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ABSTRACT

Many applications such as hands-free videoconferencing,
speech processing in large rooms, and acoustic echo cancel-
lation, use microphone arrays to track speaker locations in
real-time. A speaker is a wideband source which may be in
the near �eld or far �eld of the array. Current source local-
ization approaches based on neural networks can meet real-
time constraints but assume far-�eld narrowband sources.
In this paper, we (1) apply neural networks for determin-
ing direction-of-arrival for near-�eld and far-�eld wideband
speaker localization, and (2) compute the instantaneous
cross-power spectra between adjacent pairs of sensors to
form the feature vector. We optimized the overall speaker
localization system o�-line to yield an absolute error of less
than 6 degrees at an SNR of 10 dB and a sampling rate of
8000 Hz at each sensor. When performing speaker localiza-
tion in real-time, the system would require 1 MFLOP/s.

1. INTRODUCTION

Location of a speaker is important information in many mi-
crophone array applications. This knowledge, for example,
is required to steer a videoconferencing camera, hands-free,
to the current speaker. Acoustic echoes and reverberation,
which plague speech applications in closed environments,
can be eliminated by using microphone arrays and beam-
forming techniques [1]. In these techniques, the location of
the speaker has to be estimated automatically so that the
beamformer look angle can be steered to that location [2].

Many source localization algorithms are computation-
ally intensive and di�cult to implement in real time [2].
Neural network based techniques have been proposed to
overcome the computational problem by exploiting their
massive parallelism [3, 4]. However, most of these techniques
assume narrowband far-�eld source signal, i.e. the incoming
wave is planar over the array [3, 4, 5]. These assumptions
are not always applicable [2]. For example, in videoconfer-
encing, microphones are generally very close to the speaker.

In this paper, we design a system that estimates the
direction-of-arrival (DOA) for far-�eld and near-�eld wide-
band sources. The system uses feature extraction followed
by a neural network. Feature extraction is the process of
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removing redundancy from data which will fed in the neural
network but keeping the required information. The neural
network, which performs the pattern recognition, computes
the DOA to locate the speaker. The key insight is the use of
the instantaneous cross-power spectrum at each pair of sen-
sors. By the instantaneous cross-power spectrum we mean
the cross-power spectrum calculated without any averaging
over realizations. This step calculates the discrete Fourier
transform (DFT) of the signals at all sensors, �nds the fre-
quencies with large magnitudes, and multiplies the DFT co-
e�cients at these frequencies using the complex conjugate
of the coe�cients in the neighboring sensors. Compared
to traditional cross-power spectrum estimation technique
which multiplies each pair of DFT coe�cients and averages
the results, we save a signi�cant amount of computation.
Two sensors are enough to calculate the cross-power spec-
trum and estimate the DOA. Additional sensors increase
the e�ective signal-to-noise ratio (SNR) but do not pro-
vide any additional information for DOA estimation. In
our simulations, we found that four sensors was the point
of diminishing returns.

Section 2 describes techniques for speaker localization.
Section 3 explains feature selection and computation. Sec-
tion 4 discusses the training and testing of our speaker lo-
calization technique. Section 5 analyzes the computational
complexity of our technique. Section 6 concludes the paper.

2. SPEAKER LOCALIZATION

In locating a speaker, we estimate the DOA of the source
source using data received by a uniform linear array of mi-
crophones [4]. A far-�eld assumption is valid if the distance
between the speaker and reference microphone is larger than
2D2

�min
[2], where �min is the minimum wavelength in the

source signal and D is the array aperture. If this condi-
tion holds, then incoming waves are approximately planar.
So, the time delay of the received signal between the �rst
(reference) microphone and the mth microphone is

�m = (m� 1)
d sin �

c
= (m� 1)� (1)

where d is the distance between two microphones, � is the
DOA, and c is the velocity of sound in air. So, � is the
delay between any two neighboring microphones, as shown
in Fig. 1. In Fig. 1, the dashed lines represent the incom-
ing plane wave, which arrive at the second microphone �
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Figure 1: Far-�eld source location estimation.

seconds before it arrives at the �rst microphone. The time
delay between two microphones is the time required by the
plane wave to travel the distance of x, which can be written
as d sin �. Thus, dividing this distance to the speed of the
wave gives the delay as shown in (1). When the speaker is
close to the microphone array, the time delay depends not
only on d, �, and c, as in (1), but also on the distance r
between the speaker and the microphone array. Therefore,
the time delays between microphones are not equal as in the
previous case. The time delay from the �rst microphone to
the mth microphone can be written as

�m =
r �
p
r2 � 2 (m� 1) r d sin(�) + ((m� 1)d)2

c
(2)

which can be obtained from Fig. 2.
The distance r between the speaker and the �rst (refer-

ence) microphone can be written in terms of x and y as

r
2 = x

2 + y
2 (3)

The distance from the speaker to the mth microphone is

s
2 = (x� (m� 1)d)2 + y

2

= (x2 + y
2)� 2 (m� 1)xd+ (m� 1)2d2 (4)

= r
2
� 2 (m� 1)xd+ (m� 1)2d2

where x can be written in terms of � and r as x = r sin �,

s
2 = r

2
� 2(m� 1) d r sin � + (m� 1)2d2 (5)

The distance that the wave has to travel between the refer-
ence and the mth microphone is

r � s = r �
p
r2 � 2(m� 1) d r sin � + (m� 1)2d2 (6)

The time delay in (2) is obtained by dividing the distance
to the velocity of the speech signal in air.

3. FEATURE SELECTION

The multilayer perceptron (MLP) [6] is a feedforward neu-
ral network that consists of one input layer, one or more
hidden layers, and one output layer. An MLP is capable of
approximating any multidimensional mapping with an ar-
bitrarily small approximation error, provided that enough
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Figure 2: Near-�eld source location estimation.
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Figure 3: Multilayer perceptron neural network for speaker
location. The preprocessing step computes the feature vec-
tor to be input the neural network.

hidden neurons are used [6]. Our goal is to compute feature
vectors from the array data and use the MLP approximation
property to map the feature vectors to the corresponding
DOA, as shown in Fig. 3. Ideally, feature vectors

1. could be mapped to the desired output (DOA),

2. are independent of phase, frequency, bandwidth, and
amplitude of the source, and

3. could be calculated in a computationally e�cient way.

The second item may be relaxed| the MLP only has to
be able to eliminate dependencies on the source parame-
ters. Although we compute the feature vectors in discrete
time, we justify their use using continuous-time derivations.
Assume that sm(t) is the signal received at the mth micro-
phone and m = 1 is the reference microphone (�1 = 0). We
can write the signal at the mth microphone in terms of the
signal at the �rst microphone as follows

sm(t) = s1(t+ �m)
F

! Sm(
) = S1(
)e
j
�m (7)

The instantaneous cross-power spectrum between sensor m
and sensor m+ 1 is de�ned as

�m;m+1(
) = Sm(
)S
�

m+1(
)

= S1(
)e
j
�mS

�

1 (
)e
�j
�

m+1 (8)

= jS1(
)j
2ej
(�m��m+1)

The normalized version of �m;m+1(
) is

�̂m;m+1(
i) = e
�j


i
(�m��m+1) (9)



1. Calculate the N -point FFT of the received sig-
nal at each sensor.

2. For m = 1; 2; : : : ;M � 1

(a) Find the K largest FFT coe�cients in ab-
solute value for sensor m

(b) Multiply theK largest FFT coe�cients for
sensor m with the conjugate of the FFT
coe�cients at the same indices for sensor
m + 1 to calculate the instantaneous esti-
mate of the cross-power spectrum.

(c) Normalize all estimates by dividing by
their absolute value.

3. Construct a feature vector that contains the real
and imaginary parts of the normalized cross-
power spectrum coe�cients and their corre-
sponding FFT indices.

Figure 4: Preprocessing algorithm for computing a real-
valued feature vector of length (2(M � 1) + 1)K, for K
dominant frequencies and M sensors.

We would evaluate (9) at frequencies 
i for i = 1; 2; : : : ; K.

This suggests that there exists a mapping from �̂m;m+1(
i)
and 
i to �m for m = 1; 2; :::; M , and thus to the DOA �.
Our aim is to use an MLP to approximate this mapping.
Fig. 4 gives the algorithm to compute the feature vector.

4. TRAINING AND TESTING

We train an MLP using the fast backpropagation training
algorithm [7]. We model the speech signal as a sum of
cosines with random frequencies. The array signal at sensor
m and time sample n is given by

sm[n] =

NsX
k=1

ak cos

�
2�

fk

fs
n� �k � 2�fk�m

�
+ v[n] (10)

where Ns is the number of cosines; fk is the frequency of the
kth cosine; fs is the sampling frequency at the sensors; �k
is the initial phase of the kth cosine; �m is the time delay
between the reference microphone (m = 1) and the mth
microphone; and v[n] is a white Gaussian noise process.
Since we are processing speech signals, we assume Ns =
10 to model the received speech signal with 10 dominant
frequencies, and fs = 8000 Hz.

During training and testing, fk is uniformly distributed
on [200 Hz, 2000 Hz] and �k is uniformly distributed on
[0, 2�]. We generate training data for � from �90 to 90
degrees with 5 degree increments resulting in 36 samples of
�. We expect that the MLP will interpolate for frequencies
between the increments using its generalization property [6].
Due to the ambiguity of �90 and 90 degrees, we only include
�90 degrees. For every �, we generate 100 independent sets
of 128 snapshots each, and then calculate feature vectors.
(A snapshot is the vector formed by the data value at the
sensors at a particular index of time.) A total of 36�100 =
3600 input-output pairs are used to train the MLP. Since

the backpropagation algorithm can only guarantee a local
minimum solution, we repeat training 10 times and choose
the best result.

As a performance measure, we calculate the average of
the absolute error in degrees over 100 independent tests
performed for every � in one degree steps in the interval
from �90 to 90 degrees. We then average these errors to
get a single measure for the performance of a particular
network in total. In Figs. 5 and 6, most of the error is
near the extremes on both sides. This can be explained by
rewriting (9) for m = 1:

�̂1;2(
i) = e
�j


i
(�1��2) = cos(
i�2)� j sin(
i�2) (11)

Since


i�2 = 2�fi
d sin(�)

c
= 2�

d sin �

�i
(12)

and using d <
1

2
�i we obtain 
i�2 < � sin �. Thus, when

� is changing in the interval �90 to 90, 
i�2 is changing in
the interval �� to � with the assumption d = �i=2. In (11),

�̂1;2(
i) has the same value of �1 for 
i�2 = � and 
i�2 =
��. This re
ects the ambiguity at �90 and 90 degrees
mentioned earlier. Since the value of �̂1;2(
i) near 
i�2 =
�90 is close the the value near 
i�2 = +90 the MLP is not
able to distinguish between these extremes which causes
these large errors. Note that the di�erence between the
values of �̂1;2(
i) at the extremes can be increased (the
ambiguity decreased) by decreasing d or the range of �.

Our simulation results con�rm that choosing the inter-
sensor spacing d < �i=2 decreases the error at the extreme
angles and thus the average error (Fig 11). We can say that
error in the more useful range of �75 to 75 degrees is actu-
ally even smaller than the average absolute error reported
in our results. Our simulations show that about 20% of the
overall error is outside the range of �75 to 75 degrees.

We train and test the MLP using di�erent numbers of
sensors, hidden nodes, snapshots, and dominant frequen-
cies, and di�erent inter-sensor spacing. Figs. 7{11 plot the
average absolute error in the DOA estimate vs. one of the
parameters. For each �gure, we �rst �x all of the param-
eters except one and �nd the optimum value for this pa-
rameter. Then, we �x this parameter to the optimum and
test the MLP by changing another parameter. Once the
second parameter is �xed, we go back and test the network
again for the �rst parameters to make sure the change in
the second parameter does not change the optimum value
for the �rst one.

Fig. 7 shows that four sensors is a good choice| using
more than four gives diminishing returns. We take M = 4.
Fig. 8 gives the change in the average absolute error with
respect to the number of hidden nodes. The error is high
when the network does not have enough neurons for an ac-
curate approximation and when it overmodels the function
by using too many hidden neurons. The best choices for the
number of hidden nodes are 8 for far-�eld sources and 10
for near-�eld sources. We take L = 10 as the best choice.

Fig. 9 plots the error vs. the number of snapshots N .
The number of snapshots, which is the FFT length in Fig.
4, is plotted for powers of two. The error is nearly constant
after 128 snapshots. We take N = 128. Fig. 10 shows the
error vs. number of dominant frequencies K. The error is



decreasing when K is increased because the network is sup-
plied with more estimates of the instantaneous cross-power
spectrum. Since we simulated speech as a signal with 10
dominant frequencies with random amplitudes, K is lim-
ited to a value of 10. However, the fairly constant behavior
of the error when K is larger than six suggests that on aver-
age, only six frequency bins have a large enough magnitude
to carry useful information. This is because some of the
random amplitudes of the cosines are randomly chosen to
be too small or the DFT estimate of these frequencies is too
small to count them as dominant.

In many array processing applications, a common rule of
thumb is that the optimum inter-sensor spacing d is slightly
less than half the minimum wavelength �min in the signal.
Our simulations, we use

�min

2
=

c

2 � fmax
=

340

2 � 2000
= 0:085m

yet the best choice for the inter-sensor spacing is 0:05 m,
i.e. d = 0:0294 �min. The reason for this behavior was men-
tioned earlier in this section when discussing the reason of
the large errors in the extreme angles (�90 and 90 degrees).

5. COMPUTATIONAL REQUIREMENTS

For N snapshots, K dominant frequencies, M sensors, and
L hidden units in the MLP, the number of real multiplica-
tions (additions) for speaker localization is the sum of

N -point FFT for M sensors 2MN log
2
N

Instant. cross-power spectral est. 4KM
Forward propagation for MLP ((2M � 1)K + 1)L

In addition, K(M � 1) real divisions are needed to normal-
ize the instantaneous cross-power spectrum. We implement
the nonlinear sigmoid activation function of the MLP as a
lookup table. Since fs=N snapshots are processed each sec-
ond, the speaker localization system requires 1 MFLOP/s
for M = 4, L = 10, N = 128, K = 6, and fs = 8000 Hz.

6. CONCLUSION

We develop a speaker localization system for determining
DOA angles for near-�eld and far-�eld wideband source
signals. The system consists of a uniform linear array of
sensors, feature extraction, and a neural network. The ex-
tracted features are the samples of the instantaneous power
spectrum estimated at a set of dominant frequencies corre-
sponding to the maximum FFT coe�cients in magnitude.
The neural network maps a feature vector to a DOA angle.

We model the speech signal received at the sensors as
a sum of cosines with random amplitude, frequency, and
phase. We train the neural network for di�erent numbers
of sensors, hidden nodes, snapshots, and dominant sinu-
soidal frequencies, as well as di�erent inter-sensor spacing.
We test the neural network for di�erent SNR values. Our
results indicate that DOA angle can be estimated with an
average error of 2{3 degrees for far-�eld sources and 3{4
degrees for near-�eld sources. The largest absolute errors
occur near the extremes of �90 and 90 degrees. If the DOA
range is limited to �75 to 75 degrees, then the error de-
creases by 20%.
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Figure 5: The distribution of the average absolute estima-
tion error in degrees for far-�eld sources with 4 sensors, 10
hidden units, 128 snapshots, 6 dominant frequencies, and
inter-sensor spacing of 0:05 m.
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Figure 6: The distribution of the average absolute estima-
tion error in degrees for near-�eld sources using 4 sensors,
10 hidden units, 128 snapshots, 6 dominant frequencies, and
inter-sensor spacing of 0:05 m.
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Figure 7: Average absolute error in the DOA estimate vs.
the number of sensors using 10 hidden units, 128 snapshots,
6 dominant frequencies, and 0:05 m inter-sensor spacing.
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Figure 8: Average absolute error in the DOA estimate vs.
the number of hidden nodes using 4 sensors, 128 snapshots,
6 dominant frequencies, and 0:05 m inter-sensor spacing.
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Figure 9: Average absolute error in DOA estimate vs. the
number of snapshots using 4 sensors, 10 hidden units, 6
dominant frequencies, and 0:05 m inter-sensor spacing.
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Figure 10: Average absolute error in DOA estimate vs. the
number of dominant frequencies using 4 sensors, 10 hidden
units, 128 snapshots, and 0:05 m inter-sensor spacing.
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Figure 11: Average absolute error in DOA estimate vs.
inter-sensor spacing using 4 sensors, 10 hidden units, 128
snapshots, and 6 dominant frequences.
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Figure 12: Average absolute error in DOA estimate vs. SNR
using 4 sensors, 10 hidden units, 128 snapshots, 6 dominant
frequences, and 0:05 m inter-sensor spacing.


