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Abstract

In multiple dimensions, the cascade of an upsampler by L and a downsampler by L

commutes if and only if the integer matrices L and M are right coprime and LM =

ML. This paper presents algorithms to design L and M that yield commutative

upsampler/dowsampler cascades. We prove that commutativity is possible if the

Jordan canonical form of the rational (resampling) matrix R = LM
�1 is equivalent

to the Smith-McMillan form of R. A necessary condition for this equivalence is that

R has an eigendecomposition and the eigenvalues are rational.
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I. Introduction

Resampling systems scale the sampling rate by a rational factor R = L=M = LM
�1, or

equivalently decimate by H = M=L = L
�1
M [1], by essentially upsampling by L, �ltering, and

downsampling byM . In converting compact disc data sampled at 44.1 kHz to digital audio tape

data sampled at 48 kHz, R = 48000 Hz
44100 Hz

= 160
147

. Because we can always factor R into coprime

integers L and M , we can always commute the upsampler and downsampler which leads to

e�cient polyphase structures of the resampling system. In multiple dimensions, resampling

is described by a rational matrix R. Multidimensional resampling systems are essentially a

cascade of an upsampler by L, a �lter, and a downsampler by M, such that R = LM
�1 and

L and M are non-singular integer matrices. Although it is rare that a cascade of an upsampler

and downsampler commutes in multiple dimensions, we can nonetheless always �nd polyphase

structures for multidimensional resampling systems. Polyphase structures exist because we can

always factor R into right coprime L and M which is known as relaxed commutativity [2].

Commutativity of a multidimensional upsampler and downsampler in cascade [2], [3], [4], [5]

occurs when

1: L and M are right coprime, and

2: LM =ML

(1)

Many approaches exist for checking whether or not a cascade commutes, given values of L

and M. Techniques exist for generating L and M that are right coprime by decomposing R

into its Smith-McMillan form [6]. Finding algorithms to generate cascades that satisfy both

commutativity conditions is an open problem [7]. These algorithms play a role in rearranging [4]

and scheduling [8] multidimensional multirate systems.

In the paper, we develop two algorithms to design L andM that yield commutative cascades:

1. generate L and M, and

2. factor a desired R into LM�1

(if L̂ and M̂ are given, use R = L̂ M̂
�1)

The key to the new algorithms is that we can satisfy both commutativity conditions. In partic-

ular, we can satisfy the condition that LM =ML if the Jordan canonical form of R = LM
�1 is

equivalent to a Smith-McMillan form. We show that a necessary condition for this equivalence is

that R has an eigendecomposition and the eigenvalues are rational. Once we satisfy LM =ML

using our approach, we automatically satisfy the other commutativity condition.
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II. Background

In multiple dimensions, downsampling is described by a non-singular integer downsampling

matrix M. On average, a downsampler outputs one sample for every group of jdetMj input

samples. Its response xd[n] to input x[n] is

xd[n] = x[Mn] (2)

Upsampling is described by a non-singular integer upsampling matrix L. It outputs jdetLj

samples for every input sample. Its response xu[n] to input x[n] is

xu[n] =

8><
>:

x[L�1n] if L�1n 2 RI

0 otherwise
(3)

An upsampler/downsampler cascade commutes if L and M meet the conditions in (1). The

Smith form decomposition is useful for testing [4] and generating [6] L and M to meet the right

coprime condition. The Smith form decomposition of a non-singular integer matrix S is

S = US�SVS (4)

where �S is a diagonal integer matrix and US and VS are unimodular integer matrices (a

unimodular matrix has a determinant of �1). The Smith form decomposition decouples a linear

operation and is not unique. When applied to non-singular rational matrix, it is called the Smith-

McMillan form decomposition, and has the same form as (4) but � is a diagonal rational matrix.

The Smith form decomposition always exists for non-singular integer and rational matrices [9].

Given a rational resampling matrix R, or given L̂ and M̂ and forming R = L̂ M̂
�1, we

can always factor R = LM
�1 such that L and M are right coprime using the Smith form

decomposition of R [6]:

R = U�V

= U�L�M
�1
V

= (U�L)
�
V
�1
�M

��1
= LM

�1

(5)

� is a diagonal rational matrix, � = �L�M
�1, �L and �M are diagonal integer matrices, and

L = U�L and M = V
�1
�M (6)

Since V is unimodular,V�1 is unimodular. So, L andM are always right coprime provided that

each rational number on the diagonal of � is reduced to l

m
where l and m are coprime integers.
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III. Designing Commutative Cascades

In this section, we determine the conditions for which L and M satisfy the commutativity

conditions given by (1). Since L and M are non-singular, the condition LM =ML holds when

L and M have the same eigenvector matrix denoted by U [10]

L = U�LU
�1 and M = U�MU

�1 (7)

because

LM =
�
U�LU

�1
� �
U�MU

�1
�

= U�L�MU
�1

= U�M�LU
�1

= ML

Notice that L and M are coprime when �L and �M are coprime. Forming the rational matrix

R = LM
�1 = U�U

�1 (8)

we develop an algorithm to generate L andM, and another to determine when and how to factor

a given R matrix into L and M, that satisfy the commutativity conditions.

Since a non-singular matrix does not always have an eigendecomposition, such as2
664
1 1 0

0 1 1

0 0 1

3
775

which cannot be diagonalized, we use the Jordan canonical form which always exists for a non-

singular matrix [10]. The Jordan canonical form decomposes a non-singular matrix R into

SJS
�1. When J is a diagonal matrix, the Jordan canonical form is an eigendecomposition of R

in which the diagonal elements of J are the eigenvalues and the columns of S are the eigenvectors

corresponding to the eigenvalues [10]. In our case, R is a rational (resampling) matrix.

Theorem 1 states that we can always �nd a rational eigenvector matrix for a rational matrix

when the eigenvalues are rational. Theorem 2 de�nes equivalence between the eigendecomposi-

tion and Smith form decomposition. Theorem 3 determines how to compute (7) from R when

Theorem 2 applies.

Theorem 1: Given a square non-singular rational matrix R with Jordan canonical form

R = Ŝ J Ŝ
�1, if J is a diagonal rational matrix, then we can always �nd an alternative

Jordan canonical form R = SJS
�1 in which S is a rational matrix.
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Proof: If J is diagonal, then the Jordan canonical form of R is an eigendecomposition of R.

De�ne ŝi to be the ith column vector (eigenvector) of Ŝ. Therefore, ŝi satis�es

R ŝi = �i ŝi

where �i = Jii, i.e., the ith eigenvalue. An eigenvector is unique only up to a scale factor, so

ŝi = �i si where � is a scalar. Since R is a rational matrix and �i is a rational number, we can

always compute � by taking the gcd of the non-zero elements of ŝi to yield a rational eigenvector

si =
1
�
ŝi. Then, we construct S by setting its ith column vector to be equal to si for all i. QED

Theorem 2: An eigendecomposition of a non-singular rational matrix R = SJS
�1 is

equivalent to the Smith-McMillan decomposition of R = U�V
�1 if the eigenvalues of

R given by the diagonal elements of J are rational and there exists a rational diagonal

matrix D for which U = SD is a unimodular integer matrix.

Proof: Let D be a diagonal matrix. Generalize the eigendecomposition of R as

R = SJS
�1 = SJDD

�1
S
�1 = (SD) J (SD)�1

since the product of diagonal matrices commutes (JD = DJ). Equating the general eigende-

composition and the Smith-McMillan decomposition, we get

J = � and U = SD

Since � is a diagonal rational matrix, J is a diagonal rational matrix, which means that R has

rational eigenvalues. Because S is rational, D is a rational matrix to ensure that U is an integer

matrix. We chose D with the smallest absolute determinant that makes U be an integer matrix.

Let si be the ith column vector of S and zi be the set of the non-zero elements of si. Let Dii = di

where di is the ratio of the lcm of the denominators of zi over the lcm of the numerators of zi.

The product di si is the integer vector with smallest Lp norm in the direction of the eigenvector

si. Since U is integer and non-singular, jdetUj � 1. Because S is non-singular,

jdetUj = jdetSj jdetDj = jdetSj
Y
i

di

and any other D that guarantees that U is an integer matrix cannot decrease jdetUj. There-

fore, there is an equivalence between an eigendecomposition of a rational matrix and its Smith-

McMillan form if the eigenvalues are rational and detU = �1. QED
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Theorem 3: Given a square non-singular rational matrix R with an eigendecomposition,

if the eigendecomposition of R is equivalent to the Smith-McMillan decomposition of R,

then we can compute the integer matrices L and M such that R = LM
�1, LM =ML,

and L and M.

Proof: If the eigendecomposition and Smith-McMillan decomposition of R are equivalent, then

R = SJS
�1 = U�U

�1

from Theorem 2. Set U = SD and � = J. Use (7) to compute L and M. QED

Figure 1 shows an algorithm based on the results of Theorems 1{3 to factor a rational resam-

pling matrix R into L and M that satisfy the commutativity conditions given in (7). If instead

we are given L̂ and M̂, we input R = L̂ M̂
�1 to the algorithm. Figure 2 applies the algorithm

to three resampling matrices. The resampling matrices in Figure 2(a) and 2(b) have rational

eigenvalues. Using their Jordan canonical form representations, (7) is used to compute L and

M. Therefore, L and M satisfy the commutativity conditions in (1). The resampling matrix in

Figure 2(c) has irrational eigenvalues. Since the eigenvalues are not rational, the Smith Form De-

composition of the resampling matrix is used to compute L and M according to (6). Therefore,

L and M are right coprime, but do not commute under matrix multiplication.

We now turn our attention to generating new rational resampling matrices of the form R =

U�U
�1. We use (8) to compute L and M that satisfy the commutativity conditions in (1).

We have freedom to choose a non-singular diagonal rational matrix � and a non-singular integer

matrix U, which are both m�m matrices. U has m2 integer elements but must be unimodular,

and � has m non-zero rational entries. So, for m dimensions, we have the freedom to choose

m
2+2m� 1 integers, e.g. 7 integers in two dimensions and 14 integers in three dimensions. The

examples of rational resampling matrices in Figure 2(a) and 2(b) were generated in this manner.

IV. Conclusion

We present two algorithms for designing commutative upsampler/downsampler cascades: one

generates the cascades, and the other tries to �nd a commutative cascade that performs a desired

resampling. Both algorithms are based on Theorem 2 that states that commutativity occurs when

the Jordan canonical form of the rational resampling matrix is equivalent to the Smith-McMillan

form of the rational resampling matrix. A necessary condition for this equivalence is that the

rational resampling matrix has an eigendecomposition and the eigenvalues are rational.
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1. Input a square non-singular rational matrix R in exact precision.

2. Compute the Jordan canonical form R = SJS
�1 in exact precision, e.g., using Maple [11]

or Mathematica [12]. y

3. If Theorem 2 applies for R, then use the Jordan canonical form of R to compute L and M

according to Theorem 3.

4. Otherwise, compute the Smith form decomposition of R, and use the Smith form decom-

position to compute L and M according to (6).

y If J is a rational diagonal matrix and S is not a rational matrix, then apply Theorem 1 to recompute

R = SJS�1 so that S is a rational matrix.

Fig. 1. An algorithm based on the Jordan canonical form to try to decompose a rational matrix R into

R = LM�1 to meet the two commutativity conditions in (1).
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" 17

3
�
5

3

25
2

�
7
2

#
=

" 1

3

2

5

1 1

# " 2

3
0

0 3
2

# "
�15 6

15 �5

#

L =

"
8 �2

15 �3

#
M =

"
�3 2

�15 8

#

(a) A two-dimensional commutative cascade

2
664

3
2

�1 1
2

4 �2 �1

�5 2 4

3
775 =

2
664
3
2

1 1
2

2 1 1

4

1 1 1

3
775

2
664
1
2

0 0

0 1 0

0 0 2

3
775

2
664
�6 4 2

14 �8 �5

�8 4 4

3
775

L =

2
664
�3 2 2

�2 2 1

�8 4 5

3
775 M =

2
664
�8 6 3

�12 9 4

�6 4 3

3
775

(b) A three-dimensional commutative cascade

" 2

7

4

7

6
7

81
35

#
=) J =

" 91�
p
7441

70
0

0 91+
p
7441

70

#

" 2
7

4
7

6

7

81

35

#
=

"
1 0

3 1

# " 2
7

0

0 3

5

# "
1 2

0 1

#

L =

"
2 0

6 3

#
M =

"
7 �10

0 5

#

(c) A commutative cascade does not exist, so a right coprime cascade is computed instead.

Fig. 2. Examples of applying the factoring algorithm to three rational resampling matrices.
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