Accumulator architecture

o

M emory-register architecture

Prof. Brian L. Evans

in collaboration with P
Niranjan Damera-Venkata and
Wade Schwartzkopf L oad-store architecture
Embedded Signal Processing Laboratory
The University of Texas at Austin GLT
Austin, TX 78712-1084 <

http:/lsignal.ece.utexas.edu/

m Introduction

m Instruction set architecture
m Vector dot product example
m Pipelining

m Algorithm acceleration

m C compiler

m Development tools and boards

m Conclusion

m Lowest DSP in power consumption: 0.54 mW/MIP

m Acceleration for FIR and LM S filtering, code book
search, polynomial evaluation, Viterbi decoding

Carrier Class/Enterprise

Roadmap . Remote access servers
2 . VOP gateways + modam
S W « L0 switches

Mid-Range Telecom
« FaxMoice servers

. PBX add-ons

. Voice-over-packet

. Voice add-ons to LAN

Performance
MIPS plus Integration

. Feature phones/web phanes
. P0S, metering, pay phones
= Speaker phones, security

1998 1999 2000 Sample dates

System conal Program address genembon Ut addiess generabon

inl=rface Woggic: [PACEN) i il
:‘ A, IFTH, RG, ﬁn:m;'m
o BAC. RSA. FEA AHP. K, DF 5P
+ [L B L I 1§ L 3
PaE [
FE [
— Memany
" <:> anil i
mniafans
ca |
L 3
g |
] L J
Fadphemi
= I inberiace
-
Eaz |
EE |

T| &8 n g8

| \:E:nI';} '\::.m:rn'/

x

Baital shissi

ALLIAE

i

Acimulaion & -] |

Accurredaior B

CE dma bus MEWILEW |
t

O dats bus
MAT et
PE program bus

Harmd shiter

T resgeiar
ALLI

| ZERC | SAT | FOUND |

G TEOOER

m Conventional 16-bit fixed-point DSP
» 8 16-bit auxiliary/address registers (ar0-7)
» Two 40-bit accumulators (a and b)
» One 16 bit x 16 bit multiplier
» Accumulator architecture

m Four busses (may be active each cycle)
» Three read busses: program, data, coefficient
» One write bus: writeback

m Memory blocks
>» ROM in 4k blocks
» Dual-access RAM in 2k blocks
» Single-access RAM in 8k blocks

m Two clock cycles per instruction cycle

® |mmediate
» Operand is part of the
instruction
m Absolute

» Address of operand is part of
the instruction

m Register
» Operand is specifiedin a
register

ADD #0FFh

LD *(LABEL), A

READA DATA

; (data read
fromaddress in
accumul at or A)

m Direct

> Address of operand is part of the ADD 010h, A
instruction (added to implied
memory page)

m [ndirect
» Address of operand is stored in a
register ADD * AR1
> Offset addressing ADD * AR1(10)
> Register offset (ar1+ar0) ADD * AR1+0
> Autoincrement/decrement ADD * AR1+
» Bit reversed addressing ADD * AR1+B

» Circular addressing ADD * AR1+0B

m Conditional execution

» XC n, cond[, cond[,cond]] ;23 possible conditions

> Executes next n (1 or 2) words if conditions (cond) are met
» Takes one cycle to execute

XC 1, ALEQ ; test for accunulator a£0
mac *ar 1+, *ar 2+, a , performMAC only if a£0
add #12, a, a ; al ways perform add

m Repeat singleinstruction or block

» Overhead: 1 cycle for RPT/RPTZ and 4 cycles for RPTB
» Hardware loop counters count down

rptz a, #39

+ zero accunul ator a

, repeat next instruction 40 tines
mac *ar2+,*ar3+,a; a += a(n) * x(n)

m Scalar arithmetic
» ABS Absolute value
» SQUR Square
» POLY Polynomial evaluation

m Vector arithmetic acceleration
» Each instruction operates on one element at at time
» ABDIST Absolute difference of vectors
» SQDIST Squared distance between vectors
» SQURA Sum of squares of vector elements
» SQURS Difference of squares of vector elements

rptz a, #39 , zero accunul ator a, repeat next
, I nstruction over 40 el enents
squra *ar?2+, a , a += x(n)"2

Arithmetic L ogical Program Application
ADD AND Contral Specific
MAC BIT B ABS
MAS BITF BC ABDST
MPY CMPL CALL DELAY
NEG CMPM CC EXP
SUB OR IDLE FIRS
ZERO ROL INTR LMS
ROR NOP MAX
Data SFTA RC MIN
Management SFTC RET NORM
LD SFTL RPT POLY
MAR XOR RPTB RND
MV(D,K.M,P) RPTZ SAT
ST TRAP SQDST
XC SQUR
Hlotes | SQURA
CMPL complement MAR modify address reg. SQURS
CMPM compare memory MAS multiply and subtract

m A vector dot product iscommon in filtering

Y = gla(n) x(n)

n=0

m Store a(n) and x(n) into an array of N elements

m C54x performance: N cycles

Coefficients a(n)

m Prologue

» |nitialize pointers: ar2 for a(n) and ar3 for x(n)

> Set accumulator (A) to zero

m Inner loop Reg Meaning

» Multiply and accumulate a(n) and x(n) AR2 | &a(n)

m Epilogue ARS &x(n)

» Store the result into Y

, Initialize pointers ar2 and ar3 (not shown)

rptz a, #39 , zero accunul ator a
, repeat next instruction 40 tinmes
mac *ar2+,*ar3+,a; a += a(n) * x(n)

sth a, #Y : store result inY

Slequential (Motorola 56000)
I

Fetch Decode Read Execute |

Pipelined (Most conventional DSP processors)
|
|

Fetch Decode Read Execute

Superscalar (Pentium, MIPS) _ o
Managing Pipelines

scompiler or programmer

(TMS320C6x and C54x)
. Fetch. Decode Read Execute ’p| pel | ne |nter| OCki ng
Superpipelined (TMs320C6x) in processor (TM S320C3x)

ehardware instruction
| scheduling

Fetch Decode Execute

m Six-stage pipeline
» Prefetch: load address of next instruction onto bus
> Fetch: get next instruction

» Decode: decode next instruction to determine type of
memory access for operands

> Access: read operands address
» Read: read data operand(s)
> Execute: write data to bus
m |Instructions
» 1-3 words long (most are one word long)

» 1-6 cycles to execute (most take one cycle) not counting

external (off-chip) memory access penalty

m [nstructions affecting pipeline behavior

» Delayed branches (BD), calls (CALLD), and
returns (RETD)

» Conditional branches (BC), execution (XC), and
returns (RC)
m No hardware protection against pipeline hazards
» Compiler and assembler must prevent pipeline hazards

» Assembler/linker issues warnings about potential

pipeline hazards

m y[n] = hyx[n] +h, x[n-1] + ... + hy_, X[n-(N-1)]

» h stored as linear array of N elements (in prog. mem.)
» x stored as circular array of N elements (in data mem.)

; Addresses. a4 h, a5 N samples of X, a6 input buffer, a7 output buffer
; Modulo addressing prevents need to reinitialize regs each sample
; Moving filter coefficients from program to data memory is not shown

firtask: Id #firDP,dp ; initialize data page pointer
stm #frameSize-1,brc ; compute 256 outputs
rptbd firloop-1
stm #N,bk ; FIR circular buffer size
Id *ar6+,a ; load input value to accumulator b
stl a,*ard+% ; replace oldest sample with newest
rptz a#(N-1) ; zero accumulator a, do N taps
mac *ar4+0%,* ar5+0%,a ; onetap, accumulatein a
sth axar’+ ; store y[n]

firloop: ret

m Coefficients in linear phase filters are either

symmetric or anti-symmetric

m Symmetric coefficients
y[n] = hy x[n] + h; x[n-1] + h; X[n-2] + h, X[n-3]
y[n] = hy (X[n] + X[n-3]) + hy (X[n-1] + x[n-2])

m Accelerated by FIRS (FIR Symmetric) instruction

Buffer 1

Input Sample

x(0)
X intwo
circular
buffers

x(—8)

X(=7)

x(=6)

X(=5)

x(—4)

x(=3)

%(—2)

x(~1)

0

~ @ U & W M =

Address

< PR

Buffer 2 Address
x(—9) 0
x(—10) 1
x(=11) 2 _
x-12) |3 hin
x(~13) 4 program
x(~14) 5 memory
x(~15) 6
x(~16) 7 20

; Addresses. a6 input buffer, a7 output buffer

; ad array with x[n-4], x[n-3], X[n-2], x[n-1] for N =8

; ab array with x[n-5], x[n-6], X[n-7], x[n-8] for N =8

; Modulo addressing prevents need to reinitialize regs each sample

firtask: Id #firDP,dp ; initialize data page pointer
stm #frameSize-1,brc ; compute 256 outputs
rptbd firloop-1
stm #N/2,bk ; FIR circular buffer size
Id *ar6+,b ; load input value to accumulator b
mvdd *ar4,* ab+0% ; move old X[n-N/2] to new X[n-N/2-1]
stl b,* ar4% ; replace oldest sample with newest
add *ad+0%,*a5+0%,a ; a=x[n] + x[n-N/2-1]
rptz b,#(N/2-1) ; zero accumulator b, do N/2-1 taps
firs *ar4+0%,* ar5+0%,coeffs ; b+=a* h[i], do next a
mar *+a4(2)% ; to load the next newest sample
mar *ar5+% ; position for X[N-N/2] sample
sth b,*ar7+

firloop: ret

x{n) 2—1 z—1 4'_ - - - 2—1 . R
4" Desired
response
d(n)
@ b1 b1

LMS |‘7

m Adapt weights: b (i+1) = b, (i) + 2 b e(i) x(i-k)
m Accelerated by the LM S instruction (2 cycles/tap)

adapt_task:

STM #H_FILT_SIZE, BK
ST™ #thcooff ,H_COFF_F
ADDM #1,d_adapt__count

LD *INBUF_P+, A
STM #wcoff, W_COFF_P
STL A,d new x

LD d new x,A

first circular buffer size
H COFF_P --> last of svs coeff

load the input sample
regset coeff buffer
read in new data

store in the buffer
Repeat 128 times

; mult & acc:a = a +
primary signal

(h * x}

; start simultanecus filtering and updating the adaptive filter here.

STL A, *XH _DATA_ P+0% ;
EPTZ A, #H_FILT SIZE-1 :
MAC *H_COFF_P+0%, *XH_DATA_ P+0%, A
STH A,d_primary H
LD d mu e, T H
SUB B, B ;
STM #(ADPT_FILT_SIZE-Z),BRC H
RPTED lms_end-1

MPY *XW_DATAE_P+0%, A :
LMS *W _COFF_P, *XW _DATA P :
ST A, *W_COFF_P+ :

| | MPY *XW_DATA_P+0%,A

LMS *17_COFF_P, *XW_DATA P

lms_end

T = step_size*error
zero acc B
set block repeat counter

error * oldest sample

B = filtered output (v)
Update filter coeff

save updated filter coeff
error *x[n-(N-1)]

E = accum filtered output v
; Update filter coeff

m Function approximation and spline interpolation
m Fast polynomial evaluation (N coefficients)

> y(x) = Co t C X +C, X%+ Cy X3 Expanded form
> y(x) = Cot X (¢, + x(c, +x(c3))) Horner'sform
» POLY reduces 2 N cyclesusing MAC+ADD to N cycles

, ar2 contains address of array [c3 c2 cl cO]

, poly uses tenporary register t for multiplicand x
, first two tines poly instruction executes gives

; 1. a=c¢(3) +x * 0 =1c(3); b==c2

; 2. a=c¢(2) +x * c(3); b =cl
ld *ar2+,16,b , b = c¢c3 << 16
ld *ar3,t ; t X (ar3 contains addr of x)

rptz a, #3 , a
poly *ar2+ ;. a

0, repeat next inst. 4 tines
b +x*a || b=c(i-1) << 16

sth a,*ar4 ; store result (ar4 is addr of vy)

m ANSI C compiler

» Instrinsics, in-line assembly and functions, pragmas

Selected CODE _SECTION code section

Pragmas DATA_SECTION datasection
FUNC IS PURE no side effects
INTERRUPT specifiesinterrupt routine
NO INTERRUPT cannot be interrupted

m CI500 shell program contains
» C Compiler; parser, optimizer, and code generator

> Assembler: generates arelocatable (COFF) object file

» Linker: creates executable object file

m Level O optimization: -00 flag
» Performs control-flowgraph simplifications
> Allocates variables to registers
» Eliminates unused code
» Simplifies expressions and statements

» Expands inline function calls

m Level 1 optimization: -0l flag
» Performs local copy/constant propagation

» Removes unused assignments

» Eliminates local common expressions

m Level 2 optimization: -02 flag
» Performs loop optimizations
» Eliminates global common sub-expressions
» Eliminates global unused assignments

» Performs loop unrolling
m Level 3 optimization: -03 flag
» Removes all functions that are never called

» Performs file-level optimization

» Simplifies functions with unused return values

m Program-level optimization: -pm flag

m Cost-based register allocation

m Alias disambiguation

» Aliasing memory prevents compiler from keeping values

in registers

» Determines when 2 pointers cannot point to the same

location, allowing compiler to optimize expressions

m Branch optimizations

» Analyzes branching behavior and rearranges code to

remove branches or remove redundant conditions

m Copy propagation

» Following an assignment compiler replaces references

toavariable with its value

m Common sub-expression elimination

» When 2 or more expressions produce the same value,

the compiler computes the value once and reuses it

m Redundant assignment elimination

» Redundant assignment occur mainly due to the above

two optimizations and are completely eliminated

m Expression ssmplification

» Compiler simplifies expressions to equivalent forms requiring fewer

instructions/registers

/| * Expression Sinplification*/
g=(a+0b - (c + d); [* unoptim zed */
g=((a+Db) - c) - d [* optimzed */

m Inline expansion

» Replaces callsto small run-time support functions with

inline code, saving function call overhead

m Induction variables

» Loop variables whose value directly depends on the

number of times a loop executes

m Strength reduction
» Loops controlled by counter increments are replaced by
repeat blocks

> Efficient expressions are substituted for inefficient use

of induction variables (e.g., code that indexesinto an

array isreplaced with code that increments pointers)

m Loop-invariant code motion

» |dentifies expressions within lops that always compute
the same value, and the computation is moved to the

front of the loop as a precomputed expression

m Loop rotation

» Evaluates loop conditionals at the bottom of loop

m Auto-increment addressing

> Converts C-increments into efficient address-register

indirect access

m Hierarchical block diagrams (dataflow modeling)
» Block is defined by dynamically linked library function

> Create new blocks by using a design assistant GU|

m RIDE for graphical real-time debugging/display
» 1-D, multirate, and m-D signal processing
» ANSI C source code generator
» C54x boards: support planned for 4Q99

» C6x boards: DNA McEV M, Innovative Integration,
MicroLAB TORNADO, and TI EVM

m OORVL DSP Graphical Compiler

» Generates DSP assembly code (C3x and C54x)

AM Modulation/Demodulation

Haeep (Chip) Gencragr ©

{Square Demodulation) n_I—_

Constant Genemlor 2

BHbaa Carasaticr

s

FFTH Magniude §
S FTT |
FFT& M.:ayﬂuic 5

adubipy 5

: :

Download demonstration software from http://www.hyperception.com

Category Blocks

Image arithmetic Add, subtract, multiply, exponentiate

Image generation Grayscale, noise, sprite

Image |1/O AV, bitmaps, raw images, video capture
Image display Bitmaps, RGB

Edge detection | sotropic, Laplace, Prewitt, Roberts, Sobel
Line detection Horizontal, 45° vertical, 135°

1-D filtering Convolution, DFT, FFT, FIR, IIR,

2-D filtering DFT, FFT, FIR

Nonlinear filtering Max, median, min, rank order, threshold
Histograms Histograms, histogram equalization
Manipulation Contrast, flip, negate, resize, rotate, zoom
Object-based Object count, object tracking
Networking Internet transmit, Internet receive

Same as ImageDSP and Advanced Image Processing Library

m Offered through Tl and Spectrum Digital
> 100 MHz C549 & 100 MHz C5410 for under $1,000
» Memory: 192 kwords program, 64 kwords data
» Single/multi-channel audio data acquisition interfaces
» Standard JTAG interface (used by debugger)

» Spectrum sells 100 MHz C5402 & 66 MHz C548 EVMs

m Software features
» Compatible with TI Code Composer Studio

» Supports TI C debugger, compiler, assembler, linker

http://www.ti.com/sc/docs/tool §/dsp/c5000devel opmentboards.html

Vendor Board RAM ROM Processor | /O

Kane KC542/ 256 kb 256 kb 40-MIP 16-bit
Computing PC C5402 stereo

| nnovative ' SBC54 100-MIP M odul ar
| ntegration C549

DSP Tiger 256 kb 100-MIP
Research 549/PC C549

DSP Tiger 256 kb 100-M 1P
Research 5410/PC C5410

Odin VIDAR 2 Mb four 80-MIP
Telesystems 5X4PCl C548

DSP Viper-12 12 Mb 12 100-MIP
Research 549/PC C549

http://www.ti.com/sc/docs/tool §/dsp/c5000devel opmentboards.html

m Many of today’'s DSP systems are implemented
using the Tl C5x DSP (e.g. voiceband modems)

» Tlisno longer developing members of C5x family in
favor of the C54x family

» 3Com has shipped over 35 million modems with C5x

m C5X binariesareincompatible with C54x

» Significant architectural differences between them

» Need for automatic translator of binary C5x code to
binary C54x code

m Solutions for binary-to-binary translation
» Translation Assistance Program 5000 from T
» C50-to-C54 translator from UT Austin
» Both provide assistance for cases they cannot handle

m Assistsin translating C5x code to C54x code
» Makes many assumptions about code being translated
» Requires a significant amount of user interaction
» Free evaluation for 60 days from TI Web site

m Static assembler to assembler translation
> Generates automatic translation when possible

» Twenty situations are not automatically translated:
user must intervene

» Many other situation result in inefficient code
» Warns user when translation difficulty is encountered
» Analyzes prior translations

http://www.ti.com/sc/docs/tool /dsp/tap5000freetool .html

m C54x isa conventional digital signal processor
> Separate data/program busses (3 reads & 1 write/cycle)
» Extended precision accumulators
» Single-cycle multiply-accumulate
» Saturation and wraparound arithmetic
» Bit-reversed and circular addressing modes

» Highest performance vs. power consumption/cost/vol.

m C54x hasinstructions to accelerate algorithms
» Communications: FIR & LMS filtering, Viterbi decoding

» Speech coding: vector distances for code book search

» Interpolation: polynomial evaluation

m C54x reference set

» Mnemonic Instruction Set, vol. Il, Doc. SPRU172B
» Applications Guide, vol. IV, Doc. SPRU173. Algorithm
acceleration examples (filtering, Viterbi decoding, etc.)

m C54x application notes
http://www.ti.com/sc/docs/apps/dsp/tms320c5000app.html

m Cb54x source code for applications and kernels
http://www.ti.com/sc/docs/dsps/hotline/wizsup5xx.htm

m Other resources
> comp.dsp newsgroup: FAQ www.bdti.com/fag/dsp_fag.html
» embedded processors and systems: www.eg3.com

» on-line courses and DSP boards: www.techonline.com

» DSP course: http://www .ece.utexas.edu/~bevans/courses/realtime/

