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ABSTRACT

We present a generalized optimal minimum phase digital
FIR �lter design algorithm that supports (1) arbitrary mag-
nitude response speci�cations, (2) high coe�cient accuracy,
and (3) real and complex �lters. The algorithm uses the
Discrete Hilbert Transform relationship between the mag-
nitude spectrum of a causal real sequence and its minimum
phase delay phase spectrum given by Cizek. We extend
the transform pair to the complex case. We show that the
algorithm gives arbitrary coe�cient accuracy. We present
design examples that exceed the coe�cient accuracy of the
optimal real minimum phase �lters reported by Chen and
Parks and reduce the length of the optimal complex linear
phase �lters designed by Karam and McClellan.

1. INTRODUCTION

Given the shortest minimum phase and linear phase digital
FIR �lters that meet the same magnitude speci�cation, e.g.
optimal �lters in the Chebyshev sense, the minimum phase
�lter would have two key advantages [1]:

1. reduced �lter length that is one-half to three-fourths
of the linear phase �lter length [2], and

2. minimum group delay that concentrates energy in the
low-delay instead of the medium-delay coe�cients [3].

Minimum phase �lters can simultaneously meet delay and
magnitude response constraints yet generally require fewer
computations and less memory than linear phase �lters.

Previous algorithms for designing minimum phase dig-
ital FIR �lters have been limited to real �lters and may
be divided into two classes. One class [1, 4, 5, 6, 7] uses
the following steps: (1) design an optimal linear phase
FIR �lter for a power spectrum that is a squared ideal
piecewise constant magnitude response, (2) factor the linear
phase polynomial transfer function (polynomial deation),
and (3) reconstruct the minimum phase �lter coe�cients
(polynomial ination). Polynomial ination may introduce
catastrophic numerical errors [15]. The second class [8, 9]
deconvolves the complex cepstrum of the minimum phase
�lter impulse response. The Chen and Parks algorithm [7],
which is based on root �nding, produces the best coe�cient
accuracy among the reported design algorithms.
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Complex digital FIR �lters may have lower computa-
tional complexity vs. a real digital FIR �lter for the same
magnitude speci�cation [10]. An algorithm to design op-
timal, complex, minimum phase �lters has not been pre-
viously reported. One approach would be to extend the
two classes of design algorithms for the real case. Factoring
polynomials, however, becomes far less reliable because not
every complex root will have a complex conjugate result-
ing in an ill-conditioned problem [11]. As in the real case,
�lter designs produced by root �nding methods may su�er
from numerical errors if a suboptimal polynomial ination
method is used. Extending the second class of algorithms
requires a relation between the complex cepstrum and the
minimum phase spectrum for complex sequences, which has
not been previously reported.

In this paper, we present a robust non-iterative algo-
rithm to design optimal minimum phase digital FIR �lters
with arbitrary magnitude responses based on the Discrete
Hilbert Transform (DHT). Our algorithm is not a�ected by
the location and number of zeros on or within the unit circle.
It may be applied without modi�cation for real and complex
digital FIR �lters. It controls the accuracy of the resulting
minimum phase �lter coe�cients by a single parameter|
the length of the FFT used to compute the DHT.

A signi�cant bene�t of our algorithm is that it can be
extended to two dimensions by using the 2-D DHT [13]. In
this case, we cannot guarantee optimality in the Chebyshev
sense. If the magnitude response of the best non-minimum
phase �lter has no zeros on the unit bicircle, then we can
produce a minimum phase �lter with a virtually identical
magnitude response, after application of the DHT [16].

Section 2 derives generalized DHT relationship for com-
plex sequences. Section 3 describes the proposed design
procedure. Section 4 provides two design examples using
our algorithm. Section 5 gives conclusions and future re-
search directions. The Appendix shows that the minimum
FFT length is proportional to the number of stopband ze-
ros of the linear phase �lter and the desired accuracy in the
minimum phase coe�cients.

2. DHT FOR COMPLEX SEQUENCES

In this section, we derive a DHT relation between the mag-
nitude spectrum of a causal complex sequence and its min-
imum group delay phase spectrum. We show that the func-
tional form for the real case gives minimum group delay for



the complex case also. When minimum phase delay is re-
quired, we must add an extra constant term to the phase
response for the complex case.

Any sequence can be represented as a sum of conjugate
symmetric and conjugate antisymmetric parts

x[n] = xe[n] + xo[n] (1)

where
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such that x� represents the complex conjugate of x. Based
on Fourier transform properties,
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the imaginary part of X(ej!). From (1),
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If x[n] is causal, i.e. x[n] = 0 for n < 0, then it is possible
to recover x[n] from xe[n]. Since the non-zero portions of
x[n] and x[�n] do not overlap except at n = 0, we have
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Equating real and imaginary parts in (11), and noting that
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If we consider the DHT for the complex cepstrum of a com-
plex sequence, we obtain
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where K = =m(x̂�[0]). The minimum phase spectrum of
a complex sequence includes the extra constant term K.
Since group delay is the derivative of the phase spectrum,
the constant K term will vanish if we require minimum
group delay for the minimum phase �lters. So, if we seek
minimum group delay digital FIR �lters, then the same
DHT relation holds for complex sequences An FFT-based
algorithm [12] can compute (14).

3. OPTIMAL DESIGN ALGORITHM

The optimal minimum phase �lter is designed by trans-
forming an optimal linear phase FIR �lter into an optimal
minimum phase �lter in two steps:

1. obtain the magnitude response of the optimal mag-
nitude minimum phase FIR �lter, and

2. apply the DHT to the magnitude response in step 1.

Several methods achieve the �rst step. We modify the pro-
cedure by Chen and Parks [7] which uses a two-level ripple
speci�cation. In order to handle multiple ripple levels over
di�erent bands, we may replace step 1 with the method of
Boite and Leach [8] which uses a modi�ed Parks-McClellan
algorithm to allow the error to oscillate between 0 and 2 �k
instead of��k to +�k, where �k is the ripple in the kth band.
Thus, optimal minimum phase �lters with least complexity
may be obtained for arbitrary magnitude speci�cations over
the passband and the stopband using the DHT.

Chen and Parks derived relations between the linear
phase and the optimal minimum phase �lter speci�cations
[7]. The relations calculate the design speci�cations on the
minimum phase �lter from the speci�cations on the optimal
linear phase �lter. Section 3.1 develops the design formu-
las to perform the conversion of speci�cations in the other
direction since we design the linear phase �lter �rst [19].
Section 3.2 applies the DHT to the optimal linear phase
�lter to compute the minimum phase �lter.

3.1. Step 1: Minimum Phase Magnitude Response

We obtain the squared magnitude response of optimal mag-
nitude minimum phase FIR �lter in three steps. First, we
design a symmetric lowpass �lter of length 2N � 1 using
the Parks-McClellan algorithm. Given the desired pass-
band and stopband ripples of the optimal minimum phase
�lter are �01 and �

0

2, respectively, we compute the passband
and stopband ripples of the linear phase �lter which are re-
spectively denoted as �1 and �2. The order of the minimum
phase �lter that is �nally obtained is N . This �lter is not
only minimum phase but also has optimal magnitude char-
acteristics in the Chebyshev sense. The length 2N�1 linear
phase �lter is typically designed with the smallest number
of taps that meets the linear phase speci�cations.

�1 =
4 �01

2 + 2 �021 � �022
(15)



�2 =
�22

2 + 2 �021 � �022
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Thus, given the speci�cations on the optimal minimumphase
�lter, we can design the equivalent linear phase �lter to
meet passband and stopband speci�cations �1 and �2. The
transfer function of the linear phase �lter is

HL(z) = z
�(N�1)

2N�1X
k=1

hL(k)z
k�1 (17)

Second, we shift the transfer function by �2 + �. Theo-
retically, the DHT does not exist on the unit circle [17], but
adding � ensures that the DHT of the �lter exists. The �
term may be chosen to be arbitrarily small so as not to a�ect
the magnitude spectrum signi�cantly. We use � = 10�10.
Then, we have a nonnegative frequency response HL(z)+�2
if we ignore the relatively small � term.

Third, we normalize HL(z) + �2 using SCAL [7]

H(z) = (HL(z) + �2) SCAL (18)

SCAL =
4

(
p
1 + �1 + �2 +

p
1� �1 + �2)2

(19)

This causes passband ripple to oscillate between 1+ �01 and
1 � �01. The magnitude squared response of the minimum
phase �lter is

H(z) = HM(z)HM(z�1) (20)

where HM(z) has the required magnitude response of the
minimum phase spectral factor.

3.2. Step 2: Apply the DHT

We directly apply the DHT to HM(z), which is the square-
root response of H(z). We reconstruct the minimum phase
polynomial from the magnitude response and the computed
minimum phase response [15]. For any magnitude response,
the minimum phase �lter of a given order is unique. The
algorithm is idempotent for the same value of � to within
the limits of the precision of the arithmetic being used.

4. DESIGN EXAMPLES

4.1. Example 1: Real 325-Tap Lowpass Filter

To show that the algorithm can handle very long �lters,
we design a real lowpass FIR �lter with passband edge
Fp = 0:28, stopband edge Fs = 0:3, weighting function [14]
1 : 5�105, �1 = :001660, and �2 = 3:3627�10�9 (computed
using (15) and (16)). The optimal linear phase �lter has a
length of L = 649, and optimal minimum phase FIR �lter
has a length of N = 325. The design values of the passband
and stopband ripples are 0:000830 and 8:2008 � 10�5. Fig.
1(a) shows the magnitude response and group delay of the
optimal minimum phase �lter. We used an FFT length of
524288 (219), and the algorithm took 60 sec to run. It turns
out than using an FFT length of 32678 (215), which only
requires 10 sec to run, will also produce a design that meets
speci�cations. In the DHT-based optimal design, the actual
values were �01 = 0:000828 and �02 = 8:1684�10�5 . The rel-
ative percentage error was :24% in the passband and :39%

in the stopband, which are comparable with the �gures of
:29% and :21%, respectively, in [7] . While the ripples in
both bands of the DHT-based design are lower than the
speci�ed value, the ripples in the design in [7] are greater
than the speci�ed values. In this case, the DHT-based algo-
rithm produced a more desirable magnitude response than
what was reported in [7].

4.2. Example 2: Complex 26-Tap Lowpass Filter

One of the advantages of our design approach is that it
may be applied to both real and complex tap FIR �lters
without any changes. As an example, we design a lowpass
�lter with passband edge FP = 0:7, stopband edge Fs = 0:8,
and weighting function 1 : 1. The Karam and McClellan
algorithm [10] gives an optimal linear phase complex-tap
�lter with 50 taps. Using the DHT-based algorithm, we
can design a minimum phase complex FIR �lter with 26
taps to meet the speci�cations. We calculate �1 = 0:004268
and �2 = 0:004297 using (15) and (16). The design values
of �01 and �02 are 0:002125 and 0:092510, respectively. Fig.
2 shows the magnitude response and group delay of the
optimal complex �lter. In the DHT-based optimal design,
the actual values were �01 = 0:002125 and �02 = 0:092359.
The relative errors are 0% in the passband and :16% in the
stopband. The designed values meet the speci�cations.

5. CONCLUSION

We present a new algorithm for the design of optimal min-
imum phase digital FIR �lters with arbitrary magnitude
responses. The algorithm avoids factoring of polynomials,
does not involve iterative procedures, and can design real
and complex �lters. We also present a generalized DHT
pair relating the magnitude and minimum phase responses
of causal complex sequences. We note that the generalized
transform requires an additional constant phase term which
vanishes for the case of real coe�cients.

6. APPENDIX

We quantify the minimum phase �lter coe�cient accuracy
as a function of FFT length used to calculate the DHT
that computes (14). The issue of accuracy arises because
we constrain the complex cepstrum to be causal, while in
practice this condition is only approximately satis�ed. In
[15], we derive the following formula based on the causality
of the complex cepstral sequence

� = 2
Ns

NFFT

(21)

where � is the upper bound of the deviation of the complex
cepstrum from ideal, Ns is the number of stopband zeros of
the minimum phase �lter, and the NFFT is the FFT length
used to compute the DHT. Using this formula, a designer
can decide on the minimum FFT length for the desired
accuracy in the computed minimum phase �lter coe�cients.
We can make � arbitrarily small by using a large enough
FFT length. For a �lter with 100 stopband zeros, � = :0977
when using a 2048-point FFT, and � = 3:8 � 10�4 when
using 219 point FFTs. This bound is conservative [15].
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Figure 1: Magnitude response and group delay for an opti-
mal real 325-tap minimum phase digital FIR �lter designed
by the new algorithm based on the DHT. The group delay
for the optimal linear phase �lter is 324.
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