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OUTLINE

ÿ Introduction to inverse halftoning

ÿ Overview of proposed method

ÿ Details of algorithm

ÿ Results

ÿ Complexity analysis

ÿ Modeling and quality metrics

ÿ Conclusions
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INVERSE HALFTONING

ÿ Attempt to recover grayscale images
from halftones

ÿ Applications
ÿDigital copiers

ÿScanner software

ÿFacsimile

ÿ Need for inverse halftoning
ÿ Inability to manipulate halftones

ÿPoor halftone compression ratios

ÿ Efficiency requirements
ÿLow computational complexity

ÿLow memory requirement

ÿHardware implementation



4

PREVIOUS APPROACHES

ÿ Bayesian estimation
[Schweizer & Stevenson 1993]

ÿ Vector quantization
[Ting & Riskin 1994]

ÿ Projection onto convex sets
[Hein & Zakhor 1995]

ÿ Lowpass smoothing and nonlinear
filtering [Wong 1995]

ÿ Wavelet denoising
[Xiong, Orchard & Ramchandran 1997]

ÿ Most are iterative, slow, and memory-
intensive

ÿ Local integer operations preferred
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OVERVIEW OF METHOD

ÿ Anisotropic diffusion
ÿEstimate image gradients

ÿCompute diffusion coefficient

ÿSmooth within areas, preserve edges

ÿ Error diffused halftones
ÿHighpass noise, SNR≈ 3 dB

ÿTonal

ÿ Solution
ÿSpecialized gradient estimator

ÿCorrelate estimate across scales

ÿSeparable—smooth parallel to edges

ÿ Local operations
ÿLow memory requirement

ÿLow computational cost

ÿSingle pass
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BLOCK DIAGRAM

ÿ Estimate gradients at two scales inx and
y directions

ÿ Correlate gradients across scales

ÿ Construct parametric smoothing filter in
x andy directions

ÿ Filter and clip
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SMOOTHING FILTER DESIGN

ÿ Filter requirements
ÿSmall, separable, FIR

ÿAttenuation of highpass noise, tones

ÿParameter to control cutoff frequency

ÿ Solution: 7-tap filter prototype
ÿUnity gain at DC, zero atfN

ÿConstrained passband ripple, stopband
attenuation

ÿTwo parameters (x1, x2) control cutoff

ÿ Parameter elimination
ÿDesign 10 filters meeting constraints

ÿCompute cubic fit ofx2 to x1

ÿ Result: continuous adjustment of cutoff
from 0.07fN to 0.50fN by varyingx1
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GRADIENT ESTIMATOR DESIGN

ÿ Error diffused halftones
ÿHigh power, highpass noise

ÿStrong tones at (fN , fN ), (fN , 0)

ÿ Solution: multiscale estimator
ÿHigh stopband attenuation

ÿLine zeros at band edges

ÿCorrelate estimates across two scales [Mallat
& Zhong 1992]

ÿ Correlation across scales
ÿe = |esmall × elarge × elarge|

(1/3)

ÿControl functione varies linearly with
gradient

ÿ Result: SNR of gradient estimate
improved by 5 dB
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GRADIENT ESTIMATES

Small scale,x Small scale, x

Control function,x Control function,x

Large scale, y Large scale,y
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IMAGE CONSTRUCTION

ÿ Compute smoothing filter parametersx1,
y1 from x, y gradient estimates

ÿ Compute (x2, y2) from (x1, y1) using cubic
fit

ÿ Constructx, y filters; quantize
coefficients to 13-bit integers

ÿ Filter 7 × 7 neighborhood inx andy
directions separably

ÿ Clip output to range 0-255
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INVERSE HALFTONE RESULTS I

Original image Halftone

Proposed method Wavelet method
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INVERSE HALFTONE RESULTS II

                        

                        
Original image Halftone

Proposed method Wavelet method
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IMPLEMENTATION

ÿ Optimization for efficiency
ÿGradient estimators: integer additions

ÿGradient correlation: low overhead Newton-
Raphson cube root

ÿSmoothing filter: applied separably, integer
coefficients

ÿ Operations per pixel
ÿ303 increments (++)

ÿ30–226 integer additions (128 ave.)

ÿ7 integer multiplications

ÿ34 floating-point additions

ÿ19 floating-point multiplications

ÿ5 floating-point divisions

ÿ Memory: 7 image rows

ÿ Execution time: 2.9 s (512 × 512 image,
167 MHz Sun Ultra-2)
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INVERSE HALFTONING MODEL

ÿ Forward/inverse halftoning system blurs
image, adds noise

ÿ Model inverse halftoning
ÿCompute unsharpened halftone

ÿ Inverse halftone; save filter parameters at
each pixel

ÿFilter original using saved filters

ÿ Residual has low linear correlation with
original (mostly noise)
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INVERSE HALFTONE QUALITY

ÿ Compute weighted SNR of inverse
halftone relative to model

ÿ Compute effective transfer function of
system
ÿDivide FFT of model by FFT of original

image point-for-point

ÿRadially average over annuli
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CONCLUSIONS

ÿ Fast inverse halftoning method for error
diffused halftones
ÿHigh quality

ÿLow computational requirement

ÿLow memory requirement

ÿSuitable for hardware and embedded software

ÿ Quality metrics for inverse halftones
ÿSeparate degradations into frequency

distortion (blurring), noise injection

ÿQuantify blur with effective transfer function

ÿQuantify noise with weighted SNR

ÿEnables optimization of general inverse
halftoning methods


