A HIGH QUALITY, FAST INVERSE HALFTONING ALGORITHM FOR ERROR DIFFUSED HALFTONES

> Thomas D. Kite Niranjan Damera-Venkata Brian L. Evans Alan C. Bovik

The University of Texas at Austin

ICIP-98 TA2.06 6 October 1998

OUTLINE

- Introduction to inverse halftoning
- Overview of proposed method
- Details of algorithm
- Results
- Complexity analysis
- Modeling and quality metrics
- Conclusions

INVERSE HALFTONING

- Attempt to recover grayscale images from halftones
- Applications
 - Digital copiers
 - Scanner software
 - Facsimile
- Need for inverse halftoning
 - Inability to manipulate halftones
 - Poor halftone compression ratios
- Efficiency requirements
 - Low computational complexity
 - Low memory requirement
 - Hardware implementation

PREVIOUS APPROACHES

- Bayesian estimation
 [Schweizer & Stevenson 1993]
- Vector quantization
 [Ting & Riskin 1994]
- Projection onto convex sets [Hein & Zakhor 1995]
- Lowpass smoothing and nonlinear filtering [Wong 1995]
- Wavelet denoising
 [Xiong, Orchard & Ramchandran 1997]
- Most are iterative, slow, and memoryintensive
- Local integer operations preferred

OVERVIEW OF METHOD

Anisotropic diffusion

- Estimate image gradients
- Compute diffusion coefficient
- Smooth within areas, preserve edges
- Error diffused halftones
 - Highpass noise, SNR $\approx 3 \text{ dB}$
 - Tonal

Solution

- Specialized gradient estimator
- Correlate estimate across scales
- Separable—smooth parallel to edges
- Local operations
 - Low memory requirement
 - Low computational cost
 - Single pass

BLOCK DIAGRAM

- Estimate gradients at two scales in x and y directions
- Correlate gradients across scales
- Construct parametric smoothing filter in x and y directions
- Filter and clip

SMOOTHING FILTER DESIGN

Filter requirements

- Small, separable, FIR
- Attenuation of highpass noise, tones
- Parameter to control cutoff frequency
- Solution: 7-tap filter prototype
 - Unity gain at DC, zero at f_N
 - Constrained passband ripple, stopband attenuation
 - Two parameters (x_1, x_2) control cutoff
- Parameter elimination
 - Design 10 filters meeting constraints
 - Compute cubic fit of x_2 to x_1
- Result: continuous adjustment of cutoff from $0.07f_N$ to $0.50f_N$ by varying x_1

GRADIENT ESTIMATOR DESIGN

Error diffused halftones

- High power, highpass noise
- Strong tones at $(f_N, f_N), (f_N, 0)$
- Solution: multiscale estimator
 - High stopband attenuation
 - Line zeros at band edges
 - Correlate estimates across two scales [Mallat & Zhong 1992]
- Correlation across scales
 - $e = |e_{\text{small}} \times e_{\text{large}} \times e_{\text{large}}|^{(1/3)}$
 - Control function *e* varies linearly with gradient
- Result: SNR of gradient estimate improved by 5 dB

GRADIENT ESTIMATES

Small scale, *x*

Large scale, y

Control function, *x*

Small scale, x

Large scale, y

Control function, *x*

IMAGE CONSTRUCTION

- Compute smoothing filter parameters x₁,
 y₁ from x, y gradient estimates
- Compute (x_2, y_2) from (x_1, y_1) using cubic fit
- Construct x, y filters; quantize coefficients to 13-bit integers
- Filter 7 × 7 neighborhood in x and y directions separably
- Clip output to range 0-255

INVERSE HALFTONE RESULTS I

Original image

Halftone

Proposed method

Wavelet method

INVERSE HALFTONE RESULTS II

Original image

Halftone

Proposed method

Wavelet method

IMPLEMENTATION

Optimization for efficiency Gradient estimators: integer additions Gradient correlation: low overhead Newton-Raphson cube root Smoothing filter: applied separably, integer coefficients Operations per pixel ▶ 303 increments (++) ▶ 30–226 integer additions (128 ave.) 7 integer multiplications 34 floating-point additions ▶ 19 floating-point multiplications ▶ 5 floating-point divisions Memory: 7 image rows • Execution time: 2.9 s $(512 \times 512 \text{ image},$ 167 MHz Sun Ultra-2)

INVERSE HALFTONING MODEL

- Forward/inverse halftoning system blurs image, adds noise
- Model inverse halftoning
 - Compute unsharpened halftone
 - Inverse halftone; save filter parameters at each pixel
 - Filter original using saved filters
- Residual has low linear correlation with original (mostly noise)

Inverse halftone

Modeled

Residual (×4)

INVERSE HALFTONE QUALITY

- Compute weighted SNR of inverse halftone relative to model
- Compute effective transfer function of system
 - Divide FFT of model by FFT of original image point-for-point
 - Radially average over annuli

CONCLUSIONS

- Fast inverse halftoning method for error diffused halftones
 - High quality
 - Low computational requirement
 - Low memory requirement
 - Suitable for hardware and embedded software
 - Quality metrics for inverse halftones
 - Separate degradations into frequency distortion (blurring), noise injection
 - Quantify blur with effective transfer function
 - Quantify noise with weighted SNR
 - Enables optimization of general inverse halftoning methods