
The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

Solution Set for Homework #5 

By Prof. Brian Evans and Mr. Firas Tabbara 

 

PROBLEM 1: AVERAGING FILTER AND THE UNIT STEP SIGNAL 

 

Prologue: The unit step signal models a physical action such as turning on a switch and leaving it on 

indefinitely or suddenly hitting the brakes and holding the brakes indefinitely.  We represent “on” with an 

amplitude of 1 and “off” with an amplitude of 0.  In control systems, such as a braking system, we 

evaluate the response of the control system to the unit step signal to see how quickly the output reaches 

and holds a value of “on”.  That is, the control system response time would be how quickly the braking 

system fully engages the mechanical brakes. 

 

MATLAB has a function that is like the discrete-time unit step called heaviside. The difference is that 

at the origin, the heaviside function has value of 1/2 instead of 1. Please don't use the heaviside 

function for the discrete-time unit step function.  MATLAB had a function to implement the discrete-time 

unit step function u[n] called stepfun but it is obsolete.  We can mimic u[n] by using comparison 

operations in MATLAB. In MATLAB, a comparison operation will return 1 if true and 0 if false. 

 

Problem:  Signal Processing First, Problem P-5.6, page 127. 

The unit step signal “turns on” at n = 0 and is usually denoted by u[n]. 

Part (a): Make a plot of u[n]. 

Solution for (a): 

𝑢[𝑛] =  {
1 𝑛 ≥ 0
0 𝑛 < 0

 

 

 

 

 

 

 

 

 

 

 

 

 

Part (b): We can use the unit step signal to 

represent other sequences that are zero for 𝑛 < 0.  

Plot the sequence 𝑥[𝑛] = (0.5)𝑛𝑢[𝑛]. 

Solution for (b): Since the unit step signal is 0 for n < 0, x[n] for n < 0 is equal to 0.  For n  0, 

𝑛 = 0:  𝑥[0] = (0.5)0 𝑢[0] = 1   𝑛 = 3:  𝑥[3] = (0.5)3 𝑢[3] = 0.125 

𝑛 = 1:  𝑥[1] = (0.5)1 𝑢[1] = 0.5  𝑛 = 4:  𝑥[4] = (0.5)4 𝑢[4] = 0.0625 

𝑛 = 2:  𝑥[2] = (0.5)2 𝑢[2] = 0.25  etc. 

 

1 

… 

n 

u[n] 

… 

n = -5:10; 

unitstep = ( n >= 0 ); 

stem(n, unitstep) 
xlabel('n') 
ylabel('u[n]') 
ylim([-0.5 1.5]) 

 

0 1 2 3 -1 4 -2 



The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Part (c): The L-point running average is defined as 

𝑦[𝑛] =  
1

𝐿
∑ 𝑥[𝑛 − 𝑘]

𝐿−1

𝑘=0

 

For the input sequence 𝑥[𝑛] = (0.5)𝑛 𝑢[𝑛], compute the numerical value of 𝑦[𝑛] over the index 

range −5 ≤ 𝑛 ≤ 10, assuming 𝐿 = 4. 

Solution for (c): We can expand the calculation for the four-point averaging filter: 

 

𝑦[𝑛] =  
1

𝐿
∑ 𝑥[𝑛 − 𝑘] =

1

4
∑ 𝑥[𝑛 − 𝑘] =

1

4
(𝑥[𝑛] + 𝑥[𝑛 − 1] + 𝑥[𝑛 − 2] + 𝑥[𝑛 − 3])

3

𝑘=0

𝐿−1

𝑘=0

 

 

We can use Matlab or calculate the answers by hand.  

 

 

 

 

In the plot, the output signal is zero when n < 0.  The 

output signal for 0 <= n <= 2 corresponds to a partial 

response by the filter to the change in the input signal at 

the origin.  Once we reach n = 3, the sliding window of 

input samples would be filled. 

 

For n < 0, terms 𝑥[𝑛], 𝑥[𝑛 − 1], 𝑥[𝑛 − 2], and 𝑥[𝑛 − 3] will always be zero, and hence 𝑦[𝑛] = 0. 

For n = 0:  𝑦[0] =
1

4
{𝑥[0] + 𝑥[−1] + 𝑥[−2] + 𝑥[−3]} =

1

4
{(0.5)0 + 0 + 0 + 0} =

1

4
 

For n = 1:  𝑦[1] =
1

4
{𝑥[1] + 𝑥[0] + 𝑥[−1] + 𝑥[−2]} =

1

4
{(0.5)1 + (0.5)0 + 0 + 0} =

3

8
 

For n = 2:  𝑦[2] =
1

4
{𝑥[2] + 𝑥[1] + 𝑥[0] + 𝑥[−1]} =

1

4
{(0.5)2 + (0.5)1 + (0.5)0 + 0} =

7

16
 

For n = 3:  𝑦[3] =
1

4
{𝑥[3] + 𝑥[2] + 𝑥[1] + 𝑥[0]} =

1

4
{(0.5)3 + (0.5)2 + (0.5)1 + (0.5)0} =

15

32
 

1 

… 

0.5 

0.25 
0.125 

n 

0.0625 

0 1 2 3 -1 -2 4 

… 

n = -5:10; 

unitstep = ( n >= 0 ); 

x = (0.5.^n) .* unitstep; 

stem(n,x) 
xlabel('n') 
ylabel('u[n]') 
ylim([-0.5 1.5]) 

 

averagingFilterCoeffs = [ 1/4, 1/4, 1/4, 1/4 ]; 

y = filter(averagingFilterCoeffs, 1, x); 

figure; 

stem(n, y); 

xlabel('n'); 

ylabel('filter output signal'); 

ylim([-0.5 1.5]); 

 



The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

At this point, when n = L-1, the sliding window of L samples is now filled with values of 𝑥[𝑛] 
for 𝑛 ≥ 0. 

For n = 4:  𝑦[4] =
1

4
{𝑥[4] + 𝑥[3] + 𝑥[2] + 𝑥[1]} =

1

4
{(0.5)4 + (0.5)3 + (0.5)2 + (0.5)1} =

15

64
 

For n = 5:  𝑦[5] =
1

4
{𝑥[5] + 𝑥[4] + 𝑥[3] + 𝑥[2]} =

1

4
{(0.5)5 + (0.5)4 + (0.5)3 + (0.5)2} =

15

128
 

For n = 6:  𝑦[6] =
1

4
{𝑥[6] + 𝑥[5] + 𝑥[4] + 𝑥[3]} =

1

4
{(0.5)6 + (0.5)5 + (0.5)4 + (0.5)3} =

15

256
 

For n = 7: 𝑦[7] =
1

4
{𝑥[7] + 𝑥[6] + 𝑥[5] + 𝑥[4]} =

1

4
{(0.5)7 + (0.5)6 + (0.5)5 + (0.5)4} =

15

512
 

For n = 8:  𝑦[8] =
1

4
{𝑥[8] + 𝑥[7] + 𝑥[6] + 𝑥[5]} =

1

4
{(0.5)8 + (0.5)7 + (0.5)6 + (0.5)5} =

15

1024
 

For n = 9: 𝑦[9] =
1

4
{𝑥[9] + 𝑥[8] + 𝑥[7] + 𝑥[6]} =

1

4
{(0.5)9 + (0.5)8 + (0.5)7 + (0.5)6} =

15

2048
 

For n = 10: 𝑦[10] =
1

4
{𝑥[10] + 𝑥[9] + 𝑥[8] + 𝑥[7]} =

1

4
{(0.5)10 + (0.5)9 + (0.5)8 + (0.5)7} =

15

4096
 

Part (d): For the input sequence 𝑥[𝑛] = 𝑎𝑛 𝑢[𝑛], derive a general formula for 𝑦[𝑛] that will 

apply for any value a, for any length L, and for the index range 𝑛 ≥ 0.  In doing so, you may 

have use for the formula: 

∑ 𝛼𝑘 =
𝛼𝑀 − 𝛼𝑁+1

1 − 𝛼

𝑁

𝑘=𝑀

 

Solution for (d):  

( 1) 1

1
0 0

11 1

1
0 0

[ ] [ ]

0,
[ ]

0, 0

1 1 1 1
[ ] , 0 1

1 1

1 1 1
,

1 1

n

n k

n n n nn n
n k k

k k

n n L n L LL L
n k k

k k

x n a u n

n k
x n k

a n k

n

a a a a
y n a a n L

L L L a L a

a a a a a
a a n L

L L L a L a

−

− + +
− −

−
= =

− − +− −
− −

−
= =

=


− = 







    − −

= = = =   −    
− −   

    − −
 = = =    

− −    

 

 
 

1

1

0, 0

1 1
[ ] , 0 1

1

1
,

1

n

n L L

n

a
y n n L

L a

a a
n L

L a

+

− +





  −

=   −  
− 

  −
  

−  

 

  



The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

PROBLEM 2: SYSTEM PROPERTIES 

Prologue:  System properties indicate what analysis tools are available for their analysis.  Our 

course is entitled Linear Systems and Signals.  Even though we are emphasizing linear systems 

in the class, we are covering nonlinear systems, such as the squaring system.  In this course, the 

widest set of analysis tools will be available for linear time-invariant (LTI) systems. 

Consider a system that gives output 𝑦1[𝑛] for input 𝑥1[𝑛] and output 𝑦2[𝑛] for input 𝑥2[𝑛]. 

• Linearity means the system satisfies the following two properties 

o Homogeneity.  For input 𝛼 𝑥[𝑛], where 𝛼 is any constant, the output 𝑦𝑠𝑐𝑎𝑙𝑒𝑑[𝑛] = 𝛼 𝑦[𝑛]. 
o Additivity: For input 𝑥1[𝑛] + 𝑥2[𝑛], the output is the sum of their individual responses 

𝑦1[𝑛] + 𝑦2[𝑛]. 
• Time Invariance means shifting the input by 𝑛0 samples always produces the same shift of 

𝑛0 samples in the output, for an integer constant 𝑛0.  Mathematically, if the input were 

𝑥[𝑛 − 𝑛0], then the output 𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑[𝑛] = 𝑦[𝑛 − 𝑛0]. 

• Causality means the system output only depends on the current and previous values of the 

input and previous values of the output. 

This problem assumes all signals are observed for all time, i.e. from −∞ < 𝑛 < ∞. 

Problem:  For each of the following systems, determine whether or not the system is (1) linear, 

(2) time-invariant, and (3) causal. 

• 𝑦[𝑛] = 𝑥[𝑛] cos(0.2𝜋𝑛) 

• 𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1] 
• 𝑦[𝑛] = |𝑥[𝑛]| 
• 𝑦[𝑛] = 𝐴 𝑥[𝑛] + 𝐵 

Solution for (a):  𝑦[𝑛] = 𝑥[𝑛] cos(0.2𝜋𝑛). 

• Homogeneity.  For input 𝛼 𝑥[𝑛], 

 𝑦𝑠𝑐𝑎𝑙𝑒𝑑[𝑛] = (𝛼 𝑥[𝑛]) cos(0.2𝜋𝑛) = 𝛼 𝑥[𝑛] cos(0.2𝜋𝑛) =⏞
??

 𝛼 𝑦[𝑛]   YES 

• Additivity: For input 𝑥1[𝑛] + 𝑥2[𝑛], 
𝑦𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒[𝑛] = (𝑥1[𝑛] + 𝑥2[𝑛]) cos(0.2𝜋𝑛) = 𝑥1[𝑛] cos(0.2𝜋𝑛) + 𝑥2[𝑛] cos(0.2𝜋𝑛) 

𝑦𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒[𝑛] =⏞
??

𝑦1[𝑛] + 𝑦2[𝑛]   YES 

• Time Invariance.  For input 𝑥[𝑛 − 𝑛0],       NO 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑[𝑛] =  𝑥[𝑛 − 𝑛0] cos(0.2𝜋𝑛) =⏞
??

𝑦[𝑛 − 𝑛0] where 𝑦[𝑛 − 𝑛0] = 𝑥[𝑛 − 𝑛0] cos(0.2𝜋(𝑛 − 𝑛0)) 

• Causality means the system output only depends on current and previous values of the input 

and previous values of the output.  For 𝑦[𝑛] = 𝑥[𝑛] cos(0.2𝜋𝑛), the output only depends 

only on the current input value. YES. It’s a pointwise system; i.e., the current output point 

(sample) only depends on the current input point (sample).  All pointwise systems are causal.  

NOTE: All pointwise systems are also anti-causal.  An anti-causal system processes samples 

in the opposite direction towards 𝑛 = −∞ instead of towards 𝑛 = ∞.  An anti-causal system 

depends only on the current and future values of the input and future values of the output. 



The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

Solution for (b):  𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1].  This system takes the current input value and 

subtracts from it the previous input value.  Because all signals are being observed for all time, 

i.e. from −∞ < 𝑛 < ∞, we don’t have to check initial conditions. 

• Homogeneity.  For input 𝛼 𝑥[𝑛],        YES 

 𝑦𝑠𝑐𝑎𝑙𝑒𝑑[𝑛] = (𝛼 𝑥[𝑛]) − (𝛼 𝑥[𝑛])𝑛→𝑛−1 = 𝛼 𝑥[𝑛] − 𝛼 𝑥[𝑛 − 1] = 𝛼 (𝑥[𝑛] − 𝑥[𝑛 − 1]) =⏞
??

 𝛼 𝑦[𝑛] 

• Additivity: For input 𝑥1[𝑛] + 𝑥2[𝑛], 

𝑦𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒[𝑛] = (𝑥1[𝑛] + 𝑥2[𝑛]) − (𝑥1[𝑛] + 𝑥2[𝑛])𝑛→𝑛−1 = 𝑥1[𝑛] − 𝑥1[𝑛 − 1] + 𝑥2[𝑛] − 𝑥2[𝑛 − 1] 

𝑦𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒[𝑛] =⏞
??

𝑦1[𝑛] + 𝑦2[𝑛]   YES 

• Time Invariance.  For input 𝑥[𝑛 − 𝑛0],       YES 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑[𝑛] = (𝑥[𝑛 − 𝑛0]) − (𝑥[𝑛 − 𝑛0])𝑛→𝑛−1 = 𝑥[𝑛 − 𝑛0] − 𝑥[𝑛 − 𝑛0 − 1] = 𝑦[𝑛 − 𝑛0] where 

 𝑦[𝑛 − 𝑛0] = 𝑥[𝑛 − 𝑛0] − 𝑥[𝑛 − 𝑛0 − 1] 

• Causality.  The output only depends only on the current and previous input value.  YES. 

Solution for (c):  𝑦[𝑛] = |𝑥[𝑛]|.  The system takes the absolute value of the current input value. 

• Homogeneity.  For input 𝛼 𝑥[𝑛], 

 𝑦𝑠𝑐𝑎𝑙𝑒𝑑[𝑛] = |𝛼 𝑥[𝑛]| = |𝛼||𝑥[𝑛]| =⏞
??

 𝛼 𝑦[𝑛] = 𝛼 |𝑥[𝑛]|   NO.  Only works for non-negative 𝛼. 

• Additivity: For input 𝑥1[𝑛] + 𝑥2[𝑛], 

𝑦𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒[𝑛] = |𝑥1[𝑛] + 𝑥2[𝑛]| =⏞
??

𝑦1[𝑛] + 𝑦2[𝑛] = |𝑥1[𝑛]| + |𝑥2[𝑛]|     NO. 

• Time Invariance.  For input 𝑥[𝑛 − 𝑛0], 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑[𝑛] = |𝑥[𝑛 − 𝑛0]| =⏞
??

 𝑦[𝑛 − 𝑛0] = |𝑥[𝑛 − 𝑛0]|     YES. 

• Causality. The output only depends only on the current input value.  Pointwise system.  YES. 

Solution for (d):  𝑦[𝑛] = 𝐴 𝑥[𝑛] + 𝐵.  The system multiplies the input by the constant A and 

adds the result to another constant B. 

• Homogeneity.  For input 𝛼 𝑥[𝑛], 

 𝑦𝑠𝑐𝑎𝑙𝑒𝑑[𝑛] = 𝐴 (𝛼 𝑥[𝑛]) + 𝐵 = 𝛼 𝐴 𝑥[𝑛] + 𝐵 =⏞
??

 𝛼 𝑦[𝑛] = 𝛼 𝐴 𝑥[𝑛] + 𝛼 𝐵.   NO. 

• Additivity: For input 𝑥1[𝑛] + 𝑥2[𝑛], 

𝑦𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒[𝑛] = 𝐴 (𝑥1[𝑛] + 𝑥2[𝑛]) + 𝐵 = 𝐴 𝑥1[𝑛] + 𝐴 𝑥2[𝑛] + 𝐵 =⏞
??

𝑦1[𝑛] + 𝑦2[𝑛] where 

𝑦1[𝑛] + 𝑦2[𝑛] = 𝐴 𝑥1[𝑛] + 𝐴 𝑥2[𝑛] + 2𝐵.  NO. 

• Time Invariance.  For input 𝑥[𝑛 − 𝑛0], 

𝑦𝑠ℎ𝑖𝑓𝑡𝑒𝑑[𝑛] = 𝐴 𝑥[𝑛 − 𝑛0] + 𝐵 =⏞
??

 𝑦[𝑛 − 𝑛0] = 𝐴 𝑥[𝑛 − 𝑛0] + 𝐵     YES. 

• Causality. The output only depends only on the current input value.  Pointwise system.  YES 

  



The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

PROBLEM 3: SYSTEM PROPERTIES AND DECONVOLUTION 

 

Prologue:  A common problem that arises in audio and other systems is characterizing an 

unknown system.  Consider an audio system with a speaker transmitting sound in a concert hall 

that is recorded by a microphone, and we’d like to characterize the acoustic response in the 

concert hall. For this example, if we know the FIR filter coefficients for the linear time-invariant 

model of the concert hall acoustics, then we can mimic the effect of the concert hall by using its 

FIR coefficients to filter a music track and the output will sound as if it was played in the concert 

hall.  Several audio systems with a “concert hall” effect will list several different concert halls. 

Problem: (a) Signal Processing First, problem P-5.12, page 128.  When working the problem, 

assume that you do not know the filter coefficients.  Using system properties to find the answer. 

For part (b), use the deconvolution formulas in homework problem 4.4(a) to manually determine 

the FIR filter coefficients given that the input signal is 𝑥1[𝑛] and the output signal is 𝑦1[𝑛] for 𝑛 ≥
0.  Check your calculations using utdeconvolve.m provided on the tuneup page, which is a 

modified version of the MATLAB code from homework problem 4.4(c). When running the code, 

use an equal number of input and output values for vectors x and y, which is what would happen 

in an experimental setup that would input a test signal x and observe the output y.  Please see the 

comments in the code for more info. 

This is an interesting case where the input signal is infinite in duration and the output signal is 

finite in duration.  

 

Solution for (a): For a particular LTI system, when the input is the unit step, 𝑥1[𝑛] = 𝑢[𝑛], the 

corresponding output is 𝑦1[𝑛] =  𝛿[𝑛] + 2 𝛿[𝑛 − 1] −  𝛿[𝑛 − 2].  This problem aims at 

determining the output when the input to an LTI system is 𝑥2[𝑛] = 3𝑢[𝑛] − 2𝑢[𝑛 − 4]. 

Since the system is Linear Time-Invariant (LTI),  

𝑥2[𝑛] = 3𝑢[𝑛] − 2𝑢[𝑛 − 4] = 3𝑥1[𝑛] − 2𝑥1[𝑛 − 4] 

For 𝑦1[𝑛 − 4], assume that the signal is shifted by 4. And since the system is LTI, the output to 

the input 𝑥2[𝑛] is as follows: 

𝑦2[𝑛] = 3𝑦1[𝑛] − 2𝑦1[𝑛 − 4] 

            = 3(𝛿[𝑛] + 2𝛿[𝑛 − 1] − 𝛿[𝑛 − 2]) − 2(𝛿[𝑛 − 4] + 2𝛿[𝑛 − 5] − 𝛿[𝑛 − 6]) 

            = 3 𝛿[𝑛] + 6 𝛿[𝑛 − 1] − 3 𝛿[𝑛 − 2] − 2 𝛿[𝑛 − 4] − 4 𝛿[𝑛 − 5] + 2 𝛿[𝑛 − 6] 

Solution for (b): We’ll model the unknown LTI system as a finite impulse response (FIR) 
filter with input signal 𝑥[𝑛] and output signal 

𝑦[𝑛] = ℎ[0] 𝑥[𝑛] + ℎ[1] 𝑥[𝑛 − 1] + ℎ[2] 𝑥[𝑛 − 2] + ℎ[𝑁 − 1] 𝑥[𝑛 − (𝑁 − 1)] 

From this model and knowledge of 𝑥1[𝑛] and 𝑦1[𝑛], we’ll compute the filter coefficients 
ℎ[𝑛] for 𝑛 = 0, 1, … , 𝑁 − 1 and verify that the response of the FIR filter is 𝑦1[𝑛]. 

Deconvolution.  We’ll use deconvolution to compute the filter coefficients.  We derive the 
time-domain deconvolution algorithm by evaluating the output at 𝑛 = 0: 

𝑦[0] =  𝑏0 𝑥[0] + 𝑏1 𝑥[−1] + 𝑏2  𝑥[−2] + ⋯ + 𝑏𝑁−1 𝑥[−(𝑁 − 1)] 

https://users.ece.utexas.edu/~bevans/courses/signals/tuneups/fall2024/index.html


The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

For LTI systems, it is a necessary (but not sufficient) condition for the system to be “at 
rest”, which means that all initial conditions 𝑥[−1], 𝑥[−2], … , 𝑥[−(𝑁 − 1)] must be zero. 
Since we know x[n] and y[n], we have one equation and one unknown at n = 0: 

𝑦[0] = 𝑏0 𝑥[0] 
and we can compute 

𝑏0 =
𝑦[0]

𝑥[0]
 

For this calculation to be valid, the first value of the test signal, x[0], cannot be zero. 

The second output value is:  𝑦[1] =  𝑏0 𝑥[1] + 𝑏1 𝑥[0], and therefore, 𝑏1 =
y[1]− 𝑏0𝑥[1]

𝑥[0]
. 

The third output value is:  𝑦[2] =  𝑏0 𝑥[2] + 𝑏1 𝑥[1] + 𝑏2 𝑥[0] and 𝑏2 =
y[2]− 𝑏0𝑥[2]− 𝑏1𝑥[1]

𝑥[0]
. 

In general, 𝑏𝑁 =
𝑦[𝑁]−∑ 𝑏𝑖𝑥[𝑁−𝑖]𝑁−1

𝑖=0

𝑥[0]
.  MATLAB code utdeconvolve.m realizes the algorithm. 

Part (a).  Give the vectors for x and y that you used when running utdeconvolve.m and the 
filter coefficients in vector b that the code computes. 

x y b 
[ 1 1 1 ] [ 1 2 -1 ] [ 1 1 -3 ] 
[ 1 1 1 1 ] [ 1 2 -1 0 ] [ 1 1 -3 1] 
[ 1 1 1 1 1 ] [ 1 2 -1 0 0 ] [ 1 1 -3 1 0 ] 
[ 1 1 1 1 1 1 ] [ 1 2 -1 0 0 0 ] [ 1 1 -3 1 0 0 ] 

Part (b). Verify the coefficients by using them in the LTI FIR filter difference equation: 

𝑦[𝑛] = ℎ[0] 𝑥[𝑛] + ℎ[1] 𝑥[𝑛 − 1] + ℎ[2] 𝑥[𝑛 − 2] + ℎ[𝑁 − 1] 𝑥[𝑛 − (𝑁 − 1)] 

given that the input signal is 𝑢[𝑛] and the output signal is 𝑦1[𝑛] 

𝑦1[𝑛] = 𝑢[𝑛] + 𝑢[𝑛 − 1] − 3 𝑢[𝑛 − 2] +  𝑢[𝑛 − 3] 

This is a closed-form solution for 𝑦1[𝑛] which gives the correct output values for 𝑦1[𝑛] for 
all n.  For 𝑛 ≥ 0, the values are [ 1 2 -1 0 0 0 …. ]. 

For 𝑦2[𝑛] = 𝑥2[𝑛] + 𝑥2[𝑛 − 1] − 3𝑥2[𝑛 − 2] + 𝑥2[𝑛 − 3] and 𝑥2[𝑛] = 3𝑢[𝑛] − 2𝑢[𝑛 − 4]: 

𝑦2[𝑛] = 3𝑢[𝑛] + 3𝑢[𝑛 − 1] − 9𝑢[𝑛 − 2] +  3𝑢[𝑛 − 3] − 2𝑢[𝑛 − 4] − 2𝑢[𝑛 − 5] + 6𝑢[𝑛 − 6] − 2𝑢[𝑛 − 7] 

This gives values [ 3 6 -3 0 -2 -4 2 0 0 0 … ] for 𝑛 ≥ 0. 

Alternate solution. One could compute several values of 𝑦[𝑛]: 
𝑦[𝑛] = 𝑥[𝑛] +  𝑥[𝑛 − 1] − 3 𝑥[𝑛 − 2] + 𝑥[𝑛 − 3] 

𝑦[0] = 𝑥[0] +  𝑥[−1] − 3 𝑥[−2] + 𝑥[−3] = 1 + 0 + 3 ∙ 0 + 0 = 1 

𝑦[1] = 𝑥[1] +  𝑥[0] − 3 𝑥[−1] + 𝑥[−2] = 1 + 1 − 3 ∙ 0 + 0 = 2 

𝑦[2] = 𝑥[2] +  𝑥[1] − 3 𝑥[0] + 𝑥[−1] = 1 + 1 − 3 ∙ 1 + 0 = −1 

𝑦[3] = 𝑥[3] +  𝑥[2] − 3 𝑥[1] + 𝑥[0] = 1 + 1 − 3 ∙ 1 + 1 = 0 

𝑦[4] = 𝑥[4] +  𝑥[3] − 3 𝑥[2] + 𝑥[1] = 1 + 1 − 3 ∙ 1 + 1 = 0  etc. 
  

x2 = [ 3  3  3  3  1  1  1  1  1 ]; 

h =  [ 1  1 -3  1  0  0  0  0  0 ]; 

y2 = filter(x2, 1, h); 

n = 0 : 8; 

stem(n, y2); 

xlim( [-0.5, 8.5] ); ylim( [-5 7] ); 

http://users.ece.utexas.edu/~bevans/courses/signals/tuneups/fall2021/utdeconvolve.m
http://users.ece.utexas.edu/~bevans/courses/signals/tuneups/fall2021/utdeconvolve.m


The University of Texas at Austin    EE 313 – Linear Systems and Signals – Fall 2024 

 

PROBLEM 4. FREQUENCY RESPONSE 

 

Prologue: Linear time-invariant (LTI) systems do not create new frequencies.  That is, any 

frequency in the output signal had to be present in the input signal.  Moreover, every frequency 

in the input signal will experience a scaling in magnitude and shift in phase as it passes through 

the LTI system.  The scaling in amplitude and shift in phase will be a function of the frequency. 

Problem: Signal Processing First, problem P-6.1, page 157.  Suppose the input signal to an FIR 

system is 

𝑥[𝑛] = 𝐴 𝑒𝑗 (0.4𝜋𝑛−0.5𝜋) 

If we defined a new signal 𝑦[𝑛] to be the first difference 𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1], it is possible 

to express 𝑦[𝑛] in the form 

𝑦[𝑛] = 𝐴 𝑒𝑗 (𝜔̂0𝑛+𝜙) 

Determine the numerical values of A, 𝜙 and 𝜔̂0.  Please comment on the differences between the 

input and output signals.  What parameter(s) changed?  By how much?  What parameter(s) didn’t 

change? 

Solution: The new signal 𝑦[𝑛] is defined as follows: 

𝑦[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 1] 

          =  𝑒𝑗(0.4𝜋𝑛−0.5𝜋) − 𝑒𝑗(0.4𝜋(𝑛−1)−0.5𝜋) 

          = 𝑒𝑗(0.4𝜋𝑛−0.5𝜋) − 𝑒𝑗(0.4𝜋𝑛−0.4𝜋−0.5𝜋) 

          = 𝑒𝑗(0.4𝜋𝑛−0.5𝜋) − 𝑒𝑗(0.4𝜋𝑛−0.9𝜋) 

          =  𝑒𝑗(0.4𝜋𝑛)𝑒−𝑗(0.5𝜋) − 𝑒𝑗(0.4𝜋𝑛)𝑒−𝑗(0.9𝜋) 

          =  𝑒𝑗(0.4𝜋𝑛)[𝑒−𝑗(0.5𝜋) − 𝑒−𝑗(0.9𝜋)] 

          = 𝑒𝑗(0.4𝜋𝑛)[cos(0.5𝜋) − 𝑗 sin(0.5𝜋) − cos(0.9𝜋) + 𝑗 sin(0.9𝜋)] 

          = 𝑒𝑗(0.4𝜋𝑛)[0.951 − 𝑗0.691]   

Conversion from Cartesian to Polar Form: 

√(0.951)2 + (0.691)2 = 1.175 

arctan (
−0.691

0.951
) =  −0.6283 

𝑦[𝑛] = 𝑒𝑗(0.4𝜋𝑛)(1.175𝑒−𝑗0.6283) = 1.175𝑒𝑗(0.4𝜋𝑛−0.6283) 

Therefore, in the output signal, A = 1.175, the discrete-time frequency 𝜔̂𝑜 = 0.4𝜋 rad/sample, 

and the phase 𝜙 = -0.6283 rad = -0.2. 

The discrete-time frequency in the output remained the same as the input. 

However, the amplitude was scaled (multiplied) by 1.175 and the phase was shifted by 0.3𝜋. 


