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Solution Set for Homework #4 

By Prof. Brian Evans and Mr. Firas Tabbara 

October 12, 2024 

 
PROBLEM 1: SAMPLING AND ALIASING 
 

Prologue:  The purpose of this problem is to gain more practice with sampling continuous-time signals to 

produce discrete-time signals and analyzing aliasing that will occur in practice due to sampling.   

• The Sampling Theorem says when sampling a continuous-time signal with a maximum frequency of 

 𝑓max, the sampling rate fs must be chosen to be greater than 2 𝑓max to be able to reconstruct the 

continuous-time signal from its samples. 

• Using the relationship 𝑓𝑠 > 2 𝑓max, we can divide both sides by 2 to obtain 𝑓max <
1

2
𝑓𝑠  .  Sampling 

captures non-negative continuous-time frequencies up to, but not including, 
1

2
𝑓𝑠.  If we include 

negative frequencies, the frequencies captured during sampling are −
1

2
𝑓𝑠 < 𝑓 <

1

2
𝑓𝑠 . 

• In practice, a sampler is an analog circuit that closes and opens at the sampling rate.  The sampling 

rate is limited by the device’s switching speed and power needed.  A CMOS transistor switching 

speed is 8 GHz in an older 90nm CMOS process and increases as CMOS process size decreases.  The 

switching speed for GaAs semiconductors can exceed 200 GHz.  Power consumption is proportional 

to the sampling rate, or sometimes its square.  See Prof. Murmann’s 10-minute video on this. 

• Thermal noise due to random motion of electrons that contains all frequencies of roughly equal power 

up to about 1015 Hz and the frequency content gradually decays in strength beyond that point. 

 

Problem:  Refer to Fig. 4-26 for the system with ideal C-to-D and D-to-C converters. 

 

Part (a) Suppose that the discrete-time signal is 

𝑥[𝑛] = 10 cos (0.13𝜋𝑛 +
𝜋

13
) 

If the sampling rate is 𝑓𝑠 = 1000 samples/sec, determine two different continuous-time signals 

𝑥(𝑡) = 𝑥1(𝑡) and 𝑥(𝑡) = 𝑥2(𝑡) that could have been inputs to the above system; i.e., find 𝑥1(𝑡) 
and 𝑥2(𝑡) such that 𝑥[𝑛] = 𝑥1(𝑡) = 𝑥2(𝑡) if 𝑇𝑠 = 0.001 sec. 

 

Solution for part (a):  From sampling a continuous-time signal at frequency 𝑓0, 

𝑥[𝑛] = 𝑥1(𝑛 𝑇𝑠) = 𝑥1 (
𝑛

𝑓𝑠
) = 10 cos (2𝜋

𝑓0
𝑓𝑠
𝑛 +

𝜋

13
) 

where 

𝜔̂0 = 2𝜋
𝑓0
𝑓𝑠
= 0.13𝜋 

We can solve for  

𝑓0 =
𝜔̂0
2𝜋
𝑓𝑠 = 0.065 ∗ 1000 Hz = 65 Hz 

 

Therefore, the  

𝑥1(𝑡) = 10 cos (2𝜋𝑓0𝑡 +
𝜋

13
) = 10 cos (2𝜋(65)𝑡 +

𝜋

13
) = 10 cos (130𝜋𝑡 +

𝜋

13
) 

 

https://en.wikipedia.org/wiki/CMOS
http://www.iwailab.ep.titech.ac.jp/pdf/201103dthesisshimomura.pdf
http://www.iwailab.ep.titech.ac.jp/pdf/201103dthesisshimomura.pdf
https://www.youtube.com/watch?v=dlD0Jz3d594
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For the second continuous-time signal, we know from lecture slides 5-11 and 5-12, which come 

from Section 4-1.2 in Signal Processing First, that there is an infinite number of continuous time 

frequencies of the form 𝑓0 + 𝑘𝑓𝑠 and also of the form −𝑓0 + 𝑘𝑓𝑠, where k is an integer, that will 

look like frequency 𝑓0 when sampled at sampling rate 𝑓𝑠. 
 

Another way to think about this is that the discrete-time frequency domain is periodic with 

period 2.  The discrete-time frequency of 2 corresponds to a continuous-time frequency of 𝑓𝑠: 

𝜔̂𝑠 = 2𝜋
𝑓𝑠
𝑓𝑠
= 2𝜋 

With respect to sampling at sampling rate 𝑓𝑠, a shift in continuous-time frequency of 𝑓𝑠 is the 

same as a shift in the discrete-time frequency domain of 2.  That is, 

𝑥[𝑛] = 10 cos (0.13𝜋𝑛 +
𝜋

13
) = 10 cos (0.13𝜋𝑛 +

𝜋

13
+ 2𝜋𝑛) = 10 cos (2.13𝜋𝑛 +

𝜋

13
) 

where 

𝜔̂1 = 2𝜋
𝑓1
𝑓𝑠
= 2.13𝜋 

and 

𝑓1 =
𝜔̂1
2𝜋
𝑓𝑠 = 1.065 ∗ 1000 Hz = 1065 Hz 

We can write 𝑓1 = 𝑓0 + 𝑓𝑠 = 65 Hz + 1000 Hz = 1065 

 

Part (b) If the input 𝑥(𝑡) is given by the two-sided spectrum representation in Fig. P-4.12, 

determine a simple formula for 𝑦(𝑡) when 𝑓𝑠 = 700 samples/sec (for both C-to-D and D-to-C 

converters). 

 

Solution for part (b):  Using Figure P-4.12, we can interpret the sinusoidal signals 

corresponding to the spectral lines by recalling from inverse Euler’s formula that 

𝐴cos(2𝜋𝑓0𝑡 + 𝜃) =
𝐴

2
𝑒−𝑗𝜃𝑒−𝑗2𝜋𝑓0𝑡 +

𝐴

2
𝑒𝑗𝜃𝑒𝑗2𝜋𝑓0𝑡 

We have a cosine term at 200 Hz with amplitude 26 and phase shift /4 and a cosine term at 500 

Hz with amplitude 14 and phase shift 3/4: 

𝑦(𝑡) = 26 cos (2𝜋(200)𝑡 +
𝜋

4
) + 14 cos (2𝜋(500)𝑡 +

3𝜋

4
) 

The discrete-time signal obtained by sampling at fs = 700 samples/sec is: 

𝑦[𝑛] = 26 cos (2𝜋
200 Hz

700 Hz
𝑛 +

𝜋

4
) + 14 cos (2𝜋

500 Hz

700 Hz
𝑛 +

3𝜋

4
) 
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For f1 = 200 Hz, sampling at fs = 700 Hz does not cause aliasing.  However, for f2 = 500 Hz, 

sampling at fs = 700 Hz causes aliasing (folding) because fs < 2 f2.  After sampling, f2 = 500 Hz 

appears the same as -200 Hz.  We can show this by simplifying  

𝑦[𝑛] = 26 cos (2𝜋
2

7
𝑛 +

𝜋

4
) + 14 cos (2𝜋

5

7
𝑛 +

3𝜋

4
) 

𝑦[𝑛] = 26 cos (2𝜋
2

7
𝑛 +

𝜋

4
) + 14 cos (2𝜋

5

7
𝑛 − 2𝜋𝑛 +

3𝜋

4
) 

𝑦[𝑛] = 26 cos (2𝜋
2

7
𝑛 +

𝜋

4
) + 14 cos (−2𝜋

2

7
𝑛 +

3𝜋

4
) 

𝑦[𝑛] = 26 cos (2𝜋
2

7
𝑛 +

𝜋

4
) + 14 cos (2𝜋

2

7
𝑛 −

3𝜋

4
) 

Here’s another way to see what’s going on visually.  Sampling causes replicas of each spectral 

line in 𝑥(𝑡) at offsets of multiples of 2 in discrete-time frequencies (in red on the frequency 

axis) or equivalently fs in continuous-time frequencies (in blue on the frequency axis): 

 
 

Using a trigonometric formula from Table 1 of “Sum of Two Sinusoids” by Richard G. Lyons: 

𝑦[𝑛] = 12 cos (2𝜋
2

7
𝑛 +

𝜋

4
) 

Therefore, the output of the ideal D-to-C converter is 

𝑦(𝑡) = 12 cos (2𝜋(200)𝑡 +
𝜋

4
) 

 

 

PROBLEM 2: FINITE IMPULSE RESPONSE (FIR) FILTER 

 

Problem:  A linear time-invariant system is described by the difference equation 

𝑦[𝑛] = 2 𝑥[𝑛] − 3 𝑥[𝑛 − 1] + 2 𝑥[𝑛 − 2] 

Part (a): When the input to this system is 𝑥[𝑛], compute the values of 𝑦[𝑛], over the index range 

0 ≤ 𝑛 ≤ 10. 

 

 

 

https://dspguru.com/files/Sum_of_Two_Sinusoids.pdf
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Solution for Part (a) 

x[n] = 0 for n < 0 and n > 6 therefore:  

y[0] = 2x[0] - 3x[-1] + 2x[-2] = 2*4 - 3*0 + 2*0 = 8 

y[1] = 2x[1] - 3x[0] + 2x[-1] = 2*0 - 3*4 + 2*0 = -12 

y[2] = 2x[2] - 3x[1] + 2x[0] = 2*4 - 3*0 + 2*4 = 16 

y[3] = 2x[3] - 3x[2] + 2x[1] = 2*0 - 3*4 + 2*0 = -12 

y[4] = 2x[4] - 3x[3] + 2x[2] = 2*(-1) - 3*0 + 2*4 = 6 

y[5] = 2x[5] - 3x[4] + 2x[3] = 2*(-4) - 3*(-1) + 2*0 = -5 

y[6] = 2x[6] - 3x[5] + 2x[4] = 2*(-1) - 3*(-4) + 2*(-1) = 8 

y[7] = 2x[7] - 3x[6] + 2x[5] = 2*(0) - 3*(-1) + 2*(-4) = -5 

y[8] = 2x[8] - 3x[7] + 2x[6] = 2*(0) - 3*(0) + 2*(-1) = -2 

y[9] = 2x[9] - 3x[8] + 2x[7] = 2*(0) - 3*(0) + 2*(0) = 0 

y[10] = 2x[10] - 3x[9] + 2x[8] = 2*(0) - 3*(0) + 2*(0) = 0 

We can verify the solution using MATLAB: 

x = [ 4 0 4 0 -1 -4 -1 ]; 

b = [ 2 -3 2 ]; 

y = conv(x, b); 

And y is [  8  -12  16  -12   6  -5  8  -5  -2 ]. 

 

Part (b) For the previous part, plot x[n] and y[n]. 

 

Solution for part (b).  The “UT” input signal x[n] 

was plotted as part of the revised problem. 

y = [ 8 -12 16 -12 6 -5 8 -5 -2 0 0]; 
n = 0 : length(y) - 1; 

stem(n, y); 

xlim( [-0.5, 12] ); 

ylim( [-20, 20] ); 

xlabel( 'n' ); 

ylabel( 'y[n]' ); 

 

𝑥[𝑛] =

{
  
 

  
 

4 𝑛 = 0
0 𝑛 = 1
4 𝑛 = 2
0 𝑛 = 3

−1 𝑛 = 4    
−4 𝑛 = 5    
−1 𝑛 = 6    

 

x = [ 4 0 4 0 -1 -4 -1 ]; 

n = 0 : length(x) - 1; 

stem(n, x); 

xlim( [-0.5, 6.5] ); 

ylim( [-4.5, 4.5] ); 

xlabel( 'n' ); 

ylabel( 'x[n]' ); 

 

𝑥[𝑛] = 0 for 𝑛 < 0 or 𝑛 > 6 
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Part (c) Determine the response of this system to a unit impulse input; i.e., find the output 

𝑦[𝑛] = ℎ[𝑛] when the input is 𝑥[𝑛] = 𝛿[𝑛].  Plot ℎ[𝑛] as a function of n. 

 

Solution for part (c): Let 𝑥[𝑛] =  𝛿[𝑛]. 

Therefore, the output is defined as follows: 

ℎ[𝑛] = 2 𝛿[𝑛] − 3 𝛿[𝑛 − 1] + 2 𝛿[𝑛 − 2] 

h = [ 2 -3 2 ]; 

n = 0 : length(h) - 1; 

stem(n, h); 

xlim( [-0.5, 3] ); 

ylim( [-4, 3] ); 

xlabel( 'n' ); 

ylabel( 'h[n]' ); 

 

Epilogue:  FIR filter coefficients are equal to the FIR filter impulse response.  FIR filter output 

is the convolution of the input signal and the FIR filter impulse response (filter coefficients). 

 

 

PROBLEM 3: SYSTEM IDENTIFICATION 

 

Prologue:  A common problem that arises in audio and other systems is characterizing an 

unknown system.  Consider an audio system with a speaker transmitting sound in a concert hall 

that is recorded by a microphone, and we’d like to characterize the acoustic response in the 

concert hall. 

If we model an unknown system as a linear time-invariant finite impulse response (FIR) filter, 

we can try to infer its FIR filter coefficients bk (i.e. the impulse response of the FIR filter).  In 

practice, the unknown system will likely not be linear and time-invariant, but sometimes, a linear 

time-invariant system model captures useful information about the unknown system for the 

application at hand.  

For the concert hall acoustics example, if we know the FIR filter coefficients for the linear time-

invariant model of the concert hall acoustics, then we can mimic the effect of the concert hall by 

using its FIR coefficients to filter a music track and the output will sound as if it was played in 

the concert hall.  Several audio systems with a “concert hall” effect will list several different 

concert halls. 

Problem:  

Here is the input-output relationship for a linear time-invariant FIR filter with N coefficients with 

input x[n] and output y[n]: 

𝑦[𝑛] =  𝑏0 𝑥[𝑛] + 𝑏1 𝑥[𝑛 − 1] + 𝑏2 𝑥[𝑛 − 2] + ⋯+ 𝑏𝑁−1 𝑥[𝑛 − (𝑁 − 1)] 

In advance, we don’t know the value of N. 

If we could input a known test signal for x[n] and observe y[n], we can attempt to compute the 

FIR coefficients bk by deconvolution.  In the test setup, we would assume that a laptop is sending 

the test signal to the speakers and the same laptop is receiving the output from the microphone.  

We’ll assume the test will begin at time n = 0 and perform deconvolution in the time domain. 
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The first output value (i.e. when n = 0) is  

𝑦[0] =  𝑏0 𝑥[0] + 𝑏1 𝑥[−1] + 𝑏2  𝑥[−2] +⋯+ 𝑏𝑁−1 𝑥[−(𝑁 − 1)] 

For linear time-invariant systems, it is a necessary (but not sufficient) condition for the system to 

be “at rest”, which means that all initial conditions 𝑥[−1], 𝑥[−2],… , 𝑥[−(𝑁 − 1)] must be zero. 

𝑦[0] =  𝑏0 𝑥[0] + 𝑏1 𝑥[−1] + 𝑏2  𝑥[−2] +⋯+ 𝑏𝑁−1 𝑥[−(𝑁 − 1)] 

Since we know x[n] and y[n] in our test setup, we have one equation and one unknown at n = 0: 

𝑦[0] = 𝑏0 𝑥[0] 

and we can compute 

𝑏0 =
𝑦[0]

𝑥[0]
 

For this calculation to be valid, the first value of the test signal, x[0], cannot be zero. 

 

Part (a) Develop an algorithm to compute the remaining values of bk assuming you know N. 

Solution for part (a)  

The first output value is: 𝑦[0] =  𝑏0 𝑥[0] 

Therefore, 𝑏0 =
y[0]

𝑥[0]
 

The second output value is:  𝑦[1] =  𝑏0 𝑥[1] + 𝑏1 𝑥[0] 

Therefore, 𝑏1 =
y[1]− 𝑏0𝑥[1]

𝑥[0]
 

The third output value is:  𝑦[2] =  𝑏0 𝑥[2] + 𝑏1 𝑥[1] + 𝑏2 𝑥[0] 

Therefore, 𝑏2 =
y[2]− 𝑏0𝑥[2]− 𝑏1𝑥[1]

𝑥[0]
 

The fourth output value is:  𝑦[3] =  𝑏0 𝑥[3] + 𝑏1 𝑥[2] + 𝑏2 𝑥[1] + 𝑏2 𝑥[0] 

Therefore, 𝑏3 =
y[3]− 𝑏0𝑥[3]− 𝑏1𝑥[2]−𝑏2𝑥[1]

𝑥[0]
 

 

𝑏𝑁 =
𝑦[𝑁] − ∑ 𝑏𝑖𝑥[𝑁 − 𝑖]

𝑁−1
𝑖=0

𝑥[0]
 

 

Part (b) By hand, compute the values of bk given and  

i. input signal x[n] with non-zero values [ 1 2 3 4 5 ] 

ii. output signal y[n] with non-zero values [ 1 1 1 1 1 -5 ] 

Use the MATLAB command conv to convolve x[n] and bk to make sure the result is y[n]. 

 

Solution for part (b)  

x[n] = [ 1 2 3 4 5] 

y[n] = [ 1 1 1 1 1 -5] 
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𝑏0 =
y[0]

𝑥[0]
=  
1

1
= 1 

𝑏1 =
y[1] − 𝑏0𝑥[1]

𝑥[0]
=
1 − 1 ∗ 2

1
= −1 

𝑏2 =
y[2] − 𝑏0𝑥[2] − 𝑏1𝑥[1]

𝑥[0]
=
1 − 1 ∗ 3 + 1 ∗ 2

1
= 0 

𝑏3 =
y[3] − 𝑏0𝑥[3] − 𝑏1𝑥[2] − 𝑏2𝑥[1]

𝑥[0]
=
1 − 1 ∗ 4 + 1 ∗ 3 − 0 ∗ 2

1
= 0 

𝑏4 =
𝑦[4] − 𝑏0𝑥[4] −  𝑏1𝑥[3] − 𝑏2𝑥[2] − 𝑏3𝑥[1]

𝑥[0]
=
1 − 1 ∗ 5 + 1 ∗ 4

1
= 0 

𝑏5 =
𝑦[5] − 𝑏0𝑥[5] −  𝑏1𝑥[4] − 𝑏2𝑥[3] − 𝑏3𝑥[2] − 𝑏4𝑥[1]

𝑥[0]
=
−5 − 1 ∗ 0 + 1 ∗ 5

1
= 0 

 

x = [ 1 2 3 4 5 ]; 

b = [ 1 -1 ]; 

y = conv(x, b); 

 

We can confirm that the result of conv(x, b) is y[n]. 

Additional Insight: When convolving two finite-length signals 𝑥[𝑛] and 𝑏𝑛, the result 𝑦[𝑛] has 

finite length.  The length of 𝑦[𝑛] is the length of 𝑥[𝑛] plus the number of filter coefficients 

minus 1.  Since the length of 𝑦[𝑛] is 6 and the length of 𝑥[𝑛] is 5, there are 2 filter coefficients. 

 

Part (c) Write a MATLAB program for your algorithm in (a) and apply it to the signals in part 

(b) to compute bk.  In your algorithm, stop computing values of bk when |𝑏𝑘 − 𝑏𝑘−1| ≤
10−7|𝑏𝑘|.  That way, we don't need to know the value of N in advance.  I have the stopping 

criterion as |𝑏𝑘 − 𝑏𝑘−1| ≤ 10
−7|𝑏𝑘| instead of |

𝑏𝑘−𝑏𝑘−1

𝑏𝑘
| ≤ 10−7to avoid a possible division by 

zero error. 

Solution for part (c) First, we’ll provide the code when we know N. 

 
%% This is code was worked out today (10-08-2021) in 

%% Friday 2-3pm office hours by Prof. Evans. 

%% It's a way to validate your answer to 4.4(b) from 

%% manual calculations. 

%% The code also provides a partial answer for 4.4(c). 

%% Keep in mind that the first element in a vector 

%% in MATLAB has index 1 and not 0. 

 

x = [ 1 2 3 4 5 ]; 

y = [ 1 1 1 1 1 -5 ]; 

 

% y = conv(x, b) where b is the vector of coefficients 

% Length of y = length of x + Number of Coeffs - 1 

 

Nmax = length(y) - length(x) + 1; 

b = zeros(1, Nmax); 

b(1) = y(1) / x(1); 
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% b(2) = ( y(2) - b(1)*x(2) ) / x(1); 

% b(3) = ( y(3) - b(1)*x(3) - b(2)*x(2) ) / x(1); 

for k = 2:Nmax 

    numer = y(k); 

    n = k; 

    for m = 1:(k-1) 

        numer = numer - b(m) * x(n); 

        n = n - 1; 

    end 

    b(k) = numer / x(1); 

end 

 

We can add the additional test to stop the algorithm by placing the following code right after the 

line b(k) = numer / x(1); 

    if abs(b(k) - b(k-1)) <= (1e-7)*abs(b(k)) 

        break 

Comment:  This particular test can cause the algorithm to stop too early in certain cases.  If the 

filter coefficients were for an averaging filter, for example, [ ¼ ¼ ¼ ¼ ] the test would stop the 

algorithm after computing the second coefficient.  A better test would have been |𝑏𝑘| ≤ 10−7. 
 

Epilogue:  Returning to the room acoustics example, the input test signal could be a chirp signal 

that sweeps all audible frequencies. 

 

We can write the deconvolution form as a system of linear equations in the unknown filter 

coefficients.  Let’s start with the equation for the first three values of n: 

𝑦[0] =  𝑏0 𝑥[0] = 𝑥[0] 𝑏0  
𝑦[1] =  𝑏0 𝑥[1] + 𝑏1 𝑥[0] = 𝑥[1] 𝑏0 + 𝑥[0] 𝑏1 

𝑦[2] =  𝑏0 𝑥[2] + 𝑏1 𝑥[1] + 𝑏2 𝑥[0] =  𝑥[2] 𝑏0  + 𝑥[1] 𝑏1  + 𝑥[0] 𝑏2  

We can create vector 𝑦⃗ = [ 𝑦[0]  𝑦[1]  𝑦[2]  …   𝑦[𝑁 − 1] ]𝑇 and 𝑏⃗⃗ = [  𝑏0   𝑏1   𝑏2   …   𝑏𝑁−1 ]
𝑇 

and an 𝑁 𝑥 𝑁 lower triangular matrix 

 

 

 

 

 

 

to form the linear system of equations 

 

The algorithm in part (b) to solve for the filter coefficients 𝑏⃗⃗ solved the linear system of 

equations one filter coefficient at a time using backsubstitution.  The Matlab command to solve 

the linear system of equations for 𝑏⃗⃗ is  

b = A \ y 


