
Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

Mini Project #2: Octave-spaced FIR filter banks

Mr. Dan Jacobellis and Prof. Brian Evans

Version 1.2. Assigned on Monday, October 27, 2025.

Due on Monday, November 3, 2025, by 11:59 pm via Gradescope submission

Late submission is subject to a penalty of two points per minute late.

Reading: McClellan, Schafer and Yoder, Signal Processing First, 2003, Chapters 5-7. Errata.

Companion Web site with demos and other supplemental information: http://dspfirst.gatech.edu/

Web site contains solutions to selected homework problems from DSP First.

E-mail Mr. Dan Jacobellis (TA) at danjacobellis@utexas.edu. Please consider posting questions on Ed

Discussion, which can be answered by anyone in the class. You can post anonymously.

Lecture and office hours for Mr. Jacobellis and Prof. Evans follow. Prof. Evans also holds office hours in

person in EER 6.882 and online on Zoom.

Time Slot Monday Tuesday Wednesday Thursday Friday

11:00 am Evans
(EER 1.516)

 Evans
(EER 1.516)

11:30 am

 Evans
(EER 1.516)

 Evans
(EER 1.516)

12:00 pm Evans
(EER 1.516)

Evans
(EER 1.516)

12:30 pm

 Jacobellis
(EER 1.810)

1:00 pm Jacobellis
(EER 1.810)

1:30 pm Jacobellis
(EER 1.810)

2:00 pm Evans
(EER 6.882)

Jacobellis
(EER 1.810)

2:30 pm Evans
(EER 6.882)

3:00 pm

Evans
(EER 6.882)

 Jacobellis
(EER 7.702)

3:30 pm Evans
(EER 6.882)

Jacobellis
(EER 7.702)

4:00 pm Evans
(EER 6.882)

Jacobellis
(EER 7.702)

4:30 pm

 Evans
(EER 6.882)

Jacobellis
(EER 7.702)

5:00 pm

 Jacobellis
(EER 7.702)

Jacobellis
(EER 1.810)

5:30 pm

 Jacobellis
(EER 1.810)

6:00 pm

 Jacobellis
(EER 1.810)

http://dspfirst.gatech.edu/spfirst/SPFirst-errata.pdf
http://dspfirst.gatech.edu/
mailto:danjacobellis@utexas.edu
https://edstem.org/us/courses/84812/discussion
https://edstem.org/us/courses/84812/discussion

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

1.0 Introduction

An octave is a musical interval corresponding to a doubling of frequency. In the western musical scale,

each octave is divided into twelve notes, with each note’s frequency being 21/12 higher than the previous

note. See Mini-project #1 from Fall 2024 for more information.

In this project, you will design and implement a discrete-time analysis filter bank that separates an audio

signal into octaves, and a discrete-time synthesis filter bank that recovers the signal from its components.

The filter bank consists of a cascade of high-pass and low-pass filters combined with downsampling and

upsampling operations. For an overview of downsampling and upsampling, see Appendix A and the mini-

project #1 hints. An example using two levels is shown below. Please see the MATLAB code to implement

the single and two level transforms one_level.m and two_level_octave.m in Appendices C and D.

In the two level analysis transform, 𝑦1[2𝑛] corresponds to the octave containing frequencies
𝑓𝑠

4
< 𝑓 <

𝑓𝑠

2
,

𝑦2[4𝑛] corresponds to the octave containing frequencies
𝑓𝑠

8
< 𝑓 <

𝑓𝑠

4
, and 𝑦3[4𝑛] corresponds to 𝑓 <

𝑓𝑠

8
. More

levels can be applied by recursively applying the process to the bottommost branch of the analysis

transform, allowing the signal to be separated into a greater number of octaves.

When the filters satisfy certain properties, it is possible to achieve perfect reconstruciton, meaning that

𝑥̂[𝑛] = 𝑥[𝑛]; this process is also known as a discrete wavelet transform. For additional reading, see Lecture

9: Multirate, Polyphase, and Wavelet Filter Banks from Stanford University Center for Computer Research

in Music and Acoustics (CCRMA).

Two level analysis transform

Two level synthesis transform

highpass analysis filter
: lowpass analysis filter

highpass synthesis filter
: lowpass synthesis filter

: downsample by two

: upsample by two

https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2024/miniproject1sol.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/miniproj1hints/time_frequency.html#multirate-filter-banks
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/miniproj1hints/time_frequency.html#multirate-filter-banks
https://danjacobellis.net/_static/one_level.m
https://danjacobellis.net/_static/two_level_octave.m
https://ccrma.stanford.edu/~jos/JFB/JFB.html
https://ccrma.stanford.edu/~jos/JFB/JFB.html
https://ccrma.stanford.edu/~jos/JFB/JFB.html

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

2.0 Complex sinusoidal response of FIR filters cascaded with downsampling and upsampling

1. Consider the system consisting of an FIR filter with frequency response 𝐻1(𝑒𝑗𝜔̂) followed by

downsampling by a factor of two:

Let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. Show that 𝑦1[2𝑛] = 𝐻1(𝑒𝑗𝜔̂)𝑒𝑗(2𝜔̂)𝑛.

2. Consider the cascade of upsampling by a factor of two followed by an FIR filter with frequency

response 𝐻2(𝑒𝑗𝜔̂):

Let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. Show that 𝑦2[𝑛/2] =
1

2
𝐻2(𝑒𝑗𝜔̂/2)𝑒𝑗(

𝜔̂

2
)𝑛 +

1

2
𝐻2(𝑒𝑗(𝜔̂/2−𝜋))𝑒𝑗(

𝜔̂

2
−𝜋)𝑛

Hint: Setting odd-indexed samples of a discrete signal equal to zero is equivalent to multiplying

by cos2 (
𝜋𝑛

2
) =

1

2
+

1

2
cos(𝜋𝑛) = {1,0,1,0, … }. Therefore, upsampling a discrete signal 𝑥[𝑛] by a factor

of two is the same as evaluating 𝑥[𝑚] at 𝑚 = 𝑛/2 and multiplying by cos2 (
𝜋𝑛

2
):

𝑥[𝑛/2] =↑2 {𝑥[𝑛]} = {
 𝑥[𝑚]|𝑚=𝑛/2 𝑛 even

0 𝑛 odd
= cos2 (

𝜋𝑛

2
) 𝑥[𝑚]|𝑚=𝑛/2

3. Consider the cascade of the systems in part (2) and part (3).

Let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. 𝑥̂[𝑛] will contain multiple frequencies. Show that, for the output component at

the original frequency 𝜔̂, the effective frequency response is

Heff(𝑒𝑗𝜔̂) =
1

2
𝐻1(𝑒𝑗𝜔̂)𝐻2(𝑒𝑗𝜔̂)

4. Consider the following cascade:

Let 𝑥[𝑛] = 𝑒𝑗𝜔̂𝑛. 𝑥̂[𝑛] will contain multiple frequencies. Show that, for the output component at

the original frequency 𝜔̂, the effective frequency response is

𝐻eff(𝑒𝑗𝜔̂) =
1

4
𝐻1(𝑒𝑗𝜔̂)𝐻2(𝑒2𝑗𝜔̂)𝐻3(𝑒𝑗2𝜔̂)𝐻4(𝑒𝑗𝜔̂)

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

3.0 Effective frequency response of individual branches.

Four FIR filters are used as building blocks in two_level_octave.m: a lowpass analysis filter (𝐿𝐴),

highpass analysis filter (𝐻𝐴), lowpass synthesis filter (𝐿𝑆), and highpass synthesis filter (𝐻𝑆). The impulse

responses are provided in the MATLAB code and plotted below.

1. In MATLAB, use freqz to calculate the frequency responses for each of the four filters.

2. Plot the magnitude responses for 𝐿𝐴 and 𝐻𝐴 as a function of 𝜔̂ from 0 ≤ 𝜔̂ < 𝜋. Put both

magnitude responses on the same graph.

3. Using the results from 2.3 and 2.4, calculate the effective frequency responses for each of the three

branches in the filter bank. Plot the magnitude of each as a function of 𝜔̂ from 0 ≤ 𝜔̂ < 𝜋. Put all

three magnitude responses on the same graph .

a. Upper octave branch: (𝐻𝐴 ∘ ↓2 ∘ ↑2 ∘ 𝐻𝑆)

𝐻1(𝑒𝑗𝜔) =
1

2
𝐻𝐻𝐴(𝑒𝑗𝜔̂)𝐻𝐻𝑆(𝑒𝑗𝜔̂)

b. Middle octave branch: (𝐿𝐴 ∘ ↓2 ∘ 𝐻𝐴 ∘ ↓2∘ ↑2∘ 𝐻𝑆 ∘ ↑2∘ 𝐿𝑆)

𝐻2(𝑒𝑗𝜔̂) =
1

4
𝐻𝐿𝐴(𝑒𝑗𝜔̂)𝐻𝐻𝐴(𝑒2𝑗𝜔̂)𝐻𝐻𝑆(𝑒𝑗2𝜔̂)𝐻𝐿𝑆(𝑒𝑗𝜔̂)

c. Low frequency branch: (𝐿𝐴 ∘ ↓2 ∘ 𝐿𝐴 ∘ ↓2∘ ↑2∘ 𝐿𝑆 ∘ ↑2∘ 𝐿𝑆)

𝐻3(𝑒𝑗𝜔̂) =
1

4
𝐻𝐿𝐴(𝑒𝑗𝜔̂)𝐻𝐿𝐴(𝑒2𝑗𝜔̂)𝐻𝐿𝑆(𝑒𝑗2𝜔̂)𝐻𝐿𝑆(𝑒𝑗𝜔̂)

4.0 Extending to more octaves.

More levels of the transform can be applied by recursively decomposing the low frequency branch, thus

dividing the signal into a greater number of octaves. The highest octave covers the range from
𝑓𝑠

4
< 𝑓 <

𝑓𝑠

2
.

The next highest octave covers the range from
𝑓𝑠

8
< 𝑓 <

𝑓𝑠

4
, and so on.

1. Assume a sampling rate of 𝑓𝑠 = 8134 Hz so that the highest octave corresponds to the range

2033.5 Hz < 𝑓 < 4067 Hz (C7 to B7 on the western scale). Extend the implementation in

two_level_octave.m to four levels so that middle C (261.62 Hz) is included in an octave-spaced

branch instead of the low frequency branch.

2. Resample the violin-C4 recording to 8134 Hz, then apply the new four-level filter bank. Ensure that

the output from the synthesis transform approximately matches the input.

3. Reconstruct each of the five branches independently. Create a spectrogram for each branch:

a. “4-line” octave branch (C7 to B7)

b. “3-line” octave branch (C6 to B6)

c. “2-line” octave branch (C5 to B5)

d. “1-line” octave branch (C4 to B4)

e. Low frequency branch (0 Hz to B3)

https://danjacobellis.net/_static/two_level_octave.m
https://danjacobellis.net/_static/two_level_octave.m
https://www.ee.columbia.edu/~dpwe/sounds/instruments

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

5.0 Playback and use as compression system

1. Using MATLAB, load an audio signal of your choice whose length is at least 16 seconds.

Resample the audio signal to 8134 Hz. If the audio file is stereo (two channel) convert it to mono

(single channel) by averaging the two channels together. Truncate the signal to exactly 130144

samples (16 seconds).

2. Using the filter bank from part 4.0, divide the signal into 5 bands (low frequency + four octaves).

How many samples are needed to represent each band at the output of the analysis transform

prior to upsampling? Compute the compression ratio of each band assuming that the same

precision is used for storage.1

3. Reconstruct each of the five bands independently and play them back using soundsc. Describe the

sound of each band compared to the original signal.

4. Compute the PSNR2 of each band compared to the original signal. Plot the PSNR vs the

compression ratio from part 5.2. Which output band provides the best trade-off between PSNR

and compression ratio?

1 The compression ratio for the 𝑖th band is CR𝑖 =
Number of output samples for 𝑖th band

Number of samples in the original audio signal

2 For a pair of signals in the range [-1,1] with length 𝐿, the PSNR is:

PSNR(𝑥[𝑛], 𝑦[𝑛]) = 20 log10 (
(𝐼max − 𝐼min)2

MSE(𝑥[𝑛], 𝑦[𝑛])
)

= 20 log10 2 − 10 log10(MSE(𝑥[𝑛], 𝑦[𝑛]))

= −10 log10(MSE(𝑥[𝑛], 𝑦[𝑛])) + 6.02 dB

where

MSE(𝑥[𝑛], 𝑦[𝑛]) =
1

𝐿
∑(𝑥[𝑛] − 𝑦[𝑛])2

𝐿

0

In MATLAB:

PSNR = -10*log10(mean(abs(x - y).^2)) + 6.02

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

asd

Appendix A: Downsampling and Upsampling

One way to modify a continuous-time signal 𝑥(𝑡) is by scaling the time axis, (e.g. 𝑥(2𝑡) or 𝑥 (
𝑡

2
)).

Downsampling and upsampling are the discrete-time versions of scaling the time axis.

When a discrete-time signal 𝑥[𝑛] is downsampled by an integer factor of 𝑀 (denoted ↓𝑀), samples are

discarded following a regular pattern, making the signal 𝑀 times shorter.

↓𝑀 {𝑥[𝑛]} = 𝑥[𝑀𝑛]

This can be performed in MATLAB using downsample(x,M).

Upsampling a signal by an integer factor 𝐿 (denoted ↑𝐿) makes the signal 𝐿 times longer by inserting

zeros following a regular pattern.

↑𝐿 {𝑥[𝑛]} = {
𝑥[𝑛/𝐿] if 𝑛/𝐿 is an integer

0 otherwise

If we assume the convention that a discrete-time signal is zero-valued for non-integer values of 𝑛, then

we can simply write ↑𝐿 {𝑥[𝑛]} = 𝑥[𝑛/𝐿]. This cane be performed in MATLAB using upsample(x,L).

Upsampling and downsampling are linear operations, but not time-invariant.

Example: Consider a continuous-time signal 𝑥(𝑡) = sin(𝜋𝑡2) 𝟏[0,2](𝑡). Sampling 𝑥(𝑡) at a rate 𝑓𝑠 = 10 Hz

produces 𝑥[𝑛] = sin (
𝜋

100
𝑛2) 𝟏[0,2](𝑛). The plots of ↓2 {𝑥[𝑛]} = 𝑥[2𝑛] and ↑2 {𝑥[𝑛]} = 𝑥[𝑛/2] are shown.

https://www.mathworks.com/help/signal/ref/downsample.html
https://www.mathworks.com/help/signal/ref/upsample.html

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

Appendix B: Homework and Mini-Project Guidelines

Here are some things you should follow for all assignments.

Amount of work to show:

1. An explanation should be given for every single answer. Answers written without explanation
will lose two-thirds of the points allotted for that part.

2. Only "standard" formulas (like Euler's formula, trigonometric formulas, etc.) can be used without
a reference. If you're using something non-standard, then please put a reference to the formula
number in the book, or whatever source you got it from. Just using the final result of a similar
problem done in the class, and omitting the intermediate steps, is not okay. You have to show
your work.

3. There shouldn't be big jumps in logic from one step to the next.

4. For everything, expect to show at least one intermediate step between the first line and the
answer. Even if it seems unnecessary to you, please err on the side of caution. Things that seem
obvious to you when you're writing the solution are not quite so obvious for someone reading it.

5. If you're in any doubt about how much work to show, please ask the instructor or the teaching
assistant.

MATLAB source code guidelines:

1. Put a comment before the solution of each part, telling the question number of the solution.

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

2. If you're using complicated logic, leave a comment telling what that block of code is supposed to
do.

3. Use variable names that related to their meaning/use.

4. Avoid using two different variables for the same thing.

5. Try to avoid using "magic numbers" in the code. If you're using a number, write a comment
telling me how you derived it.

6. Make sure that your code will compile & run in a clean workspace; i.e., one without any variables
present. Use a clear all; at least once before submitting it.

7. No marks will be deducted based on the efficiency of the code unless the problem asks you to
write efficient code.

Technical points:

1. Merge all the files together into one PDF file.

2. Please adjust the contrast, exposure etc., to get a good scan quality so that the TA can easily read
what you write. Take extra care to get a good scan for parts written in pencil.

3. For the MATLAB code you write for an assignment, please copy the code into Word or include a
screenshot showing the code. Do not submit handwritten code.

Other things:

1. All plots must have axis labels, with units.

2. Final answers must be boxed, or underlined or otherwise differentiated from the rest of the
solution.

3. All final answers must have units, if they exist.

4. Read the questions carefully.

5. Try to answer all parts of a question together. If the solution to some parts of a question is written
elsewhere, then leave a note telling the reader where to find it.

Organization of a mini-project report:

Please write a self-contained narrative report. The audience is someone who has taken the equivalent of
this class. The report should provide references to the textbook and other sources as needed. Please refer
to the hints above, which apply to homework assignments and mini-project reports, as well as the
following additional guidelines for the mini-project.

Here are example mini-project #1 reports written by the instructors:

• "FM Synthesis for Musical Instruments" (2018)

• "Sinusoidal Speech Synthesis" (2021)

• "Music Synthesis" (2023)

Please see the homework hints page for specific guidelines for this project.

https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2018/Miniproj1Soln.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2021/miniproject1sol.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2023/miniproject1sol.pdf
https://users.ece.utexas.edu/~bevans/courses/signals/homework/fall2025/index.html

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

Appendix C: Matlab code for one_level.m

% Code accompanying fall 2025 mini project #2 to apply one level of the DWT

% Originally written by Dan Jacobellis 10/24/2025

% The coefficients below for a dyadic perfect reconstruction filterbank

% are based on the Cohen–Daubechies–Feauveau wavelet (bior6.8)

% If the wavelet toolbox is installed, you can also use the following code:

% [LA, HA, LS, HS] = wfilters('bior6.8');

% LA = LA(2:end)/sqrt(2); HA(2:end) = HA/sqrt(2);

% LS= sqrt(2)*LS(2:end); HS = sqrt(2)*HS(2:end);

coeffs = [

 0.00134974786501001 0 0 -0.00269949573002003

 -0.00135360470301001 0 0 -0.00270720940602003

 -0.0120141966670801 0.0102009221870399 0.0204018443740798 0.0240283933341602

 0.00843901203981008 -0.0102300708193699 0.0204601416387398 0.0168780240796202

 0.0351664733065404 -0.0556648607799594 -0.111329721559919 -0.0703329466130807

 -0.0546333136825205 0.0285444717151497 -0.0570889434302994 -0.109266627365041

 -0.0665099006248407 0.295463938592917 0.590927877185834 0.133019801249681

 0.297547906345713 -0.536628801791565 1.07325760358313 0.595095812691426

 0.584015752240756 0.295463938592917 0.590927877185834 -1.16803150448151

 0.297547906345713 0.0285444717151497 -0.0570889434302994 0.595095812691426

 -0.0665099006248407 -0.0556648607799594 -0.111329721559919 0.133019801249681

 -0.0546333136825205 -0.0102300708193699 0.0204601416387398 -0.109266627365041

 0.0351664733065404 0.0102009221870399 0.0204018443740798 -0.0703329466130807

 0.00843901203981008 0 0 0.0168780240796202

 -0.0120141966670801 0 0 0.0240283933341602

 -0.00135360470301001 0 0 -0.00270720940602003

 0.00134974786501001 0 0 -0.00269949573002003

];

LA = coeffs(:,1); % Lowpass Analysis

HA = coeffs(:,2); % Highpass Analysis

LS = coeffs(:,3); % Lowpass Synthesis

HS = coeffs(:,4); % Highpass Synthesis

% Example audio file built into matlab.

audiodata = load('handel.mat');

x = audiodata.y(1:end-1); fs = audiodata.Fs;

% Analysis

L1 = downsample(conv(x,LA),2);

H1 = downsample(conv(x,HA),2);

% Synthesis

xrec = conv(upsample(L1,2),LS) + conv(upsample(H1,2),HS);

% Account for delay

single_filter_delay = (length(coeffs)-1)/2;

num_cascaded_filters = 2;

total_delay = num_cascaded_filters*single_filter_delay;

xrec = xrec(total_delay:end-total_delay-1);

% verify that xrec is the same as x (accounting for small numerical error)

assert(max(abs(x-xrec)) < 1e-10)

% create spectrograms for original signal and components

figure; spectrogram(x,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('Original signal')

low_component = conv(upsample(L1,2),LS);

figure; spectrogram(low_component,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('Low frequency component');

high_component = conv(upsample(H1,2),HS);

figure; spectrogram(high_component,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('High frequency component');

Fall 2025 ECE 313 Linear Systems and Signals Prof. Evans

Appendix D: Matlab code for two_level_octave.m

% Code accompanying fall 2025 mini project #2 to apply two level DWT

% (discrete wavelet transform) and inverse

% Originally written by Dan Jacobellis 10/24/2025

% The coefficients below for a dyadic perfect reconstruction filterbank

% are based on the Cohen–Daubechies–Feauveau wavelet (bior6.8)

% If the wavelet toolbox is installed, you can also use the following code:

% [LA, HA, LS, HS] = wfilters('bior6.8');

% LA = LA(2:end)/sqrt(2); HA(2:end) = HA/sqrt(2);

% LS= sqrt(2)*LS(2:end); HS = sqrt(2)*HS(2:end);

coeffs = [

 0.00134974786501001 0 0 -0.00269949573002003

 -0.00135360470301001 0 0 -0.00270720940602003

 -0.0120141966670801 0.0102009221870399 0.0204018443740798 0.0240283933341602

 0.00843901203981008 -0.0102300708193699 0.0204601416387398 0.0168780240796202

 0.0351664733065404 -0.0556648607799594 -0.111329721559919 -0.0703329466130807

 -0.0546333136825205 0.0285444717151497 -0.0570889434302994 -0.109266627365041

 -0.0665099006248407 0.295463938592917 0.590927877185834 0.133019801249681

 0.297547906345713 -0.536628801791565 1.07325760358313 0.595095812691426

 0.584015752240756 0.295463938592917 0.590927877185834 -1.16803150448151

 0.297547906345713 0.0285444717151497 -0.0570889434302994 0.595095812691426

 -0.0665099006248407 -0.0556648607799594 -0.111329721559919 0.133019801249681

 -0.0546333136825205 -0.0102300708193699 0.0204601416387398 -0.109266627365041

 0.0351664733065404 0.0102009221870399 0.0204018443740798 -0.0703329466130807

 0.00843901203981008 0 0 0.0168780240796202

 -0.0120141966670801 0 0 0.0240283933341602

 -0.00135360470301001 0 0 -0.00270720940602003

 0.00134974786501001 0 0 -0.00269949573002003

];

LA = coeffs(:,1); % Lowpass Analysis

HA = coeffs(:,2); % Highpass Analysis

LS = coeffs(:,3); % Lowpass Synthesis

HS = coeffs(:,4); % Highpass Synthesis

% Example audio file built into matlab.

audiodata = load('handel.mat');

x = audiodata.y(1:end-1); fs = audiodata.Fs;

% Analysis (level 1)

L1 = downsample(conv(x,LA),2);

H1 = downsample(conv(x,HA),2);

% Analysis (level 2)

L1L2 = downsample(conv(L1,LA),2);

L1H2 = downsample(conv(L1,HA),2);

% Synthesis

delay = length(coeffs)-1;

L1rec = conv(upsample(L1L2,2),LS) + conv(upsample(L1H2,2),HS);

L1rec = L1rec(delay:end-delay-1);

xrec = conv(upsample(L1rec,2),LS) + conv(upsample(H1,2),HS);

xrec = xrec(delay:end-delay-1);

% verify that xrec is the same as x (accounting for small numerical error)

assert(max(abs(x-xrec)) < 1e-10)

% create spectrograms for original signal and components

figure; spectrogram(x,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('Original signal')

highest_octave = conv(upsample(H1,2),HS);

figure; spectrogram(highest_octave,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('Highest octave component');

middle_octave = conv(upsample(L1H2,2),HS);

middle_octave = conv(upsample(middle_octave,2),LS);

figure; spectrogram(middle_octave,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('Middle octave component');

low_component = conv(upsample(L1,2),LS);

figure; spectrogram(low_component,1024,0,1024,'yaxis',fs);

clim([-70,0]); title('Low frequency component');

