
Tune-Up Tuesday #4 Deconvolution for October 9, 2025

Before we talk about deconvolution, let’s define convolution. Then, we’ll derive a

deconvolution algorithm and apply it to two examples. You could have worked either

example for the Tune-Up.

Convolution. For a finite impulse response filter with 𝑀 + 1 filter coefficients 𝑏0, 𝑏1, … , 𝑏𝑀,

the output signal 𝑦[𝑛] for an input signal 𝑥[𝑛] is computed according to

𝑦[𝑛] = 𝑏0 𝑥[𝑛] + 𝑏1 𝑥[𝑛 − 1] + ⋯ + 𝑏𝑀 𝑥[𝑛 − 𝑀]

If we input the discrete-time impulse signal 𝛿[𝑛], which has value of 1 at 𝑛 = 0 and 0

otherwise, the output is called the impulse response (response is synonymous with output):

ℎ[𝑛] = 𝑏0 𝛿[𝑛] + 𝑏1 𝛿[𝑛 − 1] + ⋯ + 𝑏𝑀 𝛿[𝑛 − 𝑀]

Hence,

ℎ[𝑘] = 𝑏𝑘 for 𝑘 = 0, 1, … , 𝑀

Otherwise, ℎ[𝑘] = 0. Because ℎ[𝑘] = 𝑏𝑘 for 𝑘 = 0, 1, … , 𝑀,

𝑦[𝑛] = ℎ[0]𝑥[𝑛] + ℎ[1]𝑥[𝑛 − 1] + ⋯ + ℎ[𝑀 + 1]𝑥[𝑛 − (𝑀 + 1)] = ∑ ℎ[𝑘] 𝑥[𝑛 − 𝑘]

𝑀

𝑘=0

This computation is known as convolution of ℎ[𝑛] and 𝑥[𝑛]:

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥[𝑛]

Given input signal 𝑥[𝑛] and impulse response ℎ[𝑛], we can compute output signal 𝑦[𝑛]. If

𝑥[𝑛] is also finite in length, then the length of 𝑦[𝑛] will be the length of ℎ[𝑛] plus the length

of 𝑥[𝑛] minus 1.

Deconvolution. Whereas convolution computes the output signal 𝑦[𝑛] from input signal

𝑥[𝑛] and an impulse response ℎ[𝑛] of a FIR filter, deconvolution seeks to find impulse

response ℎ[𝑛] given input signal 𝑥[𝑛] and output signal 𝑦[𝑛]. We can choose the input

signal 𝑥[𝑛], also known as a test signal, and observe the output signal.

Practical scenario. We would start the test signal and the observation at a particular

point in time, which we’ll say is at 𝑛 = 0 without loss of generality. Further, we will assume

that 𝑥[𝑛] = 0 for 𝑛 < 0; i.e., 𝑥[𝑛] is a causal signal.

Deconvolution Algorithm. We’ll work backwards in the time domain to compute the FIR

filter coefficients. We derive a time-domain deconvolution algorithm by first evaluating the

output at 𝑛 = 0:

𝑦[0] = ℎ[0] 𝑥[0] + ℎ[1] 𝑥[−1] + ℎ[2] 𝑥[−2] + ⋯ + ℎ[𝑀] 𝑥[−𝑀]

As mentioned above, we’ll assume 𝑥[𝑛] is a causal signal; i.e., 𝑥[𝑛] = 0 for 𝑛 < 0. Since we

know x[n] and y[n], we have one equation and one unknown at n = 0:

𝑦[0] = ℎ[0] 𝑥[0]

and we can compute

ℎ[0] =
𝑦[0]

𝑥[0]

For this calculation to be valid, the first value of the test signal, x[0], cannot be zero.

Second output: 𝑦[1] = ℎ[0] 𝑥[1] + ℎ[1] 𝑥[0], and therefore, ℎ[1] =
y[1]− h[0] 𝑥[1]

𝑥[0]
.

Third output: 𝑦[2] = ℎ[0] 𝑥[2] + ℎ[1] 𝑥[1] + ℎ[2] 𝑥[0] and ℎ[2] =
y[2]− h[0] 𝑥[2]−ℎ[1] 𝑥[1]

𝑥[0]

In general, for the Nth output, ℎ[𝑁] =
𝑦[𝑁] − ∑ ℎ[𝑖] 𝑥[𝑁−𝑖]𝑁−1

𝑖=0

𝑥[0]
.

The MATLAB script utdeconvolve.m implements this algorithm.

Example. Problem 4.3(b). In this problem, we’re given

• causal input signal x[n] with non-zero values [1 2 3 4 5]

• causal output signal y[n] with non-zero values [1 1 1 1 1 -5]

We can compute the FIR filter coefficients using the above deconvolution algorithm:

ℎ[0] =
𝑦[0]

𝑥[0]
=

1

1
= 1

ℎ[1] =
y[1] − h[0] 𝑥[1]

𝑥[0]
=

1 − 1 ∙ 2

1
= −1

ℎ[2] =
y[2] − h[0] 𝑥[2] − ℎ[1] 𝑥[1]

𝑥[0]
=

1 − 1 ∙ 3 − (−1) ∙ 2

1
= 0

The values of ℎ[𝑛] for 𝑛 > 2 are zero. The MATLAB script utdeconvolve.m will give the
same answer for ℎ[𝑛]. We can validate the answer by convolving ℎ[𝑛] and 𝑥[𝑛]. We can
use the Matlab command conv to do this:

y = conv([1 -1], [1 2 3 4 5])

y =

 1 1 1 1 1 -5

Alternately, we could use the filter command. Keeping in mind that the filter command

produces as many output samples as there are input samples,

y = filter([1, -1], 1, [1 2 3 4 5 0])

y =

 1 1 1 1 1 -5

When convolving two finite-length signals 𝑥[𝑛] and ℎ[𝑛], the result 𝑦[𝑛] has finite length. The

length of 𝑦[𝑛] is the length of 𝑥[𝑛] plus the number of filter coefficients minus 1. Since the

length of 𝑦[𝑛] is 6 and the length of 𝑥[𝑛] is 5, there are 2 filter coefficients.

http://users.ece.utexas.edu/~bevans/courses/signals/tuneups/fall2024/utdeconvolve.m
http://users.ece.utexas.edu/~bevans/courses/signals/tuneups/fall2024/utdeconvolve.m

