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Solution Set for Homework #9 

By Prof. Brian Evans and Mr. Firas Tabbara 

December 3, 2023 

 
1. Continuous-Time Fourier Transforms. 

Compute the continuous-time Fourier transform 𝑋(𝑗𝜔) for continuous-time signal 𝑥(𝑡) using the 

definition in Signal Processing First in equation (11.1)  

𝑋(𝑗𝜔) =  ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞

 

for the following time-domain signals 𝑥(𝑡).  In addition, for each part, describe the frequency 

selectivity of the magnitude response as lowpass, highpass, bandpass, bandstop, allpass, or notch.  

 
Solution: 

a) 𝑥(𝑡) = 𝛿(𝑡).  We can use the sifting property for the Dirac delta: 

𝑋(𝑗𝜔) =  ∫ 𝛿(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 = 𝑒−𝑗𝜔𝑡]
𝑡=0

= 1
+∞

−∞

 

Allpass filter.  All frequencies pass through 

equally well.  See Problem 8.1.  Magnitude 

response plotted on the right. 

b) Rectangular pulse of unit amplitude that lasts from −
𝑇

2

  
to 

𝑇

2

 
seconds.  

𝑥(𝑡) = 𝑢 (𝑡 +
𝑇

2
) − 𝑢 (𝑡 −

𝑇

2
) 

𝑋(𝑗𝜔) =  ∫ [𝑢 (𝑡 +
𝑇

2
) − 𝑢 (𝑡 −

𝑇

2
)] 𝑒−𝑗𝜔𝑡𝑑𝑡 = ∫ 𝑒−𝑗𝜔𝑡 𝑑𝑡

𝑇
2

−
𝑇
2

+∞

−∞

 

𝑋(𝑗𝜔) = −
1

𝑗𝜔
[𝑒−𝑗𝜔𝑡]

−
𝑇
2

𝑇
2 = −

1

𝑗𝜔
(𝑒−𝑗𝜔

𝑇
2 − 𝑒𝑗𝜔

𝑇
2) =

2𝑗 sin (
𝑇
2 𝜔)

𝑗𝜔
= 𝑇

sin (
𝑇
2 𝜔)

𝑇
2 𝜔

 

𝑋(𝑗𝜔) = 𝑇 sinc (
𝜔𝑇

2𝜋
)  where  sinc(x) =  

sin (𝜋 𝑥)

𝜋 𝑥
 

 
See also Signal Processing First, pp. 314-315.  Lowpass filter.  Lecture slide 15-6: 
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Magnitude and phase plots in MATLAB for T = 1 for −20 < 𝜔 < 20 rad/s.  In the magnitude 

response, the first zero to the right of zero frequency occurs at 𝜔 =
2𝜋

𝑇
= 2𝜋. The phase 

response is 𝜋 whenever the sinc pulse goes negative. 

 
T = 1; 

w = -20 : 0.01 : 20; 

X = T*sinc(w*T/(2*pi)); 

figure; 

plot(w, abs(X)); 

xlabel('w'); 

ylabel('Magnitude Response'); 

figure; 

plot(w, angle(X)); 

xlabel('w'); 

ylabel('Phase Response'); 

 
c) 𝑥(𝑡) = 𝑒−𝑎𝑡𝑢(𝑡) for positive and real-valued 𝑎 

𝑋(𝑗𝜔) =  ∫ 𝑒−𝑎𝑡𝑢(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 = ∫ 𝑒−(𝑎+𝑗𝜔)𝑡𝑑𝑡 = −
1

𝑎 + 𝑗𝜔
[𝑒−(𝑎+𝑗𝜔)𝑡]

0

∞
=

1

𝑎 + 𝑗𝜔

∞

0

∞

−∞

 

See Signal Processing First, pp. 309 & 313.  Lowpass filter.  From Lecture Slide 15-5 for a = 1: 

w = -8 : 0.01 : 8;  
H = 1 ./ (1 + j*w); 

Hmag = abs(H); 

Hphase = phase(H); 

figure; 

plot(w, Hmag); 

title('Magnitude Response'); 

ylim( [-0.0 1.1] ); 

figure; 

plot(w, Hphase); 

title('Phase Response'); 

d) 𝑥(𝑡) = 𝑒𝑏𝑡𝑢(−𝑡) for positive and real-valued 𝑏 

𝑋(𝑗𝜔) =  ∫ 𝑒𝑏𝑡𝑢(−𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 = ∫ 𝑒(𝑏−𝑗𝜔)𝑡𝑑𝑡 =
1

𝑏 − 𝑗𝜔
[𝑒(𝑏−𝑗𝜔)𝑡]

−∞

0
=

0

−∞

∞

−∞

1

𝑏 − 𝑗𝜔
 

See Signal Processing First, pp. 314.  Lowpass filter.  Matlab plots for the magnitude and phase 

for b = 1. Magnitude response is the same as part (c) and phase response is flipped in frequency: 

w = -8 : 0.01 : 8;  

H = 1 ./ (1 - j*w); 

Hmag = abs(H); 

Hphase = phase(H); 

figure; 

plot(w, Hmag); 

title('Magnitude Response'); 

ylim( [-0.0 1.1] ); 

figure; 

plot(w, Hphase); 

title('Phase Response'); 
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e) 𝑥(𝑡) = 𝑒−𝑎|𝑡| for −∞ < 𝑡 < ∞ for positive and real-valued 𝑎.  When 𝑡 < 0, |𝑡| = −𝑡.  When 

𝑡 > 0, |𝑡| = 𝑡.  We can reuse the results from parts (c) and (d).  

𝑋(𝑗𝜔) =  ∫ 𝑒−𝑎|𝑡|𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

= ∫ 𝑒−𝑎(−𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
0

−∞

+ ∫ 𝑒−𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡
∞

0

 

𝑋(𝑗𝜔) = ∫ 𝑒𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡
0

−∞

+ ∫ 𝑒−𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡
∞

0

 

𝑋(𝑗𝜔) =
1

𝑎 − 𝑗𝜔
+

1

𝑎 + 𝑗𝜔
=

𝑎 − 𝑗𝜔 + 𝑎 + 𝑗𝜔

(𝑎 + 𝑗𝜔)(𝑎 − 𝑗𝜔)
=

2𝑎

𝑎2 + 𝜔2
 

Lowpass filter.  See magnitude response plot on the right for a = 1: 

 
 
2. Continuous-Time Fourier Transforms Using Transform Properties and Pairs. 

Signal Processing First, problem P-11.8, page 343. In the following, the Fourier transform 
𝑋(𝑗 𝜔) is given.  Using the tables of Fourier transforms and Fourier transform properties 
to determine the inverse Fourier transform for each case.  You may give your answer 
either as an equation or a carefully labeled plot, whichever is most convenient. 

(a) 𝑋(𝑗𝜔) =
𝑒−𝑗3𝜔

2+𝑗𝜔
 

Solution for (a):  We can rewrite the Fourier transform as 𝑋(𝑗𝜔) =
𝑒−𝑗3𝜔

2+𝑗𝜔
= (

1

2+𝑗𝜔
) 𝑒−𝑗3𝜔 

The Fourier transform pair related to the first term is 

𝑒−2 𝑡 𝑢(𝑡) ↔
1

2 + 𝑗𝜔
 

The second term 𝑒−𝑗3𝜔 relates to the time delay property, where 𝑡𝑑 = 3: 

𝑥(𝑡) =  𝑒−2(𝑡−3)𝑢(𝑡 − 3) 

(b) 𝑋(𝑗𝜔) =
𝑗𝜔

2+𝑗𝜔
 

Solution for (b) #1: (from a student’s solution) We rearrange this expression as follows: 

𝑋(𝑗𝜔) =
𝑗𝜔 + 2 − 2

2 + 𝑗𝜔
= 1 −

2

2 + 𝑗𝜔
 

and then use the Fourier transform pairs 

𝑒−2 𝑡 𝑢(𝑡) ↔
1

2 + 𝑗𝜔
  and    𝛿(𝑡) ↔ 1 

Using the linearity property of the Fourier transform 

2 𝑒−2𝑡 𝑢(𝑡) ↔
2

2 + 𝑗𝜔
 

we obtain 

𝑥(𝑡) = 𝛿(𝑡) − 2 𝑒−2 𝑡 𝑢(𝑡) 
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Solution for (b) #2: We rearrange the Fourier transform expression as follows: 

𝑋(𝑗𝜔) =
𝑗𝜔

2 + 𝑗𝜔
= (

1

2 + 𝑗𝜔
) (𝑗𝜔) 

Using the differentiation-in-time property of the Fourier transform, we obtain 

𝑥(𝑡) =
𝑑

𝑑𝑡
(2 𝑒−2 𝑡 𝑢(𝑡)) = 𝑒−2 𝑡 𝛿(𝑡) − 2 𝑒−2 𝑡 𝑢(𝑡) 

Solutions for (b) #1 and #2 are identical expressions under integration using the sifting property 

of the Dirac delta.  That is, the value of 𝑒−2 𝑡 is 1 when t = 0. 

(c) 𝑋(𝑗𝜔) =
𝑗𝜔

2+𝑗𝜔
𝑒−𝑗3𝜔 

Solution: We build on the solution in part (b).  We rearrange 𝑋(𝑗𝜔) as 

𝑋(𝑗𝜔) =
𝑗𝜔

2 + 𝑗𝜔
𝑒−𝑗3𝜔 = (

1

2 + 𝑗𝜔
) (𝑗𝜔)(𝑒−𝑗3𝜔) 

We take the inverse Fourier transform of 
1

2+𝑗𝜔
, differentiate the time-domain expression, and 

delay by 3s. That is, we take the solution in part (b) and delay it by 3s.  From solution for (b) #1,  

𝑥(𝑡) = 𝛿(𝑡 − 3) − 2 𝑒−2 (𝑡−3) 𝑢(𝑡 − 3) 

and from solution for (b) #2 

𝑥(𝑡) = 𝑒−2 (𝑡−3) 𝛿(𝑡 − 3) − 2𝑒−2(𝑡−3)𝑢(𝑡 − 3) 

These are equivalent solutions (see part (b)). 

 

(d) 𝑋(𝑗𝜔) = (
2 sin(𝜔)

𝜔
) (∑

𝜋

5
𝛿 (𝜔 −

2𝜋

10
𝑘)∞

𝑘=−∞ ) 

Solution: Using the convolution-in-time property: 

𝑥1(𝑡) ∗ 𝑥2(𝑡) ↔ 𝑋1(𝑗𝜔) 𝑋2(𝑗𝜔) 

we have 

𝑋1(𝑗𝜔) =
2 sin(𝜔)

𝜔
 

𝑢 (𝑡 +
𝑇

2
) − 𝑢 (𝑡 −

𝑇

2
) ↔

sin (
𝜔𝑇
2 )

𝜔
2

 

𝑢(𝑡 + 1) − 𝑢(𝑡 − 1) ↔
2 sin(𝜔)

𝜔
 

And 

𝑋2(𝑗𝜔) = ∑
𝜋

5
 𝛿 (𝜔 −

2𝜋

10
𝑘)

∞

𝑘=−∞

= ∑
2𝜋

10
 𝛿 (𝜔 −

2𝜋

10
𝑘)

∞

𝑘=−∞
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∑ 𝛿(𝑡 − 10𝑛) ↔
2𝜋

10
∑ 𝛿 (𝜔 −

2𝜋

10
𝑘)

𝑘

∞

𝑛=−∞

 

Therefore,  

𝑥(𝑡) = 𝑥1(𝑡) ∗ 𝑥2(𝑡) = (𝑢(𝑡 + 1) − 𝑢(𝑡 − 1)) ∗ ∑ 𝛿(𝑡 − 10𝑛)

∞

𝑛=−∞

 

The expression 𝑢(𝑡 + 1) − 𝑢(𝑡 − 1) is a rectangular pulse of duration 2s centered at the origin, 

i.e. rect(t/2).  We interchange the summation and convolution due to linearity of convolution.  

When convolving a signal 𝑔(𝑡) with a delayed Dirac delta 𝛿(𝑡 − 𝑡0), we obtain 𝑔(𝑡 − 𝑡0): 

𝑥(𝑡) = rect (
𝑡

2
) ∗ ∑ 𝛿(𝑡 − 10𝑛)

∞

𝑛=−∞

= ∑ rect (
𝑡

2
) ∗ 𝛿(𝑡 − 10𝑛)

∞

𝑛=−∞

= ∑ rect (
𝑡 − 10𝑛

2
)

∞

𝑛=−∞

 

This signal is a square wave with period 10s.  The 

rectangular pulse in each period lasts for 2s. 

t = -20 : 0.01 : 20; 

x = rectpuls((t+20)/2) + rectpuls((t+10)/2) 

+ rectpuls(t/2) + rectpuls((t-10)/2) + 

rectpuls((t-20)/2); 

plot(t, x); 

ylim( [-0.2 1.2] ); 

xlabel('t'); 

ylabel('x(t)'); 

 

3. Transfer Functions in the Laplace Domain 

Plot each signal in the time domain for -1 < t < 1, compute the Laplace transform including the 

region of convergence, and sketch the pole-zero plot and region of convergence for the 

following signals: 

(a) 𝑥(𝑡) = cos(20 𝜋 𝑡) 𝑢(𝑡).  6 points. 

(b) 𝑥(𝑡) =  𝑒−8𝑡 𝑢(𝑡).  6 points. 

(c) 𝑥(𝑡) = (1 − 𝑒−8𝑡) 𝑢(𝑡).  6 points. 

For each part, what is the frequency selectivity— lowpass, highpass, bandpass, bandstop, 

allpass or notch?  (Given at the end.) 

Solution: 

(a) 𝑥(𝑡) = cos(20 𝜋 𝑡) 𝑢(𝑡) 

Plot in the time domain:    

t = -1:1/10000:1; 
unitstep = zeros(size(t)); 
unitstep (t>= 0) = 1; 
x = cos(20*pi*t).*unitstep; 
plot(t,x) 
xlabel('Time(s)') 
ylabel('x') 
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From ( ) 0 2 2

0

cos ( )
s

L t u t
s




=
+

for Re{s} >0. 

( )
2 2 22

( )
40020

s s
X s

ss 
= =

++
 for Re{s} > 0.  

Zeros are roots of numerator.  Zero at s = 0. 

Poles are roots of denominator.  Poles at 𝑠 = ±𝑗20𝜋 

In the figure legend, Res means Re{s}. 

 

(b) 𝑥(𝑡) =  𝑒−8𝑡 𝑢(𝑡) 

t = -1:1/10000:1; 
unitstep = zeros(size(t)); 
unitstep (t>= 0) = 1; 
x = exp(-8*t).*unitstep; 
plot(t,x) 
xlabel('Time(s)') 
ylabel('x') 

From  
1

( )atL e u t
s a

− =
+

for Re{s} > -Re{a}. 

𝑋(𝑠) =
1

𝑠 + 8
  for Re{s} >  −8  

 
: 8 0 8pole s s+ =  = −    

In the figure legend, Res means Re{s}. 

 
 

 

(c) 𝑥(𝑡) = (1 − 𝑒−8𝑡) 𝑢(𝑡) 

t = -1:1/10000:1; 
unitstep = zeros(size(t)); 
unitstep (t>= 0) = 1; 
x = (1-exp(-8*t)).*unitstep; 
plot(t,x) 
xlabel('Time(s)') 
ylabel('x') 

8 8( ) (1 ) ( ) ( ) ( )t tx t e u t u t e u t− −= − = −  

Re{s} 

Im{s} 

Re{s} 

Im{s} 

Im{s} 
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From  
1

( )atL e u t
s a

− =
+

for Re{s} > -Re{a}.  

𝑋(𝑠) =
1

𝑠
−

1

𝑠 + 8
=

8

𝑠 (𝑠 + 8)
 for 𝑅𝑒{𝑠} > 0 

The region of convergence is the intersection of 

𝑅𝑒{𝑠} > 0 and 𝑅𝑒{𝑠} >  −8. 

1 2: ( 8) 0 0, 8poles s s s s+ =  = = −
   

In the figure legend, Res means Re{s}. 

 

Frequency Domain Representation 

We have two ways to find the frequency-domain representation of a time-domain signal: 

• convert the Laplace transform to the frequency domain by substituting 𝑠 = 𝑗𝜔 if the 

substitution is valid; i.e., the region of convergence for the Laplace transform includes the 

imaginary axis, or 

• compute the continuous-time Fourier transform of the signal 

 

Frequency Selectivity vs. Frequency Content. 

• By “frequency selectivity,” we seek to interpret the magnitude of the frequency response of 

an LTI system whose impulse response is 𝑥(𝑡).  That is, we’re trying to characterize the 

shape of the magnitude response as lowpass, highpass, bandpass, bandstop, allpass or notch, 

which indicates how input frequencies are amplified, passed or attenuated to the output. 

• By “frequency content”, we seek to characterize the frequency content in the signal 𝑥(𝑡). 

 

Approach #1: Frequency Selectivity 

The characterization into lowpass, highpass, bandpass, bandstop, allpass or notch is meaningful 

when the magnitude response is bounded for all frequencies; otherwise, if the input signal 

contains the frequency at which the LTI system has an unbounded response, then the output 

signal will have that frequency in infinite strength, which will make all the frequencies passed 

with bounded amplitude negligible.  Once there is an infinite strength frequency component in 

the output signal, the bounded magnitude response for other frequencies won’t matter. 

A causal continuous-time LTI system is bounded-input bounded-output (BIBO) stable if the 

poles are in the left-hand side of the Laplace plane.  An alternate condition for BIBO stability is 

when the region of convergence includes the imaginary axis (i.e. the 𝑗𝜔 axis). 

(a) The impulse response would correspond to an LTI system that is BIBO unstable because the 

region of convergence 𝑅𝑒{𝑠} > 0 does not include the imaginary axis (i.e. the 𝑗𝜔 axis).  The 

frequency responses is not bounded.  Selectivity not determined. 

(b) The frequency response can be obtained from the Laplace transform:  𝑋(𝑗𝜔) =
1

𝑗𝜔+8
 .  The 

magnitude response peaks at 𝜔 = 0 and decreases by 
1

𝜔
 as 𝜔 → ∞.  Lowpass filter. 

Re{s} 
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(c) The impulse response would correspond to an LTI system that is BIBO unstable because the 

region of convergence 𝑅𝑒{𝑠} > 0 does not include the imaginary axis (i.e. the 𝑗𝜔 axis).  The 

frequency responses is not bounded.  Selectivity not determined. 

 

Approach #2: Frequency Content 

(a) We take the Fourier transform of 𝑥(𝑡) = cos(𝜔0 𝑡) 𝑢(𝑡) where 𝜔0 = 20𝜋.  We can use the 

fact that multiplication in the time domain is convolution in the frequency domain: 

𝑥1(𝑡)𝑥2(𝑡) ↔
1

2𝜋
𝑋1(𝜔) ∗ 𝑋2(𝜔) 

𝑋1(𝜔) = 𝜋 𝛿(𝜔 + 𝜔0) + 𝜋 𝛿(𝜔 − 𝜔0) 

𝑋2(𝜔) = 𝜋 𝛿(𝜔) +
1

𝑗𝜔
 

1

2𝜋
𝑋1(𝜔) ∗ 𝑋2(𝜔) =

1

2𝜋
(𝜋 𝛿(𝜔 + 𝜔0) + 𝜋 𝛿(𝜔 − 𝜔0)) ∗ (𝜋 𝛿(𝜔) +

1

𝑗𝜔
) 

Convolving with Dirac delta:  𝛿(𝜔) ∗ 𝐺(𝜔) = 𝐺(𝜔) and 𝛿(𝜔 − 𝜔0) ∗ 𝐺(𝜔) = 𝐺(𝜔 − 𝜔0) 

1

2𝜋
𝑋1(𝜔) ∗ 𝑋2(𝜔) =

𝜋

2
 𝛿(𝜔 + 𝜔0) +

𝜋

2
𝛿(𝜔 − 𝜔0) +

1

𝑗(𝜔 + 𝜔0)
+

1

𝑗(𝜔 − 𝜔0)
 

 

Infinite frequency components at −𝜔0 and 𝜔0.  Bandpass shape. 

(b) The frequency response can be obtained from the 

Laplace transform:  𝑋(𝑗𝜔) =
1

𝑗𝜔+8
 .  The magnitude 

response peaks at 𝜔 = 0 and decreases by 
1

𝜔
 as 𝜔 → ∞.  

Lowpass shape. 

w = -10 : 0.01 : 10;  

H = 1 ./ (j*w + 8); 

plot(w, abs(H)); 

xlabel('w'); 

ylabel('|H(jw)|'); 

 

(c) We take the Fourier transform of 𝑥(𝑡) = (1 − 𝑒−8𝑡) 𝑢(𝑡) = 𝑢(𝑡) − 𝑒−8𝑡 𝑢(𝑡). 

𝑋(𝑗𝜔) = (𝜋 𝛿(𝜔) +
1

𝑗𝜔
) − (

1

𝑗𝜔 + 8
) 
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Here’s the magnitude plot of the terms 
1

𝑗𝜔
− (

1

𝑗𝜔+8
) : 

w = -10 : 0.01 : 10; 

H = (1 ./ (j*w)) - (1 ./ (j*w + 8)); 

plot(w, abs(H)); 

xlabel('w'); 

ylabel('|H(jw)|'); 

 

Lowpass shape. 
 
 

 

4. Transfer Function in the Laplace Domain (not asked) 

A continuous-time system with input x(t) and output y(t) is described by the following linear 

constant coefficient differential equation for t > 0-: 

𝑑

𝑑𝑡
𝑦(𝑡) + 2𝑦(𝑡) =

𝑑

𝑑𝑡
𝑥(𝑡) 

Initial conditions are set to zero, i.e. y(0-) = 0 and x(0-) = 0, so the system will have linearity and 

time-invariant properties.  (Notice the two different uses of “linear”.  In the case of linear constant 

different equation, “linear” refers to “affine” which is a line that does not necessarily go through 

the origin.) 

(a) What is the transfer function H(s) of the system in the Laplace domain including the region of 

convergence?  9 points. 

(b) What is the impulse response h(t) of the system?  9 points. 

(c) Find the frequency response H(j) of the system from the transfer function.  Why is the 

substitution s = j valid?  9 points. 

(d) From part (c), plot the magnitude response.  What is the frequency selectivity— lowpass, 

highpass, bandpass, bandstop, allpass or notch?  9 points. 

(e) For x(t) = u(t), find X(s) and Y(s).  9 points. 

(f) From part (e), find y(t) by taking the inverse Laplace transform of Y(s).  10 points. 

 

Solution: 

Using the property: 𝐿 {
𝑑

𝑑𝑡
𝑥(𝑡)} = 𝑠𝐿{𝑥(𝑡)} for zero initial conditions, we get: 

(a) 

𝑠𝑌(𝑠) + 2𝑌(𝑠) = 𝑠𝑋(𝑠) => 𝑌(𝑠)(𝑠 + 2) = 𝑠𝑋(𝑠) => 𝐻(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝑠

𝑠 + 2
 

Because the system is causal, the region of convergence is Re{s} > -2. 

 

(b) Using the Laplace transform pair 𝐿{𝑒−𝑎𝑡𝑢(𝑡)} =
1

𝑠+𝑎
 for Re{s} > -Re{a}, 𝐿(𝛿(𝑡)) = 1 for 

all s, we obtain 
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2 2 2
( ) 1

2 2 2

s s
H s

s s s

+ −
= = = −

+ + +
 

2( ) ( ) 2 ( )th t t e u t −= −  

(c) 𝐻(𝑗𝜔) =
𝑗𝜔

𝑗𝜔+2
 by substituting 𝑠 = 𝑗𝜔 into H(s) above.  

This substitution is valid because the imaginary axis lies 

within the region of convergence of Re{s} > -2.  

(d) 

w = -10:1/10000:10; 
H= j*w./(j*w+2); 
Hmag=abs(H) ; 
Hphase=angle(H); 
plot(w,Hmag) 
title('Magnitude Response');  
figure 
plot(w,Hphase) 
title('Phase Response'); 

 

According to magnitude response, the filter notches out 

zero frequency.  Hence, it is a notch filter.  It could also be 

called a highpass filter, but a DC notch filter would be 

more descriptive and a better answer. 

Here’s the plot of the magnitude and phase using the freqs command in Matlab, which will plot 

the frequency responses on a log scale in frequency.  The magnitude will also be on a log scale. 

 
freqs( [1 0], [1 2] ); 

 
We see a highpass response over the frequencies plotted. 

Please note freqs( [1], [1 2] ) would mean 
1

𝑠+2
 for the transfer function instead of 

𝑠

𝑠+2
. 
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(e) 𝑥(𝑡) = 𝑢(𝑡) => 𝑋(𝑠) =  ∫ 𝑢(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

−∞
=  ∫ 𝑒−𝑠𝑡𝑑𝑡

∞

0
=

1

𝑠
 for Re{s} > 0. 

We could have also obtained the transform by using 𝐿{𝑒−𝑎𝑡𝑢(𝑡)} =
1

𝑠+𝑎
 and substituting a = 0. 

1
( ) ( ) ( )

2
Y s H s X s

s
= =

+
 

(f) Using the Laplace transform pair 𝐿{𝑒−𝑎𝑡𝑢(𝑡)} =
1

𝑠+𝑎
, for we get 𝑦(𝑡) = 𝑒−2𝑡𝑢(𝑡) 

 


