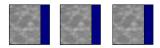

Curriculum Revision

Increasing the place of Information,Signals and Systems early on in our EE (CE/SE) curriculum

G. de Veciana

References:

Lee & Messerschmitt article on Engineering the Future Lee & Varaiya textbook under development "The structure and interpretation of signals and systems"

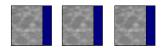


Why bother

□ Olde EE:

- □ coercing physical devices to do man's bidding
- □ constraints: laws of physics
- □ New EE -> "Electronic Information Systems"
 - coercing abstract human constructs and artificial systems to do..
 - □ constraints
 - □ complexity, computability, logic
 - □ human factors, regulation, economics
 - □ limited knowledge domain

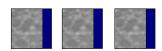
A new profile : BS in EE (CE/SE)


Same for EE/CS/SE? Work with abstract Study interaction languages, e.g. EDA and decomposition programming languages of system components Specify the laws that apply to systems, **Build** multiple in addition to working abstraction layers with the laws of upon the old physics. engineering Eg. TCP/IP simple user protocols <--engineering->

EE at U.T. Today

- Our <u>required</u> undergrad curriculum in signal and system includes
 - Signals and Systems- continuous-time and (recently) discrete-time signals
 - □ Automatic Control- feedback control

macroscopic system level interactions


□ Probability, Statistics and Random processes –

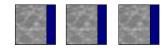
What is missing?

Early (integrated) exposure to range of modeling techniques

- signals => continuous/discrete time, and streams (no time), discrete events
- system modeling => LTI systems and discrete event systems, FSMs, Markov Chains, heterogenous/hybrid systems
- rigorous formulation/abstraction of system models
- Broader exposure to information processing and applications domains
 - □ from signals -> bits -> packets -> network systems
 - □ compression, encryption, information theory
 - □ control, commerce, medical, etc.

How do we accomplish this

□ Revise our basic math sequence ?

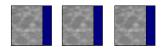

Sure but is this pushing the work to another department..

□ Revise our basic intro courses:

□ EE 302 information, signals and systems ?

□ Revise other courses accordingly e.g.,

- □ EE313
- □ EE351k

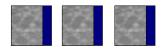

How do we accomplish this

Mathematical Foundations for new EE

- □ Currently we have
 - □ Calculus 1 and 2, diff eq, linear algebra
 - probability, statistics and random processes

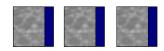
would be nice to add

- numerical methods, optimization
- □ discrete math, combinatorics, graphs
- □ logic, topology, partial orders



Proposed Solution

 Premise: We still need two courses for calculus. (for students entering EE I would hope this is debatable..)


□ Proposal:

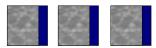
- □ Two courses on calculus
- Mathematics for Engineers 1: diff equations, numerical methods, linear algebra – matlab...
- □ <u>Mathematics for Engineers 2</u>: logic, set theory, discrete math, partial orders ...

Proposal's Impact on Curriculum

- □ Minimum change scenario:
 - development of course combining basic differential equations with linear algebra – matlab? This consolidates the diff equation and linear algebra requirements.
 - □ Add discrete math to EE curriculum

How do we accomplish this

EE 302 includes topics in


Information, Signals and Systems

□ Currently EE 302

digital and analog circuits + other stuff (apologies to instructors)

is it feasible to evolve towards

digital and analog processing of information
or even, structure of signals and systems ...?

Specific Topics to Include in EE 302 ++

- □ Examples of signals and systems
- **G** Signals as functions and function composition
- Systems as functions differential/difference equations, state machines composing systems using block diagrams
- State-space models state machines, FSMs, non-deterministic
- Composing State machines- synchrony, cascade, product, feedforward, feedback..

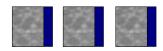
Maybe =<5 weeks worth of material ?

Bottom line.. what do I propose to add to EE 302 ++

□ Fundamentals

- **D** Definition of a function
- □ Signals/streams as functions
- □ Systems as functions
- Composition of systems as composition of functions

and


 Exposure to various types of "real" systems and signals and the power of formal system modeling

Proposal's Impact on Curriculum


□ Is this feasible?

- □ To teach this early in their careers:
 - □ cant say but EE20 UCB text is more ambitious.
 - Material there could help with the development of new "modules" for ee 302
- □ To implement : What material leaves ee302?
 - □ reduce required circuit material
 - □ Circuits (and electronics) will be covered in EE 411
 - Digital material left for EE 316
 - EE 313 Signals and Systems could/should be broadened see next slides

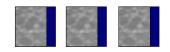
Other comments/proposals

- \Box EE 313 = signals and systems
 - should touch on control and communications principles: feedback, stability, modulation
 - do we need required communications and control courses for all students or should these be electives?
- \Box EE351K can be improved ?
 - add Markov chains, they are fun and applicable to all EE/CE/SE
 - □ simulation, system design problems ?
 - □ What topics will we have to give up here ?

In summary

- □ Revise our basic math sequence ..
- □ Revise our basic intro courses...
 - □ EE 302 information, signals and systems ?

□ Revise other courses accordingly e.g.,


- □ EE 313 Signals and Systems
 - take the time to discuss communications and control systems apps
 - □ for DSP students take an elective course
- EE351k add some MC modeling, system design problems..., simulation would be nice..

What goals would we meet..

- Small step from circuits to information systems at the base of our curriculum => big payoff (?)
- Develop <u>abstract modeling skills</u> for systems and motivate the math and upcoming courses
- Bridge the <u>system concepts</u> to various disciplines EE/CE/SE and <u>application domains</u>
- Better and broader preparation of undergraduate student, for work and/or graduate school

