost. 
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Problem 1.1 Digital Filter Analysis.  28 points. 

A causal discrete-time linear time-invariant filter with input x[n] and output y[n] is governed by 

the following difference equation: 

y[n] – 0.8 y[n-1] = x[n] – 1.25 x[n-1] 

(a) Is this a finite impulse response filter or an infinite impulse response filter?  Why? 2 points. 

 

 

 

(b) Draw the block diagram for this filter.  4 points. 

 

 

 

 

 

 

(c) What are the initial conditions? What values should they be assigned and why?  4 points. 

 

 

 

 

(d) Find the equation for the transfer function of the filter in the z-domain including the region of 

convergence.  5 points. 

 

 

 

 

 

 

 

 

(e) Find the equation for the frequency response of the filter.  5 points. 

 

 

 

 

 

 

(f) Draw the pole-zero diagram. Would the frequency selectivity of the filter be best described 

as lowpass, bandpass, bandstop, highpass, notch, or allpass?  Why?  8 points. 

 

 



Problem 1.2 Sinusoidal Generation. 30 points. 

Consider generating a causal discrete-time cosine waveform y[n] that has a fixed frequency of 

ω0 = 2 π f0  / fs, where f0 is the continuous-time sinusoidal frequency and fs is the sampling rate: 

y[n] = cos(ω0 n) u[n] 

(a) What value must fs take to prevent aliasing?  6 points. 

 

(b) We’ll evaluate design tradeoffs on the C6000 family of digital signal processors.  Assume 

that the most efficient assembly language implementation is used in all cases.  18 points. 

 

Data Size   Operation Throughput Delay Slots 

16-bit short   addition    1 cycle    0 cycles 

16-bit by 16-bit short  multiplication    1 cycle    1 cycle 

32-bit floating-point  addition    1 cycle    3 cycles 

32-bit x 32-bit floating-point multiplication    1 cycle    3 cycles 

64-bit floating-point  addition    2 cycles    6 cycles 

64-bit x 64-bit floating-point multiplication    4 cycles    9 cycles 

 

Please complete the following table: 

Method Memory for data 

and coefficients 

(in bytes) 

Multiplication-

add operations 

per output 

sample 

C6000 cycles to finish 

multiplication-add 

operations to compute 

one output sample 

C math library call 

 

 

 

   

Difference equation 

using 32-bit floating-

point data/arithmetic 

 

   

Difference equation 

using arithmetic on 

16-bit (short) data 

and coefficients 

   

 

(c) Which method would you advocate using?  Why?  6 points. 
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Problem 1.3 Upconversion.  24 points. 

Consider a baseband continuous-time analog signal  

m(t).  Its spectrum is shown on the right.  Our goal is  

to upconvert m(t) into a bandpass signal s(t).  Our 

upconversion will be implemented in discrete time. 

Let W : baseband bandwidth in Hz of m(t) 

      B  : transmission bandwidth of s(t) 

       fc : carrier frequency in Hz of s(t) where fc > 3 W 

       fs : sampling rate in Hz for sampling of m(t) to give m[n] and s(t) to give s[n] 

      ωpass : passband freq. of discrete-time filter in rad/sample 

      ωstop : stopband freq. of discrete-time filter in rad/sample 

(a) Upconversion method #1.  14 points,   

Uses sinusoidal amplitude modulation. 

Give formulas for the following parameters: 

ω0 = 

B =  

ωstop1 =  

ωpass1 = 

ωpass2 =  

ωstop2 = 

fs >  

(b) Upconversion method #2.  10 points. 

Uses a squaring device and the 

bandpass filter from part (a). 

Give formulas for the following parameters: 

ω0 =  

Β = 

fs >  



Problem 1.4. Potpourri.  18 points. 

(a) For a system design, you have determined that you need to design a linear phase discrete-

time finite impulse response filter to meet piecewise magnitude constraints.  The Parks-

McClellan design algorithm fails to converge.  What filter design method would you use and 

why?  9 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) For a system design, you have determined that you need a discrete-time biquad notch filter to 

remove a narrowband interferer at discrete-time frequency ω0.  The actual discrete-time 

frequency will vary over time when the system is deployed in the field.  Give the poles and 

zeros for the notch filter.  Set the biquad gain to 1.   9 points. 
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Problem 2.1 True/False Questions. 30 points.Please determine whether the following claims are true or false and support each an-swer with a brief justi�cation. If you put a true/false answer without any justi�cation,then you will get 0 points for that part.(a) The receiver (demodulator) design for digital communications is always more compli-cated than the transmitter (modulator) design.(b) Pulse shaping �lters are designed to contain the spectrum of a digital communica-tion signal. They will introduce ISI except that we sample at certain particular timeinstances.(c) The eye diagram does not tell you anything about intersymbol interference but onlytells you how noisy or how clean the channel is.(d) QAM is more popular than PAM because it is easier to build a QAM receiver than aPAM receiver.(e) It is less accurate to use a DSP to realize in-phase/quadrature (I/Q) modulation anddemodulation than to use an analog I/Q modulator and demodulator due to the quan-tization errors.(f) A low-cost DSP cannot be used for doing in-phase/quadrature (I/Q) modulation anddemodulation for high carrier frequency (e.g., 100 MHz) since it does not have enoughMIPS to implement it.(g) PAM and QAM will have the same bit-error-rate (BER) performance given the samesignal-to-noise ratio (SNR).(h) Digital communication systems are better than analog communication systems sincedigital communication systems are more reliable and more immune to noise and inter-ference.(i) FM and Spread Spectrum communications are examples of wideband communications.The excess frequency makes transmission more resistant to degradation by the channel.(j) Analog PAM generally requires channel equalization.



Problem 2.2 PAM and QAM. 20 points.
I

Q

2d

2d

0001

1110

00 01 10 11

QAM -4 PAM-4Figure 1: PAM-4 and QAM-4 (QPSK) constellationAssume that the noise is additive white Gaussian noise with variance �2 in both thein-phase and quadrature components.Assuming that 0's and 1's appear with equal probability.The symbol error probability formula for PAM-4 isPe = 32 Q d�!(a) Derive the symbol error probability formula for QAM-4 (also known as QPSK) shownin Figure 1. 10 points.



(b) Please accurately calculate the power of the QPSK signal given d. Please compare thepower di�erence of PAM-4 and QAM-4 for the same d. 5 points.

(c) Are the bit assignments for the PAM or QAM optimal in Figure 1? If not, thenplease suggest another assignment scheme to achieve lower bit error rate given thesame scenario, i.e., the same SNR. The optimal bit assignment is commonly referredto as Gray coding. 5 points.



Problem 2.3 Pulse Shaping. 20 points.Consider doing pulse shaping for a 2-PAM signal also known as BPSK signal. Assumethe pulse shaping �lter has 24 coe�cients fh0; : : : ; h23g and the oversampling rate is 4.(a) Draw a block diagram of a �lter bank scheme to implement the pulse shaping. Pleasealso specify the number of the �lters in the �lter bank and express the coe�cients ofeach �lter in terms of h0, . . . , h23. 5 points.

(b) Evaluate the number of MACs and the amount of RAM space required to accomplishthe pulse shaping via the approach in (a). 5 points.



(c) Since the data symbols coming into the �lters in (a) are 1's or -1's (BPSK) and the�lter coe�cients are �xed, the pulse shaping �lter can be implemented via a lookuptable approach on a DSP (similar to the implementation of sine and cosine signals).Please describe one way of implementing the lookup table approach, including how tobuild the lookup table. 5 points.

(d) If a bit shift operation and a MAC instruction each takes one instruction cycle (omittingthe data move instructions), how many instructions and how much RAM space arerequired to implement the pulse shaping via the lookup table approach. Please comparethe results with those in (b). 5 points.



Problem 2.4 ADSL Modems. 15 points.(a) What does the fast Fourier transform implement? 2 points.
(b) Estimate the number of multiply-accumulates per second for the upstream and down-stream fast Fourier transform. 4 points.
(c) Before each symbol is transmitted, a cyclic pre�x is transmitted. 3 points.1. How is the cyclic pre�x chosen?

2. Give two reasons why a cyclic pre�x is used.
(d) Compare discrete multitone (DMT) modulation, such as the ADSL standards, withorthogonal frequency division multiplexing (OFDM), such as for the physical layer ofthe IEEE 802.11a wireless local area network standard.1. Give three similarities between DMT and OFDM. 3 points.

2. Give three di�erences between DMT and OFDM. 3 points.



Problem 2.5 Potpourri. 15 points.(a) You are evaluating two DSP processors, the TI TMS320C6200 and the TI TMS320C30,for use in a high-end laser printer that has to process 40 MB/s. Which of the twoprocessors would you choose? Give at least three reasons to support your choice. 6points.

(b) You are designing an A/D converter to produce audio sampled at 96 kHz with 24 bitsper sample. When an analog sinusoid is input to the A/D converter, the convertershould produce one sinusoid at the right frequency and no harmonics. The convertershould give true 24 bits of precision at low frequencies, but can give lower resolutionat higher frequencies. Draw a block diagram of the A/D converter you would design.9 points.
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Problem 2.1 Phase Modulation.  15 points.      

Phase modulation at a carrier frequency fc of a causal message signal m(t) is defined as 

Frequency modulation is defined as 

(a) Show that one can use a frequency modulator to generate a phase modulated signal using 

the block diagram below.  Give kp in terms of frequency modulation parameters.  5 points. 

 

 

 

 

 

 

 

 

(b) Give a version of Carson’s rule for the transmission bandwidth of phase modulation.  You 

do not have to derive it.  10 points. 
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Problem 2.2  Equalizer Design.  15 points.    

You are given a discretized communication channel defined by the following sampled 

impulse response with a representing a real number: 

 

h[n] =  δ[n] – 2 a δ[n-1] + a
2
 δ[n-2] 

 

(a) For this channel, what would you propose to do at the transmitter to prevent intersymbol 

interference?  5 points. 

 

 

 

 

 

(b) Find the transfer function of the discretized channel.  5 points. 

 

 

 

 

 

(c) For this channel, design a stable linear time-invariant equalizer for the receiver so that the 

impulse response of the cascade of the discretized channel and equalizer yields a delayed 

impulse.  Please state any assumptions on the value of a.  5 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem 2.3 8-QAM.  30 points. 

This problem asks you to compare the two different 8-QAM constellations below.   

(i) Assume that the channel noise is additive white Gaussian noise with variance σ2
 in 

both the in-phase and quadrature components. 

(ii) Assume that 0's and 1's occur with equal probability. 

(iii) Assume that the symbol period T is equal to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Compute the average power for each 8-QAM constellation.  5 points. 

 

 

 

 

 

 

(b) Compute the formula for probability of symbol error for each 8-QAM in terms of the Q 

function.  Draw the decision regions you are using on the above constellations.  15 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Draw the optimal bit assignments for each symbol you would use for each of the 

constellations above on the constellations directly.  5 points. 

 

(d) How would you choose which 8-QAM constellation to use in a modem?  5 points. 

I 

Q 

2d 

2d I 

Q 

2d 

2d 



Problem 2.4 ADSL Receivers.  20 points.    

 

Downstream ADSL transmission uses a symbol length N of 512, a cyclic prefix ν of 32 

samples, and a sampling rate of 2.208 MHz.  There are N/2 or 256 subchannels. 

 

A downstream ADSL receiver for data transmission is shown below.  The D/A converter has 16 

bits of resolution.  Use a word size of 16 bits for the analysis.  The time-domain equalizer is a 

32-tap FIR filter.  Please calculate the computational complexity and memory usage of the each 

function shown except for the receive filter and A/D converter. (From slide 18-8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             N/2 subchannels 
 

 

 

 

 

 

  

 

 

 

 

Function Multiply-

accumulates 

Compares Words of 

memory 

Time domain equalizer    

Remove cyclic prefix    

Serial-to-parallel converter    

Fast Fourier Transform    

Remove mirrored data    

Frequency domain equalizer    

QAM decoder    

Parallel-to-serial converter    

P/S QAM 
demod 

 
decoder 

invert 
channel 

= 
frequency 
domain 

equalizer 

N-FFT 
and  

remove 
mirrored 

data 

N real 

samples  
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N real 
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 receive 
filter 

+ 
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Problem 2.5 Potpourri.  20 points.    

 

Please determine whether the following claims are true or false and support each answer 

with a brief justification. If you give a true or false answer without any justification, then you 

will receive zero points for that answer. 

 

 

(a) In a communication system design, digital communication should always be chosen over 

analog communications because digital communication systems are more reliable and more 

immune to noise and interference.  4 points. 

 

 

 

 

 

 

(b) Digital QAM is more popular than Digital PAM because it is easier to build a Digital QAM 

transmitter than a Digital PAM transmitter.  4 points. 

 

 

 

 

 

 

 

(c) Pulse shaping filters are designed to contain the spectrum of a digital communication 

signal. They are chosen to aid the receiver in locking onto the carrier frequency and phase. 

4 points. 

 

 

 

 

 

 

(d) IEEE 802.11a wireless LAN modems and ADSL/VDSL wireline modems employ 

multicarrier modulation.  802.11a modems achieve higher bit rates than ADSL/VDSL 

because 802.11a systems deliver the highest bits/s/Hz of transmission bandwidth.  4 points. 

 

 

 

 

 

 

(e) FM radio uses excess frequency to make transmission more resistant to fading in wireless 

channels.  4 points. 
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Problem 2.1.  Digital PAM Transmission.  15 points.  

 

Shown below is a block diagram for baseband pulse amplitude modulation (PAM) transmission. The 

system parameters include the following: 

• M is the number of points in the constellation 

• 2d is the constellation spacing in the PAM constellation. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter) 

• Ng is the length in symbols of the non-zero extent of the pulse shape 

• fsym is the symbol rate 

 

 

 

 

 

(a) Give a formula using the appropriate system parameters for the bit rate being transmitted. 

2 points. 

 

 

 

(b) The leftmost block performs upsampling by L samples.  What communication system parameter 

does L represent?  2 points. 

 

 

 

 

(c) Give a formula using the appropriate system parameters for the sampling rate for the D/A 

converter.  3 points. 

 

 

 

 

(d) Give a formula using the appropriate system parameters for the number of multiplication-

accumulation operations per second that would be required to compute the two leftmost blocks in 

the above block diagram (i.e., the blocks before the D/A converter) 

 

I. as shown in the block diagram?  4 points. 

 

 

 

 

 

 

II. using a filter bank implementation?  4 points. 

 

 

D/A Transmit 

Filter 

ak 
gT[m]   L 
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Problem 2.2  Equalizer Design.  15 points. 

You are given a discretized communication channel defined by the following sampled impulse 

response, where |a| < 1: 

 

h[n] =  a
n-1

 u[n-1] 

 

(a) Give the transfer function of the channel.  2 points. 

 

 

 

 

(b) Does the channel have a lowpass, highpass, bandpass, bandstop, allpass, or notch response? 

2 points. 

 

 

 

 

 

(c) Design a causal stable discrete-time filter to equalize the above channel for a single-carrier 

communication system. 4 points. 

 

 

 

 

 

 

 

(d) Does the channel equalizer you designed in part (c) have a lowpass, highpass, bandpass, bandstop, 

allpass, or notch response?  2 points. 

 

 

 

 

 

 

(e) Using your answer in part (c), give the impulse response of the equalized channel.  5 points. 
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Problem 2.3 8-PAM vs. an 8-QAM constellation.  40 points. 

In this problem, assume that 

  (i) the channel noise for both in-phase and quadrature 

components is additive white Gaussian noise with 

variance of σ2
 and mean of zero. 

 (ii) 0's and 1's occur with equal probability. 

(iii) the symbol period T is equal to 1. 

Please complete the comparison below of 8-PAM and 

the version of 8-QAM shown on the right. 

 

(a) Compute the average power for the 8-QAM constellation 

on the right.  5 points. 

 

 

 

 

 

(b) Draw your decision regions on the 8-QAM constellation shown above.  5 points. 

 

 

(c) Based on the decision regions in part (b), derive the formula for the probability of symbol error at 

the sampled output of the matched filter for the 8-QAM constellation in terms of the Q function 

and the SNR.  10 points. 

 

 

 

 

 

 

 

 

 

 

. 

 

I 

Q 

2d 

2d 

8-QAM 

2d 
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(d) On the blank PAM constellation on the right, draw the 

8-PAM constellation with spacing between adjacent 

constellation points of 2d.  5 points. 

 

 

(e) Compute the average power for the 8-PAM constellation. 5 points. 

 

 

 

 

 

 

 

 

 

(f) Derive the formula for the probability of symbol error at the sampled output of the matched filter 

in the receiver for the 8-PAM constellation in terms of the Q function and the SNR.  5 points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(g) Which constellation, the 8-PAM constellation on this page or the 8-QAM constellation on the 

previous page, is better to use and why?  5 points. 

 

 

 

8-PAM 
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Problem 2.4 Multicarrier Communications.  15 points. 

 

Here are some of the system parameters for a standard-compliant ADSL transceiver: 

• Transmission bandwidth BT = 1.104 MHz 

• Sampling rate fsampling = 2.208 MHz 

• Symbol rate fsymbol = 4 kHz (same symbol rate in both downstream and upstream directions) 

• Number of subcarriers:  Ndownstream = 256 and Nupstream = 32 

• Cyclic prefix length is 1/16 of the symbol length 

 

(a) What is the ratio of the computational complexity of the downstream fast Fourier transform to the 

upstream fast Fourier transform in terms of real multiplication-accumulation (MAC) operations per 

second?  4 points. 

 

 

 

 

 

 

(b) During data transmission, what is the longest time domain equalizer that could be computed in real 

time on the C6701 digital signal processing board you have been using in lab?  4 points. 

 

 

 

 

 

 

(c) Which block in a multicarrier transceiver implements pulse shaping?  What is the pulse shape?       

4 points. 

 

 

 

 

 

 

(d) Every 69
th

 frame in an ADSL transmission is a synchronization frame.  For use between 

synchronization frames, describe in words a method for symbol synchronization.  3 points. 
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Problem 2.5 Potpourri.  15 points. 

 

Please determine whether the following claims are true or false and support each answer with a 

brief justification. If you give a true or false answer without any justification, then you will be 

awarded zero points for that answer. 

 

(a) In a modem, as much of the processing as possible in the baseband transceiver should be 

performed in the digital, discrete-time domain because digital communications is more reliable and 

more immune to noise and interference than is analog communications.  3 points. 

 

 

 

 

 

(b) Pulse shaping filters are designed to contain the spectrum of a transmitted signal in a 

communication system. In a communication system, the pulse shape should be zero at non-zero 

integer multiples of the symbol duration and have its maximum value at the origin.  3 points. 

 

 

 

 

 

(c) Although wired and wireless channels have impulse responses of infinite duration, each can be 

modeled as an FIR filter.  Wired channel impulse responses do not change over time, whereas 

wireless channel impulse responses change over time.  3 points. 

 

 

 

 

 

(d) A receiver in a digital communication system employs a variety of adaptive subsystems, including 

automatic gain control, carrier recovery, and timing recovery.  A transmitter in a digital 

communication system does not employ any adaptive systems.  3 points. 

 

 

 

 

 

 

(e) All consumer modems for high-speed Internet access (i.e. capable of bit rates at or above 1 Mbps) 

employ multicarrier modulation.  3 points. 
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Problem 2.1.  Digital PAM Transmission.  28 points.  

 

Shown below is a block diagram for baseband digital pulse amplitude modulation (PAM) 

transmission. The system parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fsym is the symbol rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2
J
. 

• Ng is the length in symbols of the non-zero extent of the pulse shape. 

 

 

 

 

 

 

(a) What does ak represent?  Give a formula using the appropriate system parameters for the values 

that ak could take.  3 points 

 

 

(b) What communication system parameter does the upsampling factor L represent?  3 points. 

 

 

(c) Give a formula for the data rate in bits per second of the transmitter.  4 points. 

 

 

(d) Give formulas using the appropriate system parameters for the implementation complexity 

measures in the table below that would be required to compute the two leftmost blocks in the 

above block diagram (i.e., the blocks before the D/A converter).  18 points. 

 

 Multiplication-accumulation 

operations per second 

Memory Usage in Words Memory Reads and 

Writes in words/second 

As shown 

above 

   

Using a 

filter bank 

   

D/A Transmit 

Filter 

ak 
gT[m]   L 
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Problem 2.2  Digital PAM Reception.  24 points  

 

As in problem 2.1, shown below is a block diagram for baseband digital pulse amplitude modulation 

(PAM) transmission. The system parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fsym is the symbol rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2
J
. 

• Ng is the length in symbols of the non-zero extent of the pulse shape. 

 

 

 

 

 

Here is a block diagram for baseband digital PAM reception: 

 
 

The blocks in the baseband digital PAM receiver are analogous to the blocks in the digital baseband 

PAM transmitter.  The hat above the ak term in the receiver means an estimate of ak in the transmitter.  

Assume that the channel only consists of additive white Gaussian noise.   Assume synchronization. 

 

Please describe in words each of the missing blocks (a)-(c) and how to choose the parameters (e.g. 

filter coefficients) for each block.  Each part is worth 8 points. 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c)

A/D (a) (b) (c) 
kâ

D/A Transmit 

Filter 

ak 
gT[m]   L 
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Problem 2.3  Equalizer Design.  24 points. 

 

Consider a discrete-time baseband model of a communication channel that consists of a linear time-

invariant finite impulse response (FIR) filter with impulse response h[n] plus additive white Gaussian 

noise w[n] with zero mean, as shown below: 

 

 

During modem training, the transmitter transmits a short training signal that is a pseudo-noise 

sequence of length seven that is known to the receiver.  The bit pattern is 1 1 1 0 1 0 0.   The bits are 

encoded using 2-level pulse amplitude modulation (but without pulse shaping) so that 

 

• for x[n] equal to the sequence 1, 1, 1, -1, 1, -1, -1, 

• the channel output r[n] is equal to the sequence 0.982, 2.04, 2.02, -0.009, 0.040, -2.03, -0.891. 

 

(a) Assuming that h[n] has two non-zero coefficients, i.e. h[0] and h[1], estimate their values to three 

significant digits.  6 points. 

 

 

 

 

(b) Using the result in (a), estimate the coefficients for a two-tap FIR filter c[n] to equalize the 

channel.  What value of the delay are you assuming?  6 points. 

 

 

 

 

(c) Without changing the training sequence, describe an algorithm that the receiver can use to estimate 

the true length of the FIR filter h[n].  You do not have to compute the length.  6 points. 

 

 

 

(d) In a receiver, for a training sequence of 8000 samples and an FIR equalizer of 100 coefficients, 

would you advocate using a least-squares equalizer design algorithm or an adaptive equalizer 

design algorithm for real-time implementation on a DSP processor?  Why?  6 points. 

 

 

x[n] 
h[n] 

w[n] 

+ 

r[n] 
c[n] 

Channel 
Model 

Equalizer 

y[n] 
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Problem 2.4 Potpourri.  24 points. 

 

Please determine whether the following claims are true or false.  If you believe the claim to be false, 

then provide a counterexample.  If you believe the claim to be true, then give supporting evidence 

that may includes formulas and graphs as appropriate.  If you give a true or false answer without any 

justification, then you will be awarded zero points for that answer.  If you answer by simply 

rephrasing the claim, you will be awarded zero points for that answer. 

 

(a) A common baseband model for wired and wireless channels is as an FIR filter plus additive white 

Gaussian noise.  4 points. 

 

 

 

 

(b) When a Gaussian random process is input to a linear time-invariant system, the output is also a 

Gaussian random process where the mean is scaled by the DC response of the linear time-invariant 

system and the variance is scaled by twice the bandwidth.  4 points. 

 

 

 

 

(c) Frequency shift keying is another type of multicarrier modulation method in which one or more 

subcarriers are “turned on” to represent the digital information being transmitted.  The only use of 

frequency shift keying in a consumer electronics product is in telephone touchtone dialing (i.e. 

dual-tone multiple frequency signaling).  4 points. 

 

 

 

 

(d) All modems in currently available consumer electronics products for very high-speed Internet 

access (i.e. capable of bit rates at or above 5 Mbps) employ multicarrier modulation. 

4 points. 

 

 

 

 

(e) The TI TMS320C6713 digital signal processing board you have been using in lab can compute the 

fast Fourier transform operation for downstream ADSL reception in real time using single-

precision floating-point arithmetic.  4 points. 

 

 

 

 

(f) In ADSL, the pulse shape used in the transmitter is a square root raised cosine.  4 points. 



 

K -  79 

 

The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 

Midterm #2 

 

Prof. Brian L. Evans 

 

Date: December 4, 2009      Course: EE 345S 

 

 

 

 

Name:              

Last,      First   

 

 

 

 

 

• The exam is scheduled to last 60 minutes. 

• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets.  You may not share materials with other students.  

• Calculators are allowed. 

• You may use any stand-alone computer system, i.e. one that is not connected to a 

network. Disable all wireless access from your stand-alone computer system.  

• Please turn off all cell phones, pagers, and personal digital assistants (PDAs). 

• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages.   

• Fully justify your answers unless instructed otherwise.  When justifying your answers, 

you may refer to the Johnson, Sethares & Klein textbook, the Tretter lab manual, course 

reader, and course handouts.  Please be sure to reference the page/slide number and quote 

the particular content you are using in your justification. 

 

 

Problem Point Value Your score Topic 

1 27  Baseband Digital PAM Transmission 

2 27  Digital PAM Reception 

3 30  QAM 

4 16  Equalizer Design 

Total 100   



 

K -  80 

Problem 2.1.  Baseband Digital PAM Transmission.  27 points.  

Shown below is part of a baseband digital pulse amplitude modulation (PAM) transmitter. The system 

parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fs is the sampling rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2
J
. 

• Ng is the length in symbol periods of the non-zero extent of the pulse shape. 

 

 

 

 

 

 

(a) What does ak represent?  Give a formula using the appropriate system parameters for the values 

that ak could take.  3 points 

 

 

 

(b) What communication system parameter does the upsampling factor L represent?  3 points. 

 

 

 

(c) Give a formula for the bit rate in bits per second of the transmitter.  3 points. 

 

 

 

(d) Give formulas using the appropriate system parameters for the implementation complexity 

measures in the table below that would be required to compute the two leftmost blocks in the 

above block diagram (i.e., the blocks before the D/A converter).  18 points. 

 

 Multiplication-accumulation 

operations per second 

Memory usage in words Memory reads and 

writes in words/second 

As shown 

above 

 

 

 

 

  

Using a 

filter bank 

 

 

 

 

  

D/A Transmit 

Filter 

ak 
gT[m]   L 
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Problem 2.2  Baseband Digital PAM Reception.  27 points  

As in problem 2.1, shown below is part of a baseband digital pulse amplitude modulation (PAM) 

transmitter. The system parameters (in alphabetical order) include the following: 

• 2d is the constellation spacing in the PAM constellation. 

• fs is the sampling rate. 

• gT[m] is the pulse shape (i.e. the impulse response of the pulse shaping filter). 

• L is the upsampling factor, a.k.a. the oversampling ratio 

• M is the number of points in the constellation, where M = 2
J
. 

• Ng is the length in symbols of the non-zero extent of the pulse shape. 

Last Four Blocks of the Digital PAM Transmitter 
 

 

 

 

Channel Model 

Additive white Gaussian noise. 

First Four Blocks of the Digital PAM Receiver 

 
 

The hat above the ak term in the receiver means an estimate of ak in the transmitter. 

Assume that the receiver is synchronized to the transmitter. 

Each block in the baseband digital PAM receiver is analogous to one block in the digital baseband 

PAM transmitter; e.g., the receive filter is analogous to the transmit filter. 

Please describe in words each of the missing blocks (a)-(c) and how to choose the parameters (e.g. 

filter coefficients) for each block.  Each part is worth 9 points. 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c)

(a) Receive 

Filter 
(b) (c) 

D/A Transmit 

Filter 

ak    L gT[m] 

kâ
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Problem 2.3  QAM.  30 points. 

 

This problem asks you to evaluate two different 12-QAM constellations.  Assumptions follow: 

  (i) Each symbol is equally likely                                 (iii) Perfect carrier frequency/phase recovery 

 (ii) Channel only consists of additive white                 (iv) Perfect symbol timing recovery 

      Gaussian noise with zero mean and                         (v) Constellation spacing of 2d 

      and variance σ2
 in both the in-phase (I)                   (vi) Symbol duration Tsym = 1 

      and quadrature (Q) components 

                                      Constellation #1                                                  Constellation #2 

 

(a) Compute the average signal power for each of the QAM constellations above.  6 points. 

 

 

 

 

(b) Draw your decision regions on the 12-QAM constellations shown above.  6 points. 

 

(c) Based on your decision regions in part (b), give a formula for the probability of symbol error at 

the sampled output of the matched filter for each of the 12-QAM constellations in terms of the Q 

function, i.e. Q(d/σ).  12 points. 

 

 

 

 

 

 

 

 

 

 

(d) Given the above assumptions and answers, which 12-QAM constellation would you choose? 

6 points. 

I 

 

2d 

2d 

2d 

I 

Q 

2d 

2d 

2d 

Q 
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Problem 2.4  Equalizer Design.  16 points. 

Consider a discrete-time baseband model of a communication system with transmitted signal x[n] and 

received signal r[n].  The channel model is a linear time-invariant (LTI) finite impulse response (FIR) 

filter with impulse response h[n] plus additive white Gaussian noise process with zero mean w[n]: 

 

During modem training, the transmitter transmits a short training signal that is a pseudo-noise 

sequence of length seven that is known to the receiver.  The bit pattern is 1 1 1 0 1 0 0.   The bits are 

encoded using 2-level pulse amplitude modulation (but without pulse shaping) so that 

• for x[n] equal to the sequence 1, 1, 1, -1, 1, -1, -1, 

• r[n] is equal to the sequence 0.982, 2.04, 2.02, -0.009, 0.040, -2.03, -0.891, ....  

 

(a) Assume that the equalizer is a two-tap LTI FIR filter.  Compute an equalizer impulse response c[n] 

for a transmission delay of zero.  7 points. 

 

 

 

 

 

 

 

(b) In a receiver, for a training sequence of 8000 symbols and an FIR equalizer of 100 coefficients, 

would you advocate using a least-squares equalizer design algorithm or an adaptive equalizer 

design algorithm for real-time implementation on a digital signal processor?  Why?  9 points. 
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EE 445S Real-Time DSP Laboratory – Prof. Brian L. Evans 

Computational Complexity of Implementing a Tapped Delay Line on the C6700 DSP 

To compute one output sample y[n] of a finite impulse response filter of N coefficients (h0, h1, ... 

hN-1) given one input sample x[n] takes N multiplication and N-1 addition operations: 

y[n] = h0 x[n] + h1 x[n-1] + … + hN-1 x[n – (N-1)] 

Two bottlenecks arise when using single-precision floating-point (32-bit) coefficients and data 

on the C6700 DSP.  First, only one data value and one coefficient can be read from internal 

memory by the CPU registers during the same instruction cycle, as there are only two 32-bit data 

busses. The load command has 4 cycles of delay and 1 cycle of throughput. Second, 

accumulation of multiplication results must be done by four different registers because the 

floating-point addition instruction has 3 cycles of delay and 1 cycle of throughput. Once all of 

the multiplications have been accumulated, the four accumulators would be added together to 

produce one result. The code below does not use looping, and does not contain some of the 

necessary setup code (e.g. to initiate modulo addressing for the circular buffer of past input data).  

 

Cycle   Instruction 

1   LDW x[n]    ||   LDW h0 

2   LDW x[n-1]  ||   LDW h1    || ZERO accumulator0 

3   LDW x[n-2]  ||   LDW h2    || ZERO accumulator1 

4   LDW x[n-3]  ||   LDW h3    || ZERO accumulator2 

5   LDW x[n-4]  ||   LDW h4    || ZERO accumulator3 

6   LDW x[n-5]  ||   LDW h5    || MPYSP x[n], h0, product0 

7   LDW x[n-6]  ||   LDW h6    || MPYSP x[n-1], h1, product1 

8   LDW x[n-7]  ||   LDW h7    || MPYSP x[n-2], h2, product2 

9   LDW x[n-8]  ||   LDW h8    || MPYSP x[n-3], h3, product3 

10   LDW x[n-9]  ||   LDW h9    || MPYSP x[n-4], h4, product4 || 

  ADDSP product0, accumulator0, accumulator0 
11     LDW x[n-10] ||  LDW h10   || MPYSP x[n-5], h5, product5 || 

    ADDSP product1, accumulator1, accumulator1 

12   LDW x[n-11] ||  LDW h11   || MPYSP x[n-6], h6, product6 || 

        ADDSP product2, accumulator2, accumulator2 

    13   LDW x[n-12] ||  LDW h12   || MPYSP x[n-7], h7, product7 || 

              ADDSP product3, accumulator3, accumulator3 

14     LDW x[n-13] ||  LDW h13   || MPYSP x[n-8], h8, product8 || 

    ADDSP product4, accumulator0, accumulator0 

    15   …  

 

The total number of execute cycles to compute a tapped delay line of N coefficients is the delay 

line length (N) + LDW throughput (1) + LDW delay (4) + MPYSP throughput (1) + MPYSP 

delay (3) + ADDSP throughput (1) + ADDSP delay (3) + adding four accumulators together (8) 

+ STW throughput (1) + STW delay (4) = N + 26 cycles.  If we were to include two instructions 

to set up the modulo addressing for the circular buffer, then the total number of execute cycles 

would be N + 28 cycles. 



N - 2 
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Communication Performance of PAM vs. QAM Handout

Prof. Brian L. Evans

In the transmitter,
• Assume the bit stream on the transmitter side 0's and 1's appear with equal probability.
• Assume that the symbol period T is equal to 1.

In the channel,
• Assume that the noise is additive white Gaussian noise with zero mean.  For QAM, the variance 

is σ2 in each of the in-phase and quadrature components.  For PAM, the variance is 2 σ2.  The 
difference is the variance is to keep the total noise power the same in QAM and PAM.

• Assume that there is no nonlinear distortion
• Assume there is no linear distortion

In the receiver,
• Assume that all subsystems (e.g. automatic gain control and symbol timing recovery) prior to 

matched filtering and sampling at the symbol rate are working perfectly 
• Hence, assume that reception is synchronized with transmission

Given these mostly ideal conditions, the lower bound on symbol error probability for 4-PAM when the 
additive white Gaussian noise in the channel has variance 2 σ2 is






=

σ22
3 dQPe

Given the 4-QAM and 4-PAM constellations below,

(a) Derive the symbol error probability formula for 4-QAM, also known as Quadrature Phase 
Shift Keying (QPSK), shown in Figure 1.

(b) Calculate the average power of the QPSK signal given d.

(c) Write the probability of symbol error for 4-PAM and 4-QAM as functions of the signal-to-
noise ratio (SNR). Superimposed on the same plot, plot the probability of symbol error for 4-
PAM and 4-QAM as a function of SNR. For the horizontal axis, let the SNR take on values 
from 0 dB to 20 dB. Comment on the differences in the symbol error rate vs. SNR curves.

(d) Are the bit assignments for the PAM or QAM optimal with respect to bit error rate in Figure 
1? If not, then please suggest another bit assignment to achieve a lower bit error rate given 
the same scenario, i.e., the same SNR. The optimal bit assignment (in terms of bit error 
probability) is commonly referred to as Gray coding.

P - 1
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a) Based on lecture notes on slides 15-13 through 15-15, the case of 4-QAM corresponds to 
having the four corner points in the 16-QAM constellation.  So, the probability of correct 
detection is given by type 3 correct detection given on page 15-4 in the lecture notes. Since 

T=1, then the formula for the probability of correct detection is given by ( )
2

3 1 










−=

σ
dQcP

.  Thus  the  probability  of  error  is  given  by

( ) 




−





=










−−=−=

σσσ
dQdQdQcPPe

2
2

3 2111 .

b) To obtain the energy of is , we notice that the sum of the squared coordinates will give you the 
energy  of  the  signal  is .  To  see  this,  notice  that  is  is  represented  by  the  following  vector 






 −− ]

4
)12sin[(],

4
)12cos[( ππ iEiE in  the  ( ))()( 21 tt φφ − coordinate  system.  Thus,  it  is 

immediate that EiiE =




 −+− ]

4
)12[(sin]

4
)12[(cos 22 ππ

. This implies that EPT
T
EP =⇒== 1; . 

( ) 22 224
4
1 ddPAVG =×= .

c) SNR is defined as 2

2

2

2

22 2
2

22
/

σσσσ
ddETE

P
P

SNR
Noise

Signal =====  for the 4-QAM. For the 4-

PAM, 
( )

2

2

2

2

22 2
5

2

922
4
1

22
/

σσσσ
ddETE

P
P

SNR
Noise

Signal =
×+

==== . Substituting this into the Pe 

formula we obtain the following formulas:

( ) ( )







=

−=




−





=

−

−

52
3

22 22

SNRQP

SNRQSNRQdQdQP

PAMe

QAMe σσ

SNR = 0:20; % dB scale SNR
SNR_lin = 10.^(SNR/10); % linear scale SNR
Pq = 2*qfunc(sqrt(SNR_lin)) - (qfunc(sqrt(SNR_lin))).^2; % QAM error 
Probability
Pp = 3/2 * qfunc(sqrt(SNR_lin/5)); % PAM error Probability
semilogy(SNR,Pq, 'Displayname', '4-QAM');
hold on;
semilogy( SNR, Pp,'r','Displayname', '4-PAM');
title('4-PAM vs. 4-QAM Communication Performance');
ylabel('P_e'); xlabel('SNR (dB)');
legend('show');

P - 2
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QAM performs much better  than the PAM system due to the following reasons: first the 
noise variance in the PAM system is higher so we expect its error rate to be higher; on the 
other hand the PAM system is not fully utilizing the bandwidth as opposed to QAM.

d) The bit assignments are not optimal because the difference between the bits across the 
decision regions are more than one bit while they can be made one by using Gray Coding 
since each decision region has only two neighbors. The following bit assignment is optimal.

 

P - 3
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Four Ways to Filter a Signal 
 
Problem:  Evaluate four ways to filter an input signal.  Run waystofilt.m  on page 143 (Section 
7.2.1) of Johnson, Sethares & Klein using 

• h[n] that is a four-symbol raised cosine pulse with β = 0.75 (4 samples/symbol, i.e. 16 samples) 

• x[n] that is an upsampled 8-PAM symbol amplitude signal with d = 1 and 4 samples/symbol 
and that is defined as the following 32-length vector (where each number is a sample value) 
as 

x = [-7 0 0 0   -5 0 0 0   -3 0 0 0   -1 0 0 0   1 0 0 0    3 0 0 0   5 0 0 0   7 0 0 0] 

In the code provided by Johnson, Sethares & Klein, please replace plot  with stem  so that the 
discrete-time signals are plotted in discrete time instead of continuous time. 

Please comment on the different outputs.  Please state whether each method implements linear 
convolution or circular convolution or something else.  Please see the online homework hints. 

Hints:  To compute the values of h, please use the "rcosine" command in Matlab and not the 
"SRRC" command. The length of h should be 16. The syntax of the "rcosine" command is  
 
rcosine(Fd, Fs, TYPE_FLAG, beta) 

 
The ratio Fs/Fd must be a positive integer. Since the the number of samples per symbol is 4, 
Fs/Fd must be 4. The rcosine function is defined in the Matlab communications toolbox.  

Running the rcosine function with these parameters gives a pulse shape of 25 samples. We want 
to keep four symbol periods of the pulse shape. That is, we want to keep two symbol periods to 
the left of the maximum value, the symbol period containing the maximum value as the first 
sample, and the symbol period immediately following that:  

rcosinelen25 = rcosine(1, 4, 'fir', 0.75); 
h = rcosinelen25(5:20); 
stem(h) 
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Some of the methods yield linear convolution, and some do not. With an input signal of 32 
samples in length and a pulse shaping filter with an impulse response of 16 samples in length, 
linear convolution would produce a result that is 47 samples in length (i.e., 32 + 16 - 1).  

For the FFT-based method, the length of the FFT determines the length of the filtered result. An 
FFT length of less than 47 would yield circular convolution, but it wouldn't be linear 
convolution. When the FFT length is long enough, the answer computed by circular convolution 
is the same as by linear convolution.  

Consider when the filter is a block in a block diagram, as would be found in Simulink or 
LabVIEW. When executing, the filter block would take in one sample from the input and 
produce one sample on the output. How many times to execute the block? As many times as 
there are samples on the input. How many samples would be produced? As many times as the 
block would be executed.  

In particular, pay attention to the use of the FFT to implement linear filtering. A similar trick is 
used in multicarrier communication systems, such as DSL, WiFi (IEEE 802.11a/g), WiMax 
(IEEE 802.16e-2005), next-generation cellular data transmission (LTE), terrestrial digital audio 
broadcast, and handheld and terrestrial digital video broadcast.  

Solution: The filter is given by its impulse response h[n] that has a length of Lh samples.  The 
signal is given by x[n] and it has a length of Lx samples.  Both the impulse response and input 
signal are causal.  In this problem, Lh is 16 samples and Lx is 32 samples. 
 
The first way of filtering computes the output signal as the linear convolution of x[n] and h[n]: 

∑
−

=

−==
1

0

][  ][][*  ][][
hL

m
linear mnxmhnhnxny  

Linear convolution yields a signal of length Lx+Lh-1 = 47 samples. 
 
The second way is to use the filter command in Matlab/Mathscript.  The filter command 
produces one output sample for each input sample.  This is a common behavior for a filter block 
in a block diagram simulation framework, e.g. Simulink or LabVIEW.  When executing, the 
filter block would take in one sample from the input and produce one sample on the output. The 
scheduler will execute the block as many times as there are samples on the input.  So, the length 
of the filtered signal would be Lx = 32 samples.  To obtain an output of length of Lx+Lh-1 
samples, one would append Lh-1 zeros to x[n]. 
 
The third way is compute the output by using a Fourier-domain approach.  For linear 
convolution, the discrete-time Fourier transform of the linear convolution of x[n] and h[n] is 
simply the product of their individual discrete-time Fourier transforms.  The product could then 
be inverse transformed to find the filtered signal in the discrete-time domain.  That approach, 
however, is difficult to automate using only numeric calculations.  An alternative is to use the 
Fast Fourier Transform (FFT). 
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The FFT of the circular convolution of x[n] and h[n] is the product of their individual FFTs.  In 
circular convolution, the signals x[n] and h[n] are considered to be periodic with period N.  One 
period of N samples of the circular convolution is defined as  

∑
−

=

−=⊗=
1

0

]))[((  ]))[((][  ][][
N

m
NNNcircular mnxmhnhnxny  

where ((•))N means that the argument is taken modulo N.  We will henceforth refer to the circular 
convolution between periodic signals of length N as circular convolution of length N. On a 
programmable digital signal processor, we would use the modulo addressing mode to accelerate 
the computation of circular convolution. 
 
Circular convolution of two finite-length sequences x[n] and h[n] is equivalent to linear 
convolution of those sequences by padding (appending) Lx-1 zeros to h[n] and Lh-1 zeros to x[n] 
so that both of them are of the same length and using a circular convolution length of Lx+Lh-1 
samples.  This is the approach used in the FFT-based method in this problem. 
 
The FFT-based method to compute the linear convolution uses an FFT length of N of Lx+Lh-1.  
First, the FFT of length N of the zero-padded x[n] is computed to give X[k], and the FFT of 
length N of the zero-padded h[n] is computed to give H[k].  Second, the product Ycircular[k] = X[k] 
H[k] for k = 0,…, N-1 is computed.  Then, the inverse FFT of length N of Ycircular[k] is computed 
to find ycircular[n].   This third way results in an output signal of Lx+Lh-1 = 47 samples. 
 
The fourth way to filter a signal uses a time-domain formula.  It is an alternate implementation 
of the same approach used by the filter command.  Hence, this approach gives an output of 
length Lx = 32 samples. 
 
% waystofilt.m "conv" vs. "filter" vs. "freq domain " vs. "time domain"  
over=4; % 4 samples/symbol  
r=0.75; % roll-off  
rcosinelen25 = rcosine(1, 4, 'fir' , 0.75); 
h = rcosinelen25(5:20); 
x= [-7 0 0 0   -5 0 0 0   -3 0 0 0  -1 0 0 0  1 0 0  0  3 0 0 0  5 0 0 0  7 0 0 0]; 
yconv=conv(h,x) ;                        % (a) convolve x[n] * h[n]  
n=1:length(yconv);stem(n,yconv) 
xlabel( 'Time' );ylabel( 'yconv' );title( 'Using conv function' ); figure 
yfilt=filter(h,1,x) ;                    % (b) filter x[n] with h[n]  
n=1:length(yfilt);stem(n,yfilt) 
xlabel( 'Time' );ylabel( 'yfilt' );title( 'Using the filter command' ); figure 
N=length(h)+length(x)-1;                 % pad length for FFT  
ffth=fft([h zeros(1,N-length(h))]);      % FFT of impulse response = H[k]  
fftx=fft([x, zeros(1,N-length(x))]);     % FFT of input = X[k]  
ffty=ffth .* fftx;                         % product of H[k] and X[k]  
yfreq=real(ifft(ffty));                  % (c)IFFT of product gives y[n]  
                                         % it’s complex due to roundoff  
n=1:length(yfreq); stem(n,yfreq) 
xlabel( 'Time' );ylabel( 'yfreq' );title( 'Using FFT' ); figure                                          
z=[zeros(1,length(h)-1),x];              % initial state in filter = 0  
for  k=1:length(x)                        % (d) time domain method  
  ytim(k)=fliplr(h)*z(k:k+length(h)-1)';         % iterates once for each x[k]  
end                                       % to directly calculate y[k]                                  
n=1:length(ytim); stem(n,ytim) 
xlabel( 'Time' );ylabel( 'ytim' );title( 'Using the time domain formula' ); 
%end of function 
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Discussion of handout on YouTube: http://www.youtube.com/watch?v=7E8_EBd3xK8 

Adding Random Variables and Connections with the Signals and Systems Pre-requisite 

Problem 

A key connection between a Linear Systems and Signals course and a Probability course is that when 

two independent random variables are added together, the resulting random variable has a probability 

density function (pdf) that is the convolution of the pdfs of the random variables being added together.  

That is, if X and Y are independent random variables and Z = X + Y, then fZ(z) = fX(z) * fY(z) where fR(r) 

is the probability density function for random variable R and * is the convolution operation.   This is 

true for continuous random variables and discrete random variables.  (An alternative to a probability 

density function is a probability mass function.  They represent the same information but in different 

formats.) 

 

a) Consider two fair six-sided dice.  Each die, when rolled, generates a number in the range of 1 

to 6, inclusive, with each outcome having an equal probability.  That is, each outcome is 

uniformly distributed.  When adding the outcomes of a roll of these two six-sided dice, one 

would have a number between 2 and 12, inclusive. 

1) Tabulate the likelihood for each outcome from 2 to 12, inclusive. 

2) Compute the pdf of Z by convolving the pdfs of X and Y.  Compare the result to the first 

part of this sub-problem (a)-(1). 

 

b) Compute the pdf of continuous random variable Z where Z = X + Y and X is a continuous 

random variable uniformly distributed on [0, 2] and Y is a continuous random variable 

uniformly distributed on [0, 4].  Assume that X and Y are independent. 

 

c) A constant value C can be modeled as a pdf with only one non-zero entry.  Recall that the pdf 

can only contain non-negative values and that the area under a continuous pdf (or equivalently 

the sum of a discrete pdf) must be 1. 

1) Plot the pdf of a discrete random variable X that is a constant of value C. 

2) Plot the pdf of a continuous random variable Y that is a constant of value C. 

3) Using convolution, determine the pdf of a continuous random variable Z where Z = X + 

Y.  Here, X has a uniform distribution on [0, 3] and Y is a constant of value 2.  Assume 

that X and Y are independent. 
 

Solution 

(a) (1) Likelihood for each outcome from 2 to 12 

Let Xbe the number generated when the first die is rolled and Y be the number generated when the 

second die is rolled. Since each outcome is uniformly distributed for each die, P(X = x) = 1/6 where x 

 {1, 2, 3, 4, 5, 6} and P(Y = y) = 1/6 where y {1, 2, 3, 4, 5, 6}: 

 

Z P(z) 

2 1/36 

3 2/36 

http://www.youtube.com/watch?v=7E8_EBd3xK8
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4 3/36 

5 4/36 

6 5/36 

7 6/36 

8 5/36 

9 4/36 

10 3/36 

11 2/36 

12 1/36 

 

(2) Adding the two random variables results in another random variable Z = X + Y which takes on 

values between 2 and 12, inclusive. Since the dice are rolled independently, the numbers generated are 

independent.  

. 
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The convolution of two rectangular pulses of the same length N samples gives a triangular pulse of 

length 2N – 1 samples.   Example calculations: 

 

 

 
Evaluating the above convolution, we get the same pdf as obtained in the table. The output of the 

Matlab simulation of the convolution is displayed in the above graph. The conv method was used for 

the convolution. The stem method was used for plotting. 

(b) X is uniformly distributed on [0, 2]. Therefore  for all x [0,2]. Similarly, since Y is 

uniformly distributed on [0, 4], for all y [0, 4].  
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(c) (1)The answer is a Kronecker (discrete-time) impulse located at x = C. 

 

(2) For a continuous random variable we require that 1)( 




dxxf X
and this is satisfied by an 

continuous impulse (Dirac delta functional) at C. Mathematically, 1)( 




dxCx  

 

(3) X is uniformly distributed on [0, 3]. Therefore  for all x [0, 3]. Y has a constant value of 

2 and hence .  Since X and Y are independent, Z = X + Y implies that 

 

 

 

This follows from the fact that convolution by shifts )(zf X by 2. 

z 

fZ(z) 

1/4 

4  2 6 
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