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ABSTRACT

A signal su�ers from nonlinear, linear, and additive distor-
tion when transmitted through a channel. Linear equaliz-
ers are commonly used in receivers to compensate for linear
channel distortion. As an alternative, nonlinear equaliz-
ers have the potential to compensate for all three sources
of channel distortion. Previous authors have shown that
nonlinear feedforward equalizers based on either multilayer
perceptron (MLP) or radial basis function (RBF) neural
networks can outperform linear equalizers. In this paper,
we compare the performance of MLP vs. RBF equalizers in
terms of symbol error rate vs. SNR. We design a reduced
complexity neural network equalizer by cascading an MLP
and a RBF network. In simulation, the new MLP-RBF
equalizer outperforms MLP equalizers and RBF equalizers.

1. INTRODUCTION

A transmitted signal su�ers from nonlinear, linear, and ad-
ditive distortion when passing through a channel. The non-
linear and linear distortion cause adjacent pulses to interfere
with each other, which is known as intersymbol interference
(ISI). At the receiver, the equalizer would compensate for
one or more of the distortion e�ects in the channel. Equal-
ization may either require a training signal or be blind.
In digital communications, the training signal is simply a
known sequence of symbols sent by transmitter so that the
receiver can estimate the channel distortion.

Linear equalizers that employ training sequences are of-
ten based on adaptive �nite impulse response (FIR) �lters.
They are easy to implement and track linear distortion in
the channel fairly well provided that enough taps are used
(using 50{100 taps is common). Some linear equalizers,
such as a zero-forcing equalizer, may amplify channel noise
[1]. As an alternative, nonlinear equalizers have the poten-
tial to compensate for all three sources of channel distor-
tion. A common nonlinear equalizer is the decision-feedback
equalizer [2].

Another class of nonlinear equalizers is based on arti-
�cial neural networks, e.g. multilayer perceptrons (MLP)
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and radial basis functions (RBF) feedforward neural net-
works. Section 2 describes MLP equalizers [3, 4, 5, 6, 7, 8]
and RBF equalizers [9, 10]. MLP equalizers [3] and RBF
equalizers [9] outperform linear feedforward equalizers in
symbol error rate vs. SNR, but at the cost of signi�cantly
higher computational complexity. Section 3 describes a new
lower complexity neural network equalizer formed by cas-
cading an MLP network and an RBF network to decrease
the number of hidden neurons for the same level of perfor-
mance. Section 4 compares the symbol error rate vs. SNR
performance of MLP, RBF, and MLP-RBF equalizers using
di�erent channel characteristics, number of input neurons,
and number of hidden neurons. It also compares MLP and
RBF equalizers vs. an optimal linear equalizer and a zero-
forcing equalizer. Section 5 concludes the paper. The key
contributions of this paper are

1. a reduced complexity MLP-RBF neural network equal-
izer (Section 3), and

2. a comparison of the performance of MLP equalizers
vs. RBF equalizers (Section 4).

2. FEEDFORWARD NEURAL NETWORKS

Fig. 1 shows the block diagram of feedforward neural net-
works. Each node is the basic element of a neural network
called a neuron. The output, y, of a neuron is given by

y = f

 
NX
i=1

wixi

!

where xi is the ith input to a neuron, wi is the weight asso-
ciated with the ith input, and f is the activation function.

2.1. Multilayer Perceptrons

Possible activation functions for multilayer perceptrons are

� linear: f(v) = k v

� sigmoid: f(v) =
1

1 + e�v

� hyperbolic tangent: f(v) = tanh(v) =
1� e�v

1 + e�v

An MLP may have more than one hidden layer. The neu-
rons in the hidden layer may use either sigmoid or hyper-
bolic tangent activation functions. The activation function
for the output layer may be any one of the above.
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Figure 1: A feedforward neural network. Each circle repre-
sents a neuron which sums the inputs and passes the sum
through an activation function. Each arc represents multi-
plication by a scalar weight.

Many di�erent training algorithms exist for MLPs. Al-
though batch backpropagation [11] is widely used, it suf-
fers from slow convergence and can be trapped in local
minima. Modi�ed backpropagation algorithms attempt to
overcome both drawbacks [11]. To increase the convergence
rate, the Levenberg-Marquardt (LM) algorithm and second-
order optimization techniques, such as the conjugate gra-
dient method, scaled conjugate gradient method, and the
quasi-Newton method, can be used [11]. Hybrid linear-
nonlinear training [12], natural gradient learning [13], and
simulated annealing [14] escape from local minima during
training. All of these training algorithms randomly initial-
ize the weights.

2.2. Radial Basis Function Networks

Since there is no guarantee that an MLP would converge to
a global minimum, radial basis function (RBF) networks are
a key alternative. RBFs have only three layers (one input,
one hidden, and one output). The kth output is given by

yk =

NhX
i=1

wk;i �i(x)

where Nh is the number of neurons in the hidden layer
and �i (x) is a radially symmetric scalar function with Nh

centers of the radial basis function. A commonly used radial
basis function �i(�) is a Gaussian function

�i(x) = exp

�
�
k x� ci k

2

2�2
i

�

where k � k is a norm (usually Euclidean). A radial basis
function is local in character| its response to the input x
drops o� quickly for input values that are away from the
center of the activation function's receptive �eld, ci.

Training takes two steps [11]. First, the �i's and ci's are
calculated. We calculate them by using expectation max-
imization (EM). Second, the weights between the hidden
and output layers are determined. We calculate them by
using least mean squares (LMS).

3. A NEW MLP-RBF EQUALIZER

Among feedforward equalizers, RBF [9, 10] and MLP [3, 4,
5, 6] equalizers outperform linear equalizers in symbol er-
ror rate vs. SNR. RBF equalizers estimate the probability
density function of the incoming signal to approximate the
optimal Bayesian equalizer [15]. MLP equalizers can ap-
proximate a Bayesian discriminant function. The size and
structure of the MLP limit network the approximation ac-
curacy [16]. MLP and RBF equalizers are insensitive to the
channel phase response, as demonstrated in Section 4.

MLP training algorithms are either fast but get trapped
in local minima (such as the Levenberg-Marquardt algo-
rithm) or slow but converge to a global minimum (such
as simulated annealing). Here, \slow" can be several or-
ders of magnitude slower than \fast." When using a \fast"
algorithm, an MLP equalizer is trained several times and
the best network is chosen. For MLP equalizers, we suspect
that the number of hidden neurons is a polynomial function
of the length of FIR model of the channel.

In RBF equalizers, the number of hidden neurons in-
creases exponentially with the length of FIR model of the
channel [11]. To obtain a similar symbol error rate vs. SNR
performance as MLP equalizers, RBF equalizers must use
an increasingly larger number of hidden nodes than the
MLP equalizer as SNR decreases. In order to reduce the
number of neurons in an RBF equalizer, a modi�ed k-mean
algorithm [10] or a self-organizing map [17] can be used in
the �rst step of RBF training to compute �i's and ci's.

When the SNR is low, the transmitted data has been
scattered by the addition of strong noise. The data far away
from each cluster is considered irrelevant. MLP reduces ir-
relevant data because the hidden layer �rst calculates the
weighted sum of the inputs. The linear combinations of the
inputs con�ne the networks' attention to the linear subspace
spanned by the weight vectors. When the data is scattered
due to low SNR, the number of hidden units in MLP is not
required to increase. In RBF networks, the irrelevant data
signi�cantly degrades performance because activation func-
tions have local receptive �elds. The local receptive �elds
can be adapted to a local pattern in the data. RBF net-
works do not su�er unwanted side e�ects in other regions,
whereas MLP can cause spurious side e�ects in other parts
of the input space while it tries to �t a local pattern.

To improve performance and reduce complexity of MLP
and RBF equalizers, we cascade an MLP network and RBF
network. We set the number of MLP input neurons, MLP
output neurons, and RBF input neurons equal to the num-
ber of taps M in the FIR channel model. The inputs to the
MLP-RBF equalizer are the current received sample and
the previous M � 1 samples. The MLP stage suppresses
the irrelevant data (noise) and outputs cleaned values of
the current received sample and previous M � 1 samples.
The RBF stage takes these MLP outputs, performs a best-
�t, and outputs the symbol decision on its single output.
Using the training sequence, we �rst train the MLP net-
work using LM, then feed the trained MLP output into
the RBF network, and �nally train the RBF network using
EM/LMS (see Section 2.2). The MLP-RBF equalizer re-
quires far fewer neurons for the same symbol error rate vs.
SNR performance, as demonstrated next.
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(a) Minimum phase channel (b) Linear phase channel
MLP-LM has 6 inputs, 8 hidden units, 1 output. MLP-LM has 6 inputs, 16 hidden units, 1 output.

RBF-EM/LMS has 6 inputs, 20 hidden units, 1 output. RBF-EM/LMS has 3 inputs, 40 hidden units, 1 output.

Figure 2: Performance analysis of four equalizers. Zero-forcing and minimum mean square error (MMSE) equalizers know
the channel coe�cients, whereas the neural network equalizers do not. The MMSE equalizer is the optimal linear equalizer.

4. SIMULATION RESULTS

We compare symbol error rate vs. SNR of the MLP and
RBF equalizers for the following settings: 6 training algo-
rithms for MLP, 2 channel responses, 3{15 neural network
input nodes for MLP and 3{8 inputs for RBF, and di�erent
numbers of hidden units. The channel responses

Hmin(z) = 0:6963 + 0:6964z�1 + 0:1741z�2

Hlinear(z) = 0:3482 + 0:8704z�1 + 0:3482z�2

are minimum and linear phase, respectively, and have the
same magnitude response. The transmitted 2-PAM signals
are chosen from f�1; 1g with equal probability. They are
independent and identically distributed. We model additive
distortion in the channel as white Gaussian noise and vary
the SNR from 0 dB to 30 dB SNR in increments of 3 dB.
The training sequence is 1000 symbols (one symbol/bit).
After training, we test the equalizer using 2� 106 symbols.

Because the probability that MLP networks fall into lo-
cal minima during training increases with the number of
hidden layers, we use only one hidden layer [18]. For acti-
vation functions in the MLP equalizer, the hidden layer uses
the hyperbolic tangent function and the output layers uses
an identity function (linear function with k = 1). The RBF
equalizer uses a Gaussian radial basis function. The neural
network inputs are delayed versions of the received signal.
The number of inputs is 3{15 for MLP and 3{8 for RBF.
A minimum of 3 inputs is used because each channel has
3 taps. The maximum number of inputs is chosen so that
training would complete in a reasonable amount of time and
diminishing performance returns are observed. We use 1,
2, 4, 8, and 16 hidden units for MLP equalizers, and 10, 20,
and 40 hidden units for RBF equalizers.

Table 1 compares six training algorithms [11] for the
MLP equalizer: conjugate gradient, scaled conjugate gra-
dient, quasi-Newton, Levenberg-Marquardt (LM), hybrid
linear-nonlinear, and batch backpropagation. The LM algo-
rithm gives the best symbol error rate vs. SNR performance

and requires the lowest computational complexity. Table 1
shows the results of using the EM/LMS method [11] for the
RBF equalizer. Throughout the rest of the paper, we use
MLP-LM and RBF-EM/LMS equalizers.

Fig. 2 compares the simulation performance of the non-
linear MLP and RBF equalizers and the linear zero-forcing
and minimum mean square error (MMSE) equalizers. In
the simulation, the two linear equalizers know the channel
coe�cients, whereas the nonlinear equalizers do not. The
MLP and RBF equalizers obtain almost the same perfor-
mance as the MMSE equalizer even though MLP and RBF
equalizers have no knowledge on the coe�cients of channels.

Fig. 3 compares the simulation performance of MLP,
RBF, and MLP-RBF equalizers. For the MLP-RBF equal-
izer, we set the number of inputs to be the length of the
FIR channel model. We use an MLP with 3 inputs, 4 hid-
den units, and 3 outputs, and an RBF network with 3 in-
puts, 4 hidden units, and 1 output. The MLP-RBF equal-
izer outperforms both MLP and RBF equalizers. Since the
RBF equalizer in Fig. 3 has the same structure as that in
Fig. 2(b), this MLP-RBF equalizer also outperforms linear
feedforward equalizers. In Matlab 5, the training time was
3.59 s for the MLP (3-4-1), 170.20 s for the RBF (3-40-1),
and 14.95 s for the MLP (3-4-3){RBF (3-4-1) equalizers.
We ran the simulations on a 167 MHz Ultra-2 workstation.

5. CONCLUSION

We compare the performance of two neural network equal-
izers (MLP and RBF) and two \best-case" linear equaliz-
ers (zero-forcing and MMSE). The linear equalizers have
precise knowledge of the channel coe�cients, which are un-
known to the neural network equalizers. The MMSE equal-
izer is the optimal linear equalizer in the least squares sense.
The order of symbol error rate vs. SNR performance from
best to worst is MLP, RBF, MMSE, and zero-forcing, ac-



Training Testing
Method CPU Time GFLOPS SER

Batch back- 2608.0 s 31.14 0.0084
propagation
Levenberg- 65.3 s 2.50 0.0083

Marquardt (LM)
Conjugate 2213.0 s 39.20 0.0114
Gradient
Scaled 14280.8 s 8.38 0.0120

Conjugate Grad.

Quasi-Newton 9770.0 s 27.20 0.0121

Hybrid linear/ More than n/a 0.0085
nonlinear a day

RBF-EM/LMS 21.1 s 0.16 0.0074
(5-20-1)

MLP (3-4-3): 24.4 s 0.47 0.0033
RBF (3-4-1)

Table 1: Training time and symbol error rate (SER) for
MLP, RBF, and MLP-RBF equalizers for the minimum
phase channel Hmin(z) = 0:6963 + 0:6964z�1 + 0:1741z�2 .
The MLP equalizer has 8-6-1 input-hidden-output units.

cording to Fig. 2. For some SNR values, the RBF equalizer
outperforms the MLP equalizer in SER in Fig. 3. The MLP
network has to be trained several times, whereas the other
equalizers are trained in one pass over the training data.

We have designed a new reduced complexity neural net-
work equalizer by cascading an MLP and an RBF network.
In the MLP-RBF equalizer, the MLP network suppresses
noise and the RBF network performs the equalization. Our
new MLP-RBF equalizer outperforms the MLP and RBF
equalizers in terms of symbol error rate vs. SNR.
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