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ABSTRACT

We propose an optimum channel shortening method for dis-
crete multitone (DMT) transceivers. The proposed method
shortens a given channel to a desired length while maximiz-
ing the number of bits transmitted on a DMT symbol. The
key to the optimum solution is the de�nition of the SNR in a
subchannel using the equivalent signal, noise, and ISI paths
in the system. Our simulation results show that the pro-
posed method outperforms the best existing method with a
18% increase in the bit rate. We show that the maximum
shortening SNR method is a special case of the proposed
method and both methods are nearly equivalent when the
input energy distribution is constant over all subchannels.

1. INTRODUCTION

Discrete-multitone (DMT) modulation is a popular method
for high-speed data transmission over spectrally shaped chan-
nels, e.g. in the asymmetric digital subscriber line (ADSL)
standard [1]. In DMT, a channel is partitioned into a large
number of independent subchannels using the inverse fast
Fourier transform (FFT). The total number of bits trans-
mitted is the sum of the number of bits transmitted in each
subchannel. For an ideal channel, the subchannels are or-
thogonal, which enables recovery of the information at re-
ceiver by using an FFT operation. A spectrally shaped
channel, however, causes inter-symbol interference (ISI) and
destroys orthogonality between subchannels so that they
cannot be separated at the receiver [2].

For N=2 subchannels, a DMT symbol has N samples.
Prepending a guard period of � samples to each DMT sym-
bol eliminates ISI when � � L�1 [3], where L is the channel
impulse response length. The guard period samples are typ-
ically the last � samples of the DMT symbol, a.k.a. a cyclic
pre�x. The channel throughput is reduced by a factor of
N=(N + �). When � gets large relative to N this factor de-
creases and the performance loss can be prohibitive. Hence,
a channel shortening equalizer is required to shorten the ef-
fective length of the channel to the length of the cyclic pre�x
which is chosen to be relatively small.

Section 2 reviews three channel shortening methods.
Section 3 proposes a channel shortening method to opti-
mize maximum bit rate. Section 4 gives simulation results.
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Figure 1: MMSE equalizer (a.k.a. time domain equalizer)

2. CHANNEL SHORTENING METHODS

Channel shortening methods shorten the e�ective channel
impulse response to be less than or equal to �.

2.1. Minimum Mean-Squared Error Method

The minimum Mean-Squared Error (MSE) method (a.k.a.
time domain equalizer or TEQ) [4] uses the structure shown
in Fig. 1 to calculate the equalizer coe�cients. If the er-
ror in Fig. 1 could be forced to be zero, then the equalized
impulse response would be equal to the target impulse re-
sponse (TIR) with a time delay di�erence. By controlling
the TIR length, we control the length of the equalized chan-
nel. Given the length of the TIR, the goal is to �nd the best
TIR and an equalizer which minimize the MSE. Note that
the lower path in Fig. 1 is not physically implemented.

For minimum MSE, the TIR and equalizer must satisfy

b
T
Rxy = w

T
Ryy (1)

where Rxy and Ryy are the input-output cross correlation
and output autocorrelation matrices, respectively [4]. Then

MSE = b
T
�
Rxx �RxyR

�1
yyRyx

�
b = b

T
Rxjyb (2)

Adding a constraint on b to prevent the trivial solution
b = 0, the equalizer design problem becomes

min
b
b
T
Rxjyb s.t. kbk = 1 (3)

The solution for b is the eigenvector of Rxjy corresponding
to the minimum eigenvalue. The corresponding equalizer
settings can be calculated from (1). This channel shortening
method does not maximize bit rate because minimizing the
MSE does not necessarly increase the bit rate [5].



2.2. Maximum Shortening SNR Method

This method minimizes the energy of the e�ective channel
impulse response outside a window with the desired length
� while keeping the energy within the window constant [6].
No TIR is used, so only the upper path in Fig. 1 is used.
The equalized impulse response can be written in matrix
form as he� = Hw where H is the convolution matrix of
the channel impulse response. Construct the vector hwin
from the samples of he� which are in a given window of
size � and hwall from the samples outside the window. The
channel shortening problem is de�ned as minimizing the
energy of hwall while satisfying the constraint khwink2 =
1 to prevent the trivial solution. The energy outside and
inside the window, respectively, can be expressed as

h
T
wallhwall = w

T
H
T
wallHwallw = w

T
Aw (4)

h
T
winhwin = w

T
H
T
winHwinw = w

T
Bw (5)

Thus, the aim is to minimize wTAw while satisfying the
constraint wTBw = 1. The solution is given as [6]

wopt = (
p
B
T
)�1qmin (6)

where qmin is the eigenvector corresponding to the mini-
mum eigenvalue �minof the matrix

C =
�
Q
p
�
��1

A
�p
�Q

T
��1

(7)

The columns ofQ consist of the orthonormal eigenvectors of
B, and � is a diagonal matrix with the entries of the eigen-
values. This approach is optimum in the sense of maximum
shortening SNR which is de�ned as

SSNRopt = 10 log10

�
wT
optBwopt

wT
optAwopt

�
= 10 log10

�
1

�min

�
(8)

No previous study has been made on the optimality of this
algorithm in the maximum bit rate sense. Our simulation
results show that this approach is in fact near optimum.

2.3. Geometric TEQ Method

This is the �rst method to optimize the equalizer for max-
imum bit rate [5]. First, a TIR is calculated to maximize
the number of bits transmitted in one DMT symbol (bDMT).
Then, the equalizer is calculated by using (1). Its structure
is equivalent to the MMSE method in Fig. 1.

Assuming that the subchannels can be modeled as ad-
ditive white Gaussian noise channels,

bDMT =

N=2X
i=1

log2

�
1 +

SNRi

�i

�
(9)

where i is the subchannel index, SNRi is the SNR of the ith

subchannel, and �i is the SNR gap for achieving channel
capacity in subchannel i [7]. Assuming that the SNR gap
is constant in each subchannel, i.e. �i = �; 8i,

SNRgeom = �

0
@
"
N=2Y
i=1

�
1 +

SNRi

�

�#2=N
� 1

1
A (10)

so that (9) can be rewritten as

bDMT = N log2

�
1 +

SNRgeom

�

�
(11)

So, maximizing geometric SNR maximizes bDMT.
The method is based on the following approximation of

the geometric SNR which is obtained by ignoring the 1 and
�1 terms in (10):

SNRgeom �
"
N=2Y
i=1

SNRi

#2=N
(12)

This approximation is valid with the assumptions that the
input SNR is high enough to ignore the dependency of the
geometric SNR to � and that the entire available bandwidth
is used. SNRi is de�ned as follows by ignoring the ISI term
in the denominator and assume that jBij � jHijjWij

SNRi =
SxjBij2
Sn;ijWij2 (13)

where Sx is signal power across the entire bandwidth, Sn;i
is the noise power in the ith subchannel and Bi, Wi are the
gain of b and w in the ith subchannel, respectively.

In this case, the problem is converted to the maximiza-
tion of the objective function

L(b) =
2

N

N=2X
i=1

ln jBij2 (14)

which also assumes that the noise at the output of the equal-
izer is independent of b. A unit-energy constraint on b is
used to prevent an in�nite gain equalizer. But using only
this constraint maximizes the cost function for jBij2 = 1 8i,
which implies full equalization (zero forcing equalization) of
the channel. Therefore an additional constraint is required
to keep the MSE error relatively small. Thus, the problem
of �nding optimum settings for the TIR can be stated as

max
b

N=2X
i=1

ln jBij2 s.t. kbk2 = 1 and bTR�b �MSEmax

This nonlinear constrained optimization problem does not
have a closed-form solution, but may be solved by numerical
methods. Although this method incorporates the geometric
SNR, it is not optimum because of the approximations. For
example, the de�nition in (13) does not include the e�ect of
ISI on the SNR, and the assumption jBij � jHijjWij holds
only after the channel has been equalized.

3. OPTIMUM CHANNEL SHORTENING

We propose a new method to compute the equalizer settings
that maximize bDMT. Unlike the geometric TEQ approach,
we de�ne SNRi with the ISI term as

SNRi =
Sx;ijHsignal;ij2

Sn;ijHnoise;ij2 + Sx;ijHISI;ij2 (15)

where Sx;i, Sn;i, Hsignal;i, Hnoise;i, and HISI;i are the sig-
nal power, noise power, signal path gain, noise path gain,
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Figure 2: Equalized channel and the corresponding signal,
noise, and ISI paths.

and ISI path gain in the ith subchannel, respectively. Ide-
ally, the equalizer shortens the channel so that it would �t
in a window of size �. The part of the equalized impulse
response which is inside the window is the signal path, and
the part outside the window is the ISI path:

hsignal = (hk � wk)gk
hISI = (hk � wk)(1� gk) (16)

hnoise = wk

Here, `*' denotes convolution, hk and wk are the channel
and equalizer impulse responses, respectively, and

gk =

�
1 d � k < d+ �

0 otherwise

The noise path consists only of the equalizer because the
noise process passes only through the equalizer. All three
paths are shown in Fig. 2.

Since most energy of the equalized impulse response is
in the window, the window on the signal path does not con-
tribute to the signal path considerably and can be ignored:

SNRi =
Sx;ijHij2jWij2

Sn;ijWij2 + Sx;ijHISI;ij2 (17)

If the ISI term could be forced to be zero, then Wi would
drop out and SNRi would not depend on the equalizer:

SNRi =
Sx;ijHij2
Sn;i

(18)

The SNR in (18) is the highest achievable SNR (matched
�lter bound). Rewriting (16) in matrix form,

hsignal = diag(g)Hw

hISI = ((I� diag(g))Hw = DHw (19)

hnoise = w

where bold lower case letters represent their corresponding
signals in vector form, H represents the N � Nw size con-
volution matrix of hk (Nw is the length of w), and diag(�)
forms a diagonal matrix from vector argument. The inner
product of

qi =
�
1 e

j2�i=N
e
j2�2i=N � � � e

j2�(N�1)i=N
�

with a vector returns the ith DFT coe�cient for that vector.
We minimize the ISI part of (17) by minimizing

L(w) =

N=2X
i=1

Sx;ijHISI;ij2 =
N=2X
i=1

Sx;i j qiDHw j2

= w
H
H

H
D

H

 
N=2X
i=1

q
H
i Sx;iqi

!
DHw

= w
H
Aw (20)

subject to a constraint on w to prevent the trivial solution.
We propose to constrain the energy of the equalized channel
impulse response to unity:

kHwk2 = w
T
H
T
Hw = w

T
Bw = 1 (21)

We have converted the shortening problem to a con-
strained minimization problem. Its solution is equivalent
to that of the maximum shortening SNR method in (6) and
(7). The maximum shortening SNR method minimizes the
energy of the part of the equalized impulse response that
causes ISI. We have shown that minimizing a frequency
weighted sum of the energy is optimum, and the optimum
weights are the input energy distribution.

The maximum shortening SNR method and proposed
method are equivalent when the input signal power distri-
bution is constant over frequency, as seen from (20). If
Sx;i = 1; 8i, then L(w) is equal to the energy of the part
of the equalized impulse response outside of the window,
i.e. hwall in (4). The proposed method constrains the en-
ergy of the entire equalized impulse response, whereas the
maximum shortening SNR method constrains only the part
within the window to be unity.

4. SIMULATION RESULTS

Simulations use the carrier-serving-area loop number one,
and process 512 samples sampled at 2.208 MHz. The two-
sided white Gaussian noise power is �110 dBm/Hz. Cross-

talk noise is modeled as jHNEXT (f)j2 = 10�13f3=2 [3]. In-
put power is set so that the matched �lter bound of the
SNR is 25 dB. We use a 21-tap equalizer, a cyclic pre�x
length � of 16, and an FFT size of N = 128. A coding gain
of 5 dB and a margin of 6 dB are assumed when calculating
bDMT. In the maximum geometric SNR method, the MSE
threshold (MSEmax) is chosen to be 0.025 [5].

As shown in Table 1, the proposed method improves the
e�ective bits per symbol by 18% over the best previously
reported method of maximum shortening SNR, and has the
highest geometric SNR. The MMSE method gives the low-
est performance in geometric SNR and e�ective bits per
symbol. Although not designed to optimize the geometric
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(a) Proposed method
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(b) MMSE-UEC method
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(c) Geometric TEQ method
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(d) Maximum SSNR method

Figure 3: SNR distribution over frequency

Method Geometric Bits per
SNR (dB) symbol

Proposed 15.14 242
MMSE 12.30 162

geometric TEQ 12.44 166
max. short. SNR 13.90 205

Table 1: Simulation results for N = 128, � = 16, 21-tap
equalizer, 5 dB coding gain, 6 dB subchannel margin, 512
channel length, and 2.208 MHz sampling rate.

SNR, the maximum shortening SNR method gives better
geometric SNR results than the geometric SNR method.

Fig. 3 (a)-(d) show the frequency distribution of the
SNR after equalization, and the upper bound of the SNR
given by (18). SNR distributions for the proposed and
maximum shortening SNR methods exactly follow the up-
per bound at high frequencies. At lower frequencies, the
maximum shortening SNR solution diverges from the up-
per bound before the proposed method does. Although
the divergence is very small, the e�ect on the geometric
SNR is dramatic. The SNR distributions for MMSE and
geometric TEQ methods appear similar. The geometric
TEQ approach is constrained with a maximumMSE, which
roughly tracks MMSE. The only improvement the geomet-
ric TEQ solution has over the MMSE solution that the
notches smaller. The MMSE solution may appear better
than the geometric TEQ solution because the MMSE solu-
tion follows the upper bound more tightly. Deeper notches
in the MMSE solution, however, decrease the geometric
mean of the SNR more than the evenly distributed o�set in
the geometric TEQ solution.
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