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ABSTRACT

This paper presents an extensible framework for optimizing
analog �lter designs for multiple behavioral and implemen-
tation properties. We demonstrate the framework using
the behavioral properties of magnitude response, phase re-
sponse, and peak overshoot, and the implementation prop-
erty of quality factors. We represent the analog �lter in
terms of its poles and zeroes. We match the constrained
non-linear optimization problem to a sequential quadratic
programming (SQP) problem, and develop symbolic math-
ematical software to translate the SQP formulation into
working MATLAB programs to optimize analog �lter de-
signs. The automated approach avoids errors in algebraic
calculations and errors in transcribing the mathematical
equations in software. The packages are freely distributable.

1. INTRODUCTION

Classical analog �lter design techniques optimize one �l-
ter property subject to constraints on the magnitude re-
sponse. In designing and implementing analog �lters, sev-
eral behavioral properties (e.g. magnitude response, phase
response and peak overshoot) and implementation proper-
ties (e.g. quality factors) may be important. For exam-
ple, anti-aliasing �lters require a near linear phase response
while meeting a set of magnitude speci�cations [1].

This paper presents a formal extensible framework for
optimizing analog �lter designs for multiple behavioral and
implementation properties. We demonstrate the frame-
work using the behavioral properties of magnitude response,
phase response, and peak overshoot, and the implementa-
tion property of quality factors. The framework takes an
existing analog �lter design, e.g. one designed using a clas-
sical numeric approach or a modern symbolic approach [2],
and jointly optimizes any combination of these four prop-
erties subject to constraints on these four properties. We
match the constrained non-linear optimization problem to a
sequential quadratic programming (SQP) problem and de-
velop symbolic mathematical software to translate the SQP
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formulation into working MATLAB programs that can op-
timize analog �lter designs. SQP requires that the objec-
tive function [3] and the constraints [4] be real-valued and
twice continuously di�erentiable with respect to the free pa-
rameters. The free parameters are the pole and zero loca-
tions, which we use to represent the analog �lter. SQP relies
on the gradients of the objective function and constraints.
SQP methods have been previously applied to optimizing
loss and delay in digital �lter designs [5] and optimizing
even-order all-pole �lter designs [6]. In this paper, we re-
formulate our results in [6] to include an even number of
zeros in the analog �lter to be optimized.

Using the symbolic mathematics environment Mathe-
matica, we program the objective function and constraints,
compute their gradients symbolically, and generate MAT-
LAB code for the objective function and constraints as
well as their gradients. The generated MATLAB code calls
the SQP procedure constr in the Optimization Toolbox to
solve the constrained non-linear optimization problem. In
Mathematica, a designer can add, delete, and change cost
measures and constraints for a given property, and our sym-
bolic software will then regenerate the MATLAB numeri-
cal optimization code. We have bridged the gap between
the symbolic work designers do on paper and the working
computer implementation, thereby eliminating algebraic er-
rors in hand calculations and bugs in coding the software
implementation. Our software is available at http://www.
ece.utexas.edu/~bevans/projects/syn �lter software.html.

Section 2 reviews notation. Section 3 derives a family of
weighted, di�erentiable objective functions to measure the
deviation in magnitude response, deviation in linear phase
response, quality factors, and peak overshoot of the step
response, of an analog �lter. In the derivation, we �nd a
new analytic approximation for the peak overshoot. Section
4 converts �lter speci�cations into di�erentiable constraints.
Section 5 gives an example of an optimized �lter design.

2. NOTATION

We represent an analog �lter by its n complex conjugate
pole pairs pk = ak � jbk where ak < 0 and its r complex
conjugate zero pairs zl = cl � jdl where cl < 0, such that



r � n. The magnitude and unwrapped phase responses
of an all-pole �lter, expressed as real-valued di�erentiable
functions, are

jG(j!)j =

nY
k=1

a2k + b2kp
a2k + (! + bk)2

p
a2k + (! � bk)2

=

nY
k=1

a2k + b2kp
(!2 + 2(a2k � b2k))!

2 + (a2k + b2k)
2

(1)

6 G(j!) =

nX
k=1

arctan (
! � bk
ak

) + arctan (
! + bk
ak

) (2)

We factor the polynomial under the square root in (1) into
Horner's form because it has better numerical properties.
Together with the zero pairs, the magnitude and unwrapped
phase responses are
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In this paper, Q represents quality factors, � represents
a small positive number, � denotes deviation, m represents
slope of a line, and t is time.

3. OBJECTIVE FUNCTIONS

In this section, we derive measures of closeness to an ideal
magnitude and phase response, quality factors, and peak
overshoot. The objective function is a non-negative func-
tion that it is weighted combination of these measures.

3.1. Deviation in the Magnitude Response

Based on the notation in Figure 1, the �ve components
of the objective function relating to the deviation from an
ideal magnitude response in the least squares sense are:
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where Fp(!), Ft1(!), Ft2(!), and Fs(!) are integrable weight-
ing functions, and m1 and m2 are the slopes of the ideal
response in the transition regions de�ned as m1 = 1=(!p1�
!s1) and m2 = 1=(!p2 � !s2).
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Figure 1: The ideal magnitude response

3.2. Deviation in the Phase Response

For the passband response, the objective function measures
the deviation from linear phase over some range of frequen-
cies (usually over the passband):

�phase =
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where mlp is the ideal slope of the linear phase response.
Unfortunately, one does not know the value of mlp �a pri-

ori. We can compute it as the slope of the line in ! that
minimizes (10):
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In (11), the H(j!) term does not depend on mlp, so the
integrand is quadratic in mlp. To �nd the minimum, we
take the derivative with respect to mlp, set it to zero, and
solve for mlp:
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After evaluating the integrals,
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where flp1(!) is
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Using Mathematica, we computed the de�nite integrals in
(12) and veri�ed the answers. Now that we have a closed-
form solution for mlp, we can substitute (13) into (10) to
obtain a rather complicated but di�erentiable expression
for the deviation from linear phase.



3.3. Filter Quality

The quality factor measures the relative distance of a �l-
ter pole from the imaginary frequency axis. The lower the
quality factor, the less likely that the pole will cause oscil-
lations in the output. The quality factor Qk for the kth
second-order section with conjugate poles ak � jbk (with
ak < 0) and the e�ective overall quality factor Qe� are
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where Qk; Qe� � 0:5. Qk = 0:5 corresponds to a double
real-valued pole (bk = 0), and Qk = 1 corresponds to an
ideal oscillator (ak = 0). We de�ne Qe� as the geometric
mean of the quality factors, and other measures could be
used. We use Qe� � 0:5 to measure the �lter quality.

3.4. Peak Overshoot in the Step Response

From the step response, we can numerically compute the
peak overshoot and the time tpeak at which it occurs. In
order to make the peak overshoot calculation di�erentiable,
this section derives an analytic expression that approxi-
mates tpeak in terms of the pole-zero locations. The deriva-
tion assumes that there are no multiple poles.

The Laplace transform of the step response is
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Assuming no duplicate poles, partial fractions yields
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Ck = 2jBkj cos(6 Bk)
Dk = �2jBkj (ak cos(6 Bk) + bk sin(6 Bk))

Bk = [H(s)(s� pk)]s=pk = jBkje
j 6 Bk

A = [H(s)� s]s=0 = 1

jBkj and 6 Bk can be expressed as real-valued di�erentiable
functions of the pole and zero locations.

After inverse transforming (16), the step response is
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By analyzing the kth term in the summation in (16), the
kth peak overshoot occurs at time
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We construct the following function to approximate tpeak
for the purposes of computing derivatives:
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Here, � is set to the true value of tpeak (found numerically)
divided by the approximation 1

n

Pn
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. We validated
(19) using the SQP routine on several designs. We measure
the peak overshoot cost by using (hstep(tpeak)� 1)

2
.

4. CONSTRAINTS

This section discusses two sets of constraints. The �rst spec-
i�es the magnitude response, quality, and peak overshoot,
and the second prevents numerical instabilities in the com-
putations. We sample the magnitude response at a set of
passband frequencies f!ig and stopband frequencies f!lg:

1� �p � jH(j!i)j � 1; 8i and jH(j!l)j � �s; 8l (20)

We compute the maximum overshoot by �nding the maxi-
mum value of step response in (17) by searching over
t 2 [mink t

k
peak

;maxk t
k
peak

]. Before �nding the gradient of
this constraint, we substitute the analytic approximation
for tpeak, given by (19), into (17).

When the analog �lter is implemented, the second-order
sections will typically be cascaded in order of ascending
quality factors. The earlier sections will attenuate input
signals so as to minimize the oscillatory behavior of the �nal
sections. The implementation technology imposes an upper
limit on the quality factors, Qmax. For macro components,
we set Qmax to 10 for !p2 < 2�(10) kHz, and 25 otherwise:p

a2k + b2k
�2ak

< Qmax for k = 1 : : : n (21)

Since ak and ck appear in the denominator in (2), (4),
and (13), and bk appears in the denominator in (17), we
constrain these negative-valued parameters to be a neigh-
borhood away from zero:

ak < ��div < 0 for k = 1 : : : n
bk < ��div < 0 for k = 1 : : : n
cl < ��div < 0 for l = 1 : : : r

where �div is 2:2204 � 10�14 for MATLAB. To ensure the
numerical stability of the denominators of jBkj and 6 Bk in
(16),

p
ak � am > �div for k = 1 : : : n and m = k + 1 : : : n

These constraints are analogous to preventing duplicate poles
and poles spaced too closely to one another.

5. AN EXAMPLE FILTER DESIGN

We will minimize the peak overshoot and deviation from
linear phase of a lowpass �lter. The speci�cations on the
magnitude response are !p = 20 rad/sec with �p = 0:21 and
!s = 30 rad/sec with �s = 0:31. In the objective function,
we weight the linear phase cost by 0.1 and overshoot cost by
1. The optimization took 13 seconds to run using MATLAB
5 on a 167 MHz Ultrasparc workstation. The non-negative
objective function is reduced from an initial value of 2:87
to 4:33 � 10�5. Table 1 and 2 list the initial and �nal
poles and zeros, respectively. Figure 2 plots the frequency
and step responses for the initial and �nal �lters. Figure 2



illustrates that the optimization procedure e�ectively trades
o� transition bandwidth in the magnitude response for more
linear phase in the passband and a lower overshoot. The
peak overshoot is reduced from 25% to 10%.

Q Poles Zeros

1.7 �5:3553 � j16:9547 �j20:2479
61 �:1636� j19:9899 �j28:0184

Table 1: Pole-zero locations for the initial �lter

Q Poles Zeros

0.68 �11:4343 � j10:5092 �3:4232 � j28:6856
10 �1:0926 � j21:8241 �1:2725 � j35:5476

Table 2: Pole-zero locations for the optimized �lter

6. CONCLUSION

We have developed a formal, extensible framework for opti-
mizing multiple behavioral and implementation properties
of analog �lter designs. We have implemented the frame-
work as a set of Mathematica programs that generate MAT-
LAB programs to perform the optimization. Both the alge-
braic derivations and programming tasks would be nearly
impossible for a human to carry out correctly. By per-
forming both processes together, we can validate that the
assumptions in the algebraic derivations are legitimate and
that the source code is generated properly. Furthermore,
the algebraic abstraction empowers the researcher to create
new �lter design programs by simply rede�ning the cost
function| our software will take care of recomputing the
derivatives and regenerating the source code.
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Figure 2: Fourth-order lowpass �lter with user magnitude
speci�cations !p = 20 rad/s, �p = 0:21, !s = 30 rad/s,
and �s = 0:31. The initial �lter is an elliptic �lter design,
and the �nal �lter is optimized for phase and step response.
We are trading linear phase response over the passband and
peak overshoot in the step response for magnitude response,
while keeping the magnitude response within speci�cation.
For the optimization, we set the maximum quality factor
Qmax to be 10. Even though the initial guess is infeasible
because its maximum Q value is 61, the SQP procedure in
Matlab adjusted the initial guess to be a feasible solution.


