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Solution Set for Homework #3 on Fourier Series and Sampling 

By Prof. Brian L. Evans and Mr. Firas Tabbara 

September 24, 2024 

 

PROBLEM 1: FOURIER ANALYSIS AND SYNTHESIS 

 

Prologue:  The purpose of this problem is to use properties of the continuous-time Fourier series in 

computing the Fourier series coefficients.  Throughout the remainder of the course, we’ll be using 

properties of continuous-time Fourier transforms and other transforms to simplify the computation of the 

transform. 

 

Problem:  Signal Processing First, problem P-3.14, page 67.  The problem gives an example of a signal 

𝑥(𝑡) that has period T0 and another signal 𝑦(𝑡) =  
𝑑

𝑑𝑡
𝑥(𝑡).  The Fourier series coefficients 𝑏𝑘 for 𝑦(𝑡) can 

be computed from the Fourier series coefficients 𝑎𝑘 for 𝑥(𝑡) using 𝑏𝑘 = (𝑗 𝑘 𝜔0) 𝑎𝑘 where 𝜔0 = 2 𝜋 𝑓0. 

 
Solution for part (a):  Here are two different solutions for 𝑦(𝑡) = 𝐴 𝑥(𝑡). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

When scaling any signal in amplitude, the Fourier Series coefficients are scaled by the same 

amount. 

 

  

Solution #1 for part (a) 
 

𝑥(𝑡) =  ∑ 𝑎𝑘 𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

 

 

Let 𝑦(𝑡) = 𝐴 𝑥(𝑡): 

 

𝑦(𝑡) = 𝐴 ( ∑ 𝑎𝑘 𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

) 

 

𝑦(𝑡) = ∑ 𝐴 𝑎𝑘 𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

 

 

𝑦(𝑡) = ∑ (𝐴 𝑎𝑘 ) 𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

 

 

𝑦(𝑡) = ∑ 𝑏𝑘 𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

 

 

𝑏𝑘 =  𝐴 𝑎𝑘  
 

Solution #2 for part (a) 
 

𝑎𝑘 =
1

𝑇0
∫ 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡

𝑇0

0

  

 

𝑏𝑘 =
1

𝑇0
∫ 𝑦(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡

𝑇0

0

 

 

Let 𝑦(𝑡) = 𝐴 𝑥(𝑡): 

 

𝑏𝑘 = ∫ 𝐴 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡
𝑇0

0

 

 

𝑏𝑘 = 𝐴 ∫  𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡
𝑇0

0

 

 

𝑏𝑘 = 𝐴 𝑎𝑘  
 

 

 

 

 

 

 

𝑤ℎ𝑒𝑟𝑒 𝑏𝑘 =  𝐴 𝑎𝑘  
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Solution for part (b):  Here are two different solutions for 𝑦(𝑡) = 𝐴 𝑥(𝑡 − 𝑡𝑑). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When delaying a signal, the Fourier Series coefficients are multiplied by 𝑒−𝑗𝑘𝜔0𝑡𝑑.  This is 

another example of a shift in time causing shift in phase. 

 

(c) 𝑦(𝑡) = 2𝑥 (𝑡 −
1

4
𝑇0) 

 

Using the conclusion derived in parts  (a) and (b) with A = 2 and td = ¼ T0,  

 

𝑏𝑘 = 2 𝑒−𝑗𝑘𝜔0(
1
4𝑇0)𝑎𝑘 

 

Given 𝜔0 = 2𝜋𝑓0 =  
2𝜋

𝑇0
 , 

 

𝑏𝑘 = 2 𝑒−𝑗𝑘
𝜋
2 𝑎𝑘 

 

  

Solution #1 for part (b) 

 
Let 𝑦(𝑡) = 𝑥(𝑡 – 𝑡𝑑): 

 

𝑥(𝑡 −  𝑡𝑑) =  ∑ 𝑎𝑘 𝑒𝑗𝑘𝜔0(𝑡 − 𝑡𝑑)

+∞

𝑘= −∞

 

 

𝑥(𝑡 −  𝑡𝑑) =  ∑ 𝑎𝑘 𝑒
−𝑗𝑘𝜔0𝑡𝑑  𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

 

 

𝑦(𝑡) =  ∑ 𝑏𝑘 𝑒𝑗𝑘𝜔0𝑡

+∞

𝑘= −∞

 

 

𝑏𝑘 =  𝑒−𝑗𝑘𝜔0𝑡𝑑  𝑎𝑘 

 

Solution #2 for part (b) 

 

𝑎𝑘 =
1

𝑇0
∫ 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡

𝑇0

0

 

 

𝑏𝑘 =
1

𝑇0
∫ 𝑦(𝑡) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡

𝑇0

0

 

 

Let 𝑦(𝑡) = 𝑥(𝑡 – 𝑡𝑑): 

𝑏𝑘 = ∫ 𝑥(𝑡 – 𝑡𝑑) 𝑒−𝑗𝑘𝜔0𝑡  𝑑𝑡
𝑇0

0

 

 

Using a substitution of variables with 

𝜆 = 𝑡 – 𝑡𝑑  and 𝑑𝜆 = 𝑑𝑡.  The limits of 

integration 𝑡 →  0 becomes 𝜆 → – 𝑡𝑑  and 

𝑡 →  𝑇0 becomes 𝜆 →  𝑇0– 𝑡𝑑 , 

𝑏𝑘 = ∫ 𝑥(𝜆) 𝑒−𝑗𝑘𝜔0(𝜆+𝑡𝑑) 𝑑𝑡
𝑇0

0

 

 

𝑏𝑘 = ∫ 𝑥(𝜆) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑒−𝑗𝑘𝜔0𝜆  𝑑𝜆
𝑇0−𝑡𝑑

−𝑡𝑑

 

 

𝑏𝑘 = 𝑒−𝑗𝑘𝜔0𝑡𝑑 ∫ 𝑥(𝜆) 𝑒−𝑗𝑘𝜔0𝜆  𝑑𝜆
𝑇0−𝑡𝑑

−𝑡𝑑

 

 

𝑏𝑘 =  𝑒−𝑗𝑘𝜔0𝑡𝑑  𝑎𝑘 

 



The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

(d) Below, the plots of 𝑥(𝑡)and 𝑦(𝑡) are plotted for two periods to better show the shift in time 

𝑦(𝑡) = 2 𝑥 (𝑡 −
1

4
𝑇0).  Note the doubling in amplitude for 𝑦(𝑡). 

 
% Fourier synthesis for square wave 

% Prof. Brian L. Evans 

% The University of Texas at Austin 

% Written in Fall 2017 

% Version 2.0 

% 

% Fourier series coefficients ak for a square 

% wave with period T0 that is 

% 1 for 0 <= t < T0/2 

% 0 for T0/2 <= t < T0 

% 

% Derivation is in Sec. 3-6.1 in Signal 

% Processing First (2003) on pages 52-53 

% Pick a value for the period of x(t) 

T0 = 1; 

f0 = 1 / T0; 

% Pick number of terms for Fourier synthesis 

N = 10; 

fmax = N * f0; 

% Define a sampling rate for plotting 

fs = 24 * fmax; 

Ts = 1 / fs; 

% Define samples in time for one period 

%t = -0.5*T0 : Ts : 0.5*T0; 

t = -T0 : Ts : T0; 

% First Fourier synthesis term 

a0 = 0.5; 

b0 = 2*a0; 

x = a0 * ones(1, length(t)); 

y = b0 * ones(1, length(t)); 

figure; 

plot(t, y); 

ylabel('Square Wave Delayed by T0/4 and scaled by 2') 

hold on; 

% Generate each pair of synthesis terms 

for k = 1 : N 

    % Define Fourier coefficients at k and -k 

    akpos = (1 - (-1)^k) / (j*2*pi*k); 

    akneg = (1 - (-1)^(-k)) / (j*2*pi*(-k)); 

    bkpos = 2*(exp(-j*2*pi*k*(1/4)*T0))*akpos; 

    bkneg = 2*(exp(-j*2*pi*(-k)*(1/4)*T0))*akneg;  

    theta = j*2*pi*k*f0*t; 

    x = x + akpos * exp(theta) + akneg * exp(-theta); 

    y = y + bkpos * exp(theta) + bkneg * exp(-theta); 

    % Plot Fourier synthesis for indices -k ... k 

    plot(t, y); 

    pause(0.5); 

end 

hold off; 

figure; 

plot(t, x); 

ylabel('Original Square Wave') 
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PROBLEM 2: SAMPLING 

 

Prolog: Periodicity is a bit different for discrete-time signals than continuous-time signals because the 

discrete-time domain is on an integer grid whereas the continuous-time domain is on a real number line. 

 

Problem:  Signal Processing First, problem P-4.2, page 96, with an additional part (d). 

𝑥(𝑡) = 7 sin(11𝜋𝑡) = 7 cos (11𝜋𝑡 −
𝜋

2
) 

In the continuous-time domain, the fundamental period is (2/11) seconds:  

𝜔0 = 11𝜋
rad

s
 

𝑓0 =  
11π

2π
= 5.5 Hz 

𝑇0 =
2

11
𝑠 

∅ =  −
𝜋

2
 rad 

(a) �̂�0 = 2𝜋
𝑓0

𝑓𝑠
= 2𝜋

5.5 Hz

10 Hz
=

11

10
𝜋

rad

sample
 

Due to sampling at fs = 10 Hz, 𝑥[𝑛] = 𝑥(𝑛 𝑇𝑠) = 𝑥 (
𝑛

𝑓𝑠
): 

 

𝑥[𝑛] = 7 cos (
11𝜋

10
𝑛 −

𝜋

2
) 

                        = 7 cos (
11𝜋

10
𝑛 − 2𝜋𝑛 −

𝜋

2
) 

             = 7 cos (−
9𝜋

10
𝑛 −

𝜋

2
) 

        = 7 cos (
9𝜋

10
𝑛 +

𝜋

2
) 

 A = 7,  = 
𝜋

2
 rad 

(b) �̂�0 = 2𝜋
5.5𝐻𝑧

5𝐻𝑧
=

11

5
𝜋

rad

sample
 

Due to sampling at fs = 5 Hz, 𝑥[𝑛] = 𝑥(𝑛 𝑇𝑠) = 𝑥 (
𝑛

𝑓𝑠
): 

𝑥[𝑛] = 7 cos (
11𝜋

5
𝑛 −

𝜋

2
) 

This signal is undersampled, because f0 > fs / 2. The following equation shows the effect of 

aliasing (but not related to folding) caused by the undersampling: 

𝑥[𝑛] = 7 cos (
11𝜋

5
𝑛 −

𝜋

2
) = 7 cos (

11𝜋

5
𝑛 − 2𝜋𝑛 −

𝜋

2
) = 7 cos (

𝜋

5
𝑛 −

𝜋

2
) 

A = 7,  = −
𝜋

2
 rad 
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(c) �̂�0 = 2𝜋
5.5 𝐻𝑧

15 𝐻𝑧
=

11

15
𝜋

rad

sample
 

This signal is 15/11 times oversampled because f0 < fs / 2 

𝑥[𝑛] = 7 cos (
11𝜋

15
𝑛 −

𝜋

2
) 

A = 7,  = −
𝜋

2
 rad 

 
(d) As shown at the beginning of this problem’s solution: 

𝑓0 =  
11π

2π
= 5.5 Hz  and 𝑇0 =

2

11
𝑠 

According to the hint that is provided for this solution, which comes from Handout D on 

Discrete-Time Periodicity, x[n] is periodic with a discrete-time period of N0 samples if 

𝑥[𝑛] = 𝑥[𝑛 + 𝑁0] for all possible integer values of 𝑁0 . 

𝑥[𝑛 + 𝑁0] = 7 cos (
11𝜋

15
(𝑛 + 𝑁0) −

𝜋

2
) 

                                =  7 cos (2𝜋
11

30
𝑛 + 2𝜋

11

30
𝑁0 −

𝜋

2
) 

            =  7 cos (2𝜋
11

30
𝑛 −

𝜋

2
)  

Because 11 and 30 are relatively prime, the smallest possible positive integer for 𝑁0 is 30 

samples. Therefore, the fundamental period of x[n] is 30 samples. Those 30 samples contain 11 

continuous-time periods, which corresponds to 2.67 samples in each continuous-time period.  

Although not required, here’s a way to visualize 

differences in periodicity by superimposing plots 

of x(t) and x[n].  In x[n], the amplitude of 1 at 

n = 0 does not repeat until n = 30. 

fs = 15; 

Ts = 1/fs; 

wHat = 2*pi*f0/fs; 

N0 = 30; 

n = 0 : N0; 

yofn = cos(wHat*n);  

t = 0 : 0.01 : N0; 

yoft = cos(wHat*t); 

figure; 

stem(n, yofn); 

hold; 

plot(t, yoft); 

 

Epilogue: For a sinusoidal signal with discrete-time frequency 𝜔0 = 2𝜋
𝑓0

𝑓𝑠
= 2𝜋

𝑁

𝐿
 where the common 

factors in 𝑓0 and 𝑓𝑠  have been removed so that N and L are relatively prime, the discrete-time signal has a 

fundamental period of L samples.  The fundamental period of L samples contains N periods of a 

continuous-time sinusoid with frequency 𝑓0.  Please see Handout D on Discrete-Time Periodicity. 

http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20D%20Discrete-Time%20Periodicity.pdf
http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20D%20Discrete-Time%20Periodicity.pdf
http://users.ece.utexas.edu/~bevans/courses/signals/handouts/Appendix%20D%20Discrete-Time%20Periodicity.pdf

