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Solution Set for Homework #3 on Fourier Series and Sampling
By Prof. Brian L. Evans and Mr. Firas Tabbara
September 27, 2025

PROBLEM 1: FOURIER ANALYSIS AND SYNTHESIS

Prologue: The purpose of this problem is to use properties of the continuous-time Fourier series in
computing the Fourier series coefficients. Throughout the remainder of the course, we’ll be using
properties of continuous-time Fourier transforms and other transforms to simplify the computation of the
transform.

Problem: Signal Processing First, problem P-3.14, page 67. The problem gives an example of a signal
x(t) that has period Ty and another signal y(t) = % x(t). The Fourier series coefficients by, for y(t) can
be computed from the Fourier series coefficients ay for x(t) using by = (j k wy) a; where wy = 2 7 f.

Solution for part (a): Here are two different solutions for y(t) = A x(t).

Solution #1 for part (a) Solution #2 for part (a)
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When scaling any signal in amplitude, the Fourier Series coefficients are scaled by the same
amount.
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Solution for part (b): Here are two different solutions for y(t) = A x(t — ty).

Solution #1 for part (b) Solution #2 for part (b)
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When delaying a signal, the Fourier Series coefficients are multiplied by e ~/k®ota_ This is
another example of a shift in time causing shift in phase.
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Using the conclusion derived in parts (a) and (b) with 4 =2 and #; = % To,
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(d) Below, the plots of x(t)and y(t) are plotted for two periods to better show the shift in time
y(t) =2x (t — %To). Note the doubling in amplitude for y(t).

% Fourier synthesis for square wave

% Prof. Brian L. Evans 12
% The University of Texas at Austin

$ Written in Fall 2017 H
% Version 2.0

o 2 08
© @

% Fourier series coefficients ak for a square %

% wave with period TO that is g 06
$ 1 for 0 <= t < T0/2 3
$ 0 for T0/2 <= t < TO E o4
% 2

. . . . . . . O o2
% Derivation is in Sec. 3-6.1 in Signal

% Processing First (2003) on pages 52-53

% Pick a value for the period of x(t) 0
TO = 1; 02
f0 =1 / TO; T -0.5 0 05
% Pick number of terms for Fourier synthesis

N = 10;

fmax = N * f0;

° 25

% Define a sampling rate for plotting
fs = 24 * fmax;
Ts = 1 / fs;
Define samples in time for one period
= -0.5*T0 : Ts : 0.5*TO;

o©

oe

t

15
t =-T0 : Ts : TO;
% First Fourier synthesis term
a0 = 0.5;
b0 = 2*a0;

x = a0 * ones(l, length(t)); 05
y = b0 * ones(l, length(t));

figure;

plot (t, y);

ylabel ('Square Wave Delayed by T0/4 and scaled by 2')

Square Wave Delayed by T0/4 and scaled by 2

hold onj; - 05 0 05
% Generate each pair of synthesis terms
for k=1 : N
% Define Fourier coefficients at k and -k
akpos = (1 - (=1)"k) / (j*2*pi*k);
akneg = (1 - (-1)"(-k)) / (3*2*pi*(-k));
bkpos = 2* (exp(-j*2*pi*k*(1/4)*T0)) *akpos;
bkneg = 2* (exp (=J*2*pi* (-k)* (1/4)*T0)) *akneg;
theta = jJ*2*pi*k*f0*t;
X = x + akpos * exp(theta) + akneg * exp(-theta);
y = y + bkpos * exp(theta) + bkneg * exp(-theta);
% Plot Fourier synthesis for indices -k ... k
plot(t, y);:
pause (0.5) ;
end
hold off;
figure;
plot(t, x);
ylabel ('Original Square Wave')
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PROBLEM 2: SAMPLING

Prolog: Periodicity is a bit different for discrete-time signals than continuous-time signals because the
discrete-time domain is on an integer grid whereas the continuous-time domain is on a real number line.

Problem: Signal Processing First, problem P-4.2, page 96, with an additional part (d).
T
x(t) = 7sin(11mt) = 7 cos (117rt _ E)

In the continuous-time domain, the fundamental period is (2/11) seconds:

rad
(l)o = 117T_
S

11m

fo= ﬁ=5.5HZ
2
TO:ES
T
0= —3 rad

55Hz 117_[ rad
10Hz ~ 10 sample

(a) Wy =212 =21
fs

Due to sampling at ;= 10 Hz, x[n] = x(n T;) = x (E);

fs
n] =7 (117T n)
xln] =7cos{ 75— 3
_7 (117‘[ ) 7'[)
=7 cos 10 n-—2mn -3
_7 ( I TL')
=7 cos 10 n >
_7 (91r n)
=7cos|gnt5
A=T7,0 =§ rad
~ 55Hz 11 rad
(b) Wo = 2 5Hz 5 7Tsample
Due to sampling at fs = 5 Hz, x[n] = x(n Ty) = x (/%)
n] =7 (117‘[ n)
x[n] =7cos(——n-—3

This signal is undersampled, because f; > fs/ 2. The following equation shows the effect of
aliasing (but not related to folding) caused by the undersampling:

(n] =7 (117‘[ 7'[)_7 (117‘[ 5 7'[)_7 (n n)
xn—cossnz—cossn nnz—cossn2

A=7,(p=—§rad
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55Hz __ 117_[ rad
15Hz 15 sample

(C) WO =27

This signal is 15/11 times oversampled because fy < fs/ 2

(n] =7 (117r n)
x[n] = 7 cos 1Sn >

A=7,(p=—§rad

(d) As shown at the beginning of this problem’s solution:

11m 2
fO = E: 5.5 Hz andTo ZES

According to the hint that is provided for this solution, which comes from Handout D on
Discrete-Time Periodicity, x[#] is periodic with a discrete-time period of Ny samples if
x[n] = x[n + Ny] for all possible integer values of N .

[+ N,] =7 (1171( Ny) n)
x|n ol = 7 cos T n+0—2

11 11 s
= 7cos<2n—n+2n—N0——>
30 30 2
11 T
= 7cos (Zn—n ——)
30 2

Because 11 and 30 are relatively prime, the smallest possible positive integer for N, is 30
samples. Therefore, the fundamental period of x[#] is 30 samples. Those 30 samples contain 11
continuous-time periods, which corresponds to 2.67 samples in each continuous-time period.

Although not required, here’s a way to visualize 't

differences in periodicity by superimposing plots o] .: '. | A ;' "‘ 8l ;
of x(f) and x[n]. In x[n], the amplitude of 1 at wll I' - I ', [t ¢ o | | bl
n =0 does not repeat until n = 30. w2 'I l‘ LI 'I ; RSN
fs = 15; ,‘| Il l,_‘_\ | || (. | | || | ! | I ||
Tszl/fs;l U'L_| I |’| ‘ Illl‘ "![‘l\ m |‘\ I |
wHat = 2*pi*f0/fs; ! IR | ™ [ 1 M1 I [ | L

NO = 30; ,_“_‘| || | “ I | Il |) | NmAE
n =0 : NO; _ Il ¢ R ¢ I |\|

yofn = cos (wHat*n); ol || A S I A I| 11
t =0 : 0.0l : NO; XS (T A N A T
yoft = cos(wHat*t); ;,5,.II I I.I [ n.l [ I.I 1.
figure; . 1 SO S ‘ | I

stem(n, yofn); L e B

plot (t, yoft);

Epilogue: For a sinusoidal signal with discrete-time frequency @y = 211;—0 = 211% where the common
S

factors in fy and f; have been removed so that N and L are relatively prime, the discrete-time signal has a
fundamental period of L samples. The fundamental period of L samples contains N periods of a
continuous-time sinusoid with frequency f;. Please see Handout D on Discrete-Time Periodicity.
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