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1.0 Introduction (3 points)  

This mini-project uses a sum of sinusoids to synthesize and play a Shepard Scale [1]. A Shepard 

Scale is an auditory illusion that sounds like the scale is always increasing in frequency.  In the 

sum of sinusoids, we will use frequencies that are separated by octaves and amplitudes of different 

weights to achieve the auditory illusion. 
 

2.0 Pre-Lab (6 points)  

On a piano keyboard, the ratio between the frequencies of successive keys is 21/12 Hz. 12 keys are 

contained in an octave, and the notes in one octave are twice the frequency of the notes in the 

previous octave.  Here are the notes and octaves on an 88-key piano keyboard: [2] 

 

The key in Cyan is the ‘C’ note in the fourth octave on the Western scale, which has a principal 

frequency of 260 Hz.  The key in yellow is the ‘A’ in the fourth octave (called middle ‘A’) which 

has a principal frequency of 440 Hz.  When a note on the piano is played, a hammer strikes a 

string, and string vibrates at the principal frequency and its harmonics.  This vibrates then causes 

vibrations in the piano body, which in turn emits the sound as pressure waves.  This mini-project 

concerns the principal frequencies for each note on the piano keyboard and not the harmonics. 

The Gaussian probability density function can be represented by the formula  

𝑔(𝑣) =  𝛼𝑒−(𝑣−𝜇)2/2𝜎2
 

where α specifies the amplitude, µ specifies the 

peak location, and σ specifies the width of the peak. 

The plot of the Gaussian distribution is a “bell 

curve.” This plot is generated in Matlab below. 

v = -10:.1:10;  
sig=2; 
alph=10; 
mu = 4; 
gausswave = alph*exp(-(v-mu).^2/(2*sig^2)); 
 
figure 
plot(v,gausswave,'linewidth',2); 
xlabel('v') 
ylabel('Probability Density Function') 
title('Gaussian Distribution') 
grid on 



3.0 Warm-Up 

3.1 Gaussian Weighting 

(a) We synthesize a Gaussian curve given a center frequency, variance, and vector of frequencies  

to be evaluated, and the Matlab code below is saved in FrequencyWeighting.m. 6 points. 

function output = FrequencyWeighting(fc,sig,ff) 
output = exp(-(log2(ff) - log2(fc) ).^2/(2*sig^2)); 
%output = exp(-(ff - fc ).^2/(2*sig^2)); 
end 

(b) The following Matlab code generates a vector of principal frequencies over five octaves, 

where there are 12 notes per octave and each note is a 1/12 step from the previous notes. 0 points 

ff = 2.^(5:1/12:10); 

(c) The center frequency is 440 Hz and the width of frequencies is equal to one octave, and the 

plot of a Gaussian with these parameters is shown below using semilogx. 6 points 

fc = 440; 
wd = (1760 - 55)/6; 
sig = 1; 
frequencies = 55:1/12:1760; 
weights = FrequencyWeighting(fc,sig,frequencies); 
 
%Plot using the semilogx command (log scale) 
figure; 
semilogx(frequencies, weights, 'b-', 'LineWidth', 1.5); % Plot with logarithmic x-
axis 
xlabel('Frequency (Hz)'); % Label for x-axis 
ylabel('Weight'); % Label for y-axis 
title('Gaussian Weighting Function Centered at 440 Hz with One Octave Width'); % 
Title of the plot 
grid on; % Turn on the grid for better visualization 
hold on; 
xline(fc, 'r--', 'LineWidth', 1.5, 'Label', 'Center Frequency (440 Hz)', 
'LabelHorizontalAlignment', 'right'); % Vertical line at center frequency 
hold off; 

 

  



(d) To plot the Gaussian as a function of frequency, we can use the plot command, and the 

resulting plot is shown below.  6 points. 

% Plot using the plot command (linear scale) 
figure; 
plot(frequencies, weights, 'b-', 'LineWidth', 1.5); % Plot with linear x-axis 
xlabel('Frequency (Hz)'); % Label for x-axis 
ylabel('Weight'); % Label for y-axis 
title('Gaussian Weighting Function vs Frequency (Linear Scale)'); 
grid on; 

The Gaussian appears distorted because the 

plot command uses a linear scale for 

frequency. Since the Gaussian function is 

defined on the log scale (log2(f)), the bell 

shape is compressed towards the center 

frequency when plotted on a linear frequency 

axis, causing distortion. When using semilogx, 

the x-axis is logarithmic (base 2), which aligns 

with the Gaussian function's definition in terms 

of log2(f). This restores the expected bell 

shape because the x-axis correctly represents 

the frequency spacing as intended by the 

Gaussian distribution in log-frequency space. 

 

3.2 Synthesize Octaves with Gaussian Weighting 

We can synthesize and play a signal that is sampled at 8000 Hz and composed of C4, C5, C6, C3, 

and C2 with the following Matlab code. 

(a) 9 points 

%3.2 Synthesize Octaves with Gaussian Weighting 
% Parameters 
fs = 8000;        % Sampling frequency in Hz 
duration = 2;     % Duration of the signal in seconds 
t = 0:1/fs:duration-(1/fs);  % Time vector 
fc = 440;         % Center frequency of the Gaussian at 440 Hz 
sigma = 1;        % Width of one octave in log scale 
 
% Key numbers for the notes: C2, C3, C4, C5, C6 
% MIDI key numbers: C2 (16), C3 (28), C4 (40), C5 (52), C6 (64) 
%keynums = [36, 48, 60, 72, 84]; 
keynums = [16, 28, 40, 52, 64]; 
 
% Frequencies corresponding to the key numbers for C2, C3, C4, C5, and C6 
% Note that 49 is the keynum of A4 (the reference) 
frequencies = 440 * 2.^((keynums - 49)/12); 
 
% Calculate Gaussian weights for these frequencies 
weights = FrequencyWeighting(fc,sigma,frequencies); 
 
% Initialize the final signal 
final_signal = zeros(size(t)); 
 



% Generate each note using key2note function and add with Gaussian weights 
for i = 1:length(keynums) 
    note = key2note(weights(i),keynums(i), duration, fs);  % Synthesizes the correct 
sinusoidal signal for the key number  
    final_signal = final_signal + note; % Weight the note by the Gaussian and sum 
end 
 
% Normalize the final signal to avoid clipping 
final_signal = final_signal / max(abs(final_signal)); 
 
% Play the synthesized sound 
sound(final_signal, fs); 
 
% Optional: Save the sound to a file 
audiowrite('Gaussian_Weighted_Octave_Sound.wav', final_signal, fs); 

 

(b) 9 points 

We can plot the spectrogram of the synthesized signal with the following Matlab code. 

% Plot the spectrogram 
window_length = 2048; % Long window length for good frequency resolution 
overlap = window_length / 2; % 50% overlap 
nfft = window_length; % Number of FFT points 
 
figure;  
[S, F, T, P] =spectrogram(final_signal, window_length, overlap, nfft, fs, 'yaxis'); 
title('Spectrogram of Synthesized Sound'); 
imagesc(T, F, 10*log10(P)); % Use imagesc for better colormap handling 
axis xy; % Correct the orientation of the y-axis 
title('Spectrogram of Synthesized Sound'); 
xlabel('Time (s)'); 
ylabel('Frequency (Hz)'); 
ylim([0 1200]); % Limit frequency range to show relevant peaks 
colorbar; 
colorbar; 
 
% Add lines for each frequency to identify peaks 
hold on; 
yline(frequencies(5), 'c--', 'LineWidth', 1.5, 'Label', ['C6 ' 
num2str(frequencies(5))], 'LabelHorizontalAlignment', 'left'); 
yline(frequencies(4), 'm--', 'LineWidth', 1.5, 'Label', ['C5 ' 
num2str(frequencies(4))], 'LabelHorizontalAlignment', 'left'); 
yline(frequencies(3), 'b--', 'LineWidth', 1.5, 'Label', ['C4 ' 
num2str(frequencies(3))], 'LabelHorizontalAlignment', 'left'); 
yline(frequencies(2), 'g--', 'LineWidth', 1.5, 'Label', ['C3 ' 
num2str(frequencies(2))], 'LabelHorizontalAlignment', 'left'); 
yline(frequencies(1), 'r--', 'LineWidth', 1.5, 'Label', ['C2 ' 
num2str(frequencies(1))], 'LabelHorizontalAlignment', 'left'); 
hold off; 



 

In the spectrogram on the right, the dashed lines 

highlight the peak frequencies which have 

different colors corresponding to different 

amplitudes in the spectrogram scale. 

 

4.0 A Musical Illusion 

(a) We synthesize a C-major scale with the 

Matlab code below using a sampling rate of 

22050 Hz and a sum of nine sinusoids. The 

code for generating frequencies is saved in 

GenerateFrequency.m.  6 points. 

 
function output = GenerateFrequency(freq) 
output = freq* 2.^(-4:4); 
end 

 

% Parameters 
fs = 22050;        % Sampling frequency in Hz 
duration = 1;      % Duration of each note in seconds 
t = 0:1/fs:duration-1/fs;  % Time vector for each note 
 
% MIDI key numbers for C-major scale starting at middle-C (C4) 
% C4 (40), D4 (42), E4 (44), F4 (45), G4 (47), A4 (49), B4 (51), C5 (52) 
keynums = [40, 42, 44, 45, 47, 49, 51, 52]; 
 
final_signal = []; 
for key=keynums 
 
freq = 440 * 2.^((key - 49)/12); 
octaves = GenerateFrequency(freq); 
 
note_signal = zeros(size(freq)); 
for f = octaves 
    % ignore all the weithing amplitudes as stated in part a) 
 note_signal = note_signal + cos(2*pi*f*t); 
end 
 
note_signal = note_signal/max(abs(note_signal)); 
 
final_signal = [final_signal note_signal]; 
end 
final_signal = final_signal / max(abs(final_signal)); 
 
sound(final_signal,fs) 
% Optional: Save the sound to a file 
audiowrite('C_Major_Scale_With_Octaves.wav', final_signal, fs); 

(b) We can modify the code to play the scale 5 times and add silence between notes. 6 points. 

% Parameters 
fs = 22050;        % Sampling frequency in Hz 



note_duration = 0.5;   % Duration of each note in seconds 
silence_duration = 0.2; % Duration of silence between notes in seconds 
t_note = 0:1/fs:note_duration-1/fs;  % Time vector for each note 
t_silence = zeros(1, round(silence_duration * fs));  % Silence vector 
 
% MIDI key numbers for C-major scale starting at middle-C (C4) 
% C4 (40), D4 (42), E4 (44), F4 (45), G4 (47), A4 (49), B4 (51), C5 (52) 
keynums = [40, 42, 44, 45, 47, 49, 51, 52]; 
 
% Function to generate frequencies for each key, including octaves 
generate_frequencies = @(freq) freq * 2.^(-4:4); % Generate frequencies for 4 octaves 
below and above 
 
% Initialize the final signal to empty 
final_signal = []; 
 
% Repeat the C-major scale five times 
for repetition = 1:5 
    % Loop through each key number in the C-major scale 
    for key = keynums 
        % Calculate the frequency for the current key 
        freq = 440 * 2^((key - 49) / 12); % Calculate frequency from MIDI key number 
(49 is A4, 440 Hz) 
 
        % Generate the frequencies including 4 octaves below and above 
        octaves = GenerateFrequency(freq); 
 
        % Initialize note signal with zeros 
        note_signal = zeros(1, length(t_note)); 
 
        % Sum sinusoids for each frequency 
        for f = octaves 
            note_signal = note_signal + cos(2 * pi * f * t_note); 
        end 
 
        % Normalize note signal to prevent excessive amplitude 
        note_signal = note_signal / max(abs(note_signal)); 
 
        % Append the note signal and silence to the final signal 
        final_signal = [final_signal, note_signal, t_silence]; 
    end 
end 
 
% Normalize the final signal to avoid clipping 
final_signal = final_signal / max(abs(final_signal)); 
 
% Play the synthesized C-major scale 
sound(final_signal, fs); 
 
% Optional: Save the sound to a file 
audiowrite('C_Major_Scale_With_Octaves_Repeated.wav', final_signal, fs); 

(c) We use amplitude weighting with a Gaussian and plot with σ = 2.  6 points. 

% Parameters for the Gaussian weighting 
fc = 380;       % Center frequency between 260 and 500 Hz 



sigma = 2;      % Standard deviation in log2(f) scale 
 
% Frequency range for plotting 
f = linspace(20, 2000, 1000);  % Frequencies from 20 Hz to 2000 Hz 
 
% Calculate Gaussian weighting function as a function 
of log2(f) 
 
W = FrequencyWeighting(fc,sigma,f); 
 
% Plotting the weighting function versus log2(f) 
figure; 
plot(log2(f), W, 'LineWidth', 2); 
xlabel('log_2(f)'); 
ylabel('Weighting Function W(f)'); 
title('Gaussian Weighting Function versus log_2(f)'); 
grid on; 
% Set x-axis limits based on the frequency range 
xlim([log2(20), log2(2000)]);   

 

(d) We use the Gaussian weighting to create the musical illusion of the Shepard scale with the 

code below.  6 points 

% Parameters 
fs = 22050;               % Sampling frequency in Hz 
note_duration = 0.5;      % Duration of each note in seconds 
silence_duration = 0.2;   % Duration of silence between notes in seconds 
t_note = 0:1/fs:note_duration-1/fs;  % Time vector for each note 
t_silence = zeros(1, round(silence_duration * fs));  % Silence vector 
 
% MIDI key numbers for C-major scale starting at middle-C (C4) 
% C4 (40), D4 (42), E4 (44), F4 (45), G4 (47), A4 (49), B4 (51), C5 (52) 
keynums = [40, 42, 44, 45, 47, 49, 51, 52]; 
 
% Gaussian weight function parameters 
fc = 380;       % Center frequency between 260 and 500 Hz 
sigma = 2;      % Standard deviation in log2(f) scale 
 
 
% Initialize the final signal to empty 
final_signal = []; 
 
% Repeat the C-major scale five times 
for repetition = 1:5 
    % Loop through each key number in the C-major scale 
    for key = keynums 
        % Calculate the frequency for the current key 
        freq = 440 * 2^((key - 49) / 12); % Calculate frequency from MIDI key number 
(49 is A4, 440 Hz) 
 
        % Generate the frequencies including 4 octaves below and above 
        octaves = GenerateFrequency(freq); 
 
        % Initialize note signal with zeros 
        note_signal = zeros(1, length(t_note)); 



 
        % Sum sinusoids for each frequency, weighted by the Gaussian function 
        for f = octaves 
            % Calculate the Gaussian weight for the current frequency 
            weight = FrequencyWeighting(fc,sigma,f); 
             
            % Add the weighted sinusoid to the note signal 
            note_signal = note_signal + weight * cos(2 * pi * f * t_note); 
        end 
 
        % Normalize note signal to prevent excessive amplitude 
        note_signal = note_signal / max(abs(note_signal)); 
 
        % Append the note signal and silence to the final signal 
        final_signal = [final_signal, note_signal, t_silence]; 
    end 
end 
 
% Normalize the final signal to avoid clipping 
final_signal = final_signal / max(abs(final_signal)); 
 
% Play the synthesized C-major scale with the illusion effect 
sound(final_signal, fs); 
 
% Optional: Save the sound to a file 
audiowrite('C_Major_Scale_Illusion_With_Gaussian_Weighting.wav', final_signal, fs); 

 

(e) We can plot the spectrogram of the synthesized signal with the following code. 6 points. 

% Parameters 
fs = 22050;               % Sampling frequency in Hz 
note_duration = 0.5;      % Duration of each note in seconds 
silence_duration = 0.2;   % Duration of silence between notes in seconds 
t_note = 0:1/fs:note_duration-1/fs;  % Time vector for each note 
t_silence = zeros(1, round(silence_duration * fs));  % Silence vector 
 
% MIDI key numbers for C-major scale starting at middle-C (C4) 
% C4 (40), D4 (42), E4 (44), F4 (45), G4 (47), A4 (49), B4 (51), C5 (52) 
keynums = [40, 42, 44, 45, 47, 49, 51, 52]; 
 
% Gaussian weight function parameters 
fc = 380;       % Center frequency between 260 and 500 Hz 
sigma = 2;      % Standard deviation in log2(f) scale 
 
% Initialize the final signal to empty 
final_signal = []; 
 
% Repeat the C-major scale three times for spectrogram analysis 
for repetition = 1:3 
    % Loop through each key number in the C-major scale 
    for key = keynums 
        % Calculate the frequency for the current key 
        freq = 440 * 2^((key - 49) / 12); % Calculate frequency from MIDI key number 
(49 is A4, 440 Hz) 
 



        % Generate the frequencies including 4 octaves below and above 
        octaves = GenerateFrequency(freq); 
 
        % Initialize note signal with zeros 
        note_signal = zeros(1, length(t_note)); 
 
        % Sum sinusoids for each frequency, weighted by the Gaussian function 
        for f = octaves 
            % Calculate the Gaussian weight for the current frequency 
            weight = FrequencyWeighting(fc,sigma,f); 
             
            % Add the weighted sinusoid to the note signal 
            note_signal = note_signal + weight * cos(2 * pi * f * t_note); 
        end 
 
        % Normalize note signal to prevent excessive amplitude 
        note_signal = note_signal / max(abs(note_signal)); 
 
        % Append the note signal and silence to the final signal 
        final_signal = [final_signal, note_signal, t_silence]; 
    end 
end 
 
% Normalize the final signal to avoid clipping 
final_signal = final_signal / max(abs(final_signal)); 
 
% Play the synthesized C-major scale with the illusion effect 
sound(final_signal, fs); 
 
% Optional: Save the sound to a file 
audiowrite('C_Major_Scale_Illusion_With_Gaussian_Weighting.wav', final_signal, fs); 
 
% Generate the spectrogram using MATLAB's built-in function 
figure; 
spectrogram(final_signal, 1024, 512, 1024, fs, 'yaxis'); 
title('Spectrogram of C-Major Scale with Gaussian Weighted Illusion'); 
xlabel('Time (s)'); 
ylabel('Frequency (Hz)'); 
colorbar; 

 

Illusion of Continuous Rising or Descending: The spectrogram (next page) may show a "rising" 

or “falling” illusion due to how the Gaussian weights emphasize certain frequencies across the 

octaves, making it seem like the sound continuously ascends or descends without a clear starting 

or ending point. 

Here are the visual features in the spectrogram to look for: 

• Bands of Energy: Multiple octave-related bands that are emphasized and de-emphasized 

cyclically. 

• Smooth Transitions: Lack of clear separations between the end of one note and the 

beginning of the next, contributing to the auditory illusion. 

 



 

 

By analyzing the spectrogram, you can visualize how the Gaussian weighting contributes to the 

auditory illusion, making the scale sound like it's endlessly ascending or descending, even 

though it repeats the same notes cyclically. 

 

(f) We play every note in the octave and notice the difference in the illusion sound with the 

following Matlab code.  12 points. 

% Parameters 
fs = 22050;               % Sampling frequency in Hz 
note_duration = 0.5;      % Duration of each note in seconds 
silence_duration = 0.1;   % Duration of silence between notes in seconds 
t_note = 0:1/fs:note_duration-1/fs;  % Time vector for each note 
t_silence = zeros(1, round(silence_duration * fs));  % Silence vector 
 
% MIDI key numbers for all twelve semitones within an octave, starting at C4 
% C4 (40) to B4 (51) 
keynums = 40:51;  % Chromatic scale from C4 to B4 
 
% Gaussian weight function parameters 
fc = 380;       % Center frequency between 260 and 500 Hz 
sigma = 2;      % Standard deviation in log2(f) scale 
 
% Initialize the final signal to empty 
final_signal = []; 
 
% Repeat the chromatic scale sequence multiple times 
repetitions = 5;  % Number of times to repeat the sequence 
 
for repetition = 1:repetitions 



    % Loop through each key number in the chromatic scale 
    for key = keynums 
        % Calculate the frequency for the current key 
        freq = 440 * 2^((key - 49) / 12); % Calculate frequency from MIDI key number 
(49 is A4, 440 Hz) 
 
        % Generate the frequencies including 4 octaves below and above 
        octaves = GenerateFrequency(freq); 
 
        % Initialize note signal with zeros 
        note_signal = zeros(1, length(t_note)); 
 
        % Sum sinusoids for each frequency, weighted by the Gaussian function 
        for f = octaves 
            % Calculate the Gaussian weight for the current frequency 
            weight = FrequencyWeighting(fc,sigma,f); 
             
            % Add the weighted sinusoid to the note signal 
            note_signal = note_signal + weight * cos(2 * pi * f * t_note); 
        end 
 
        % Normalize note signal to prevent excessive amplitude 
        note_signal = note_signal / max(abs(note_signal)); 
 
        % Append the note signal and silence to the final signal 
        final_signal = [final_signal, note_signal, t_silence]; 
    end 
end 
 
% Normalize the final signal to avoid clipping 
final_signal = final_signal / max(abs(final_signal)); 
 
% Play the synthesized chromatic scale with the illusion effect 
sound(final_signal, fs); 
 
% Optional: Save the sound to a file 
audiowrite('Chromatic_Scale_Illusion_With_Gaussian_Weighting.wav', final_signal, fs); 
 
% Generate the spectrogram for analysis 
figure; 
spectrogram(final_signal, 1024, 512, 1024, fs, 'yaxis'); 
title('Spectrogram of Chromatic Scale with Gaussian Weighted Illusion'); 
xlabel('Time (s)'); 
ylabel('Frequency (Hz)'); 
colorbar; 
 



 
 

1. Chromatic Scale: The MIDI key numbers 60 to 71 correspond to all twelve semitones from C4 

to B4, making up the full chromatic scale within one octave. 

2. Gaussian Weighting: The Gaussian weighting is applied to emphasize frequencies around 380 

Hz, with weights decreasing for frequencies further from the center on a logarithmic scale. 

3. Improved Illusion: Including all 12 notes in an octave creates a smoother, more continuous 

pitch progression, which often enhances the illusion of an endlessly rising or falling scale. The 

listener perceives a continuous transition without the distinct intervals of a major scale. 

4. Repetition: Repeating the chromatic scale multiple times strengthens the illusion and helps to 

maintain the perceptual effect. 

5. Spectrogram Analysis: The spectrogram will show overlapping bands of frequencies, with 

energy smoothly transitioning across the notes, illustrating the continuous nature of the illusion. 

 

(g) Zip file of all prepared Matlab code files.  6 points 

 

5.0 Conclusion (7 points) 

With Gaussian weighting and synthesizing sinusoids to create signals, we can create and play the 

Shepard scale. The illusion comes from using frequencies separated by octaves and weighting 

the amplitudes. Choosing the parameters of amplitude and variance is important when creating 

the Gaussian, and the Gaussian used in the mini project depends on the log of the frequency.   
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