
ABSTRACT

Most implementations of H.263 available today target
PC or workstation environments where there are plenty
of memory and processing resources available. Such
coders use high-level languages, typically C or C++,
with extravagant memory usage to achieve speed of exe-
cution. In this paper we present our work on optimization
of a baseline H.263 encoder for the Texas Instrument’s
(TI) TMS320C6000 platform. In particular, we present
the techniques we used to optimize the University of
British Columbia’s (UBC) H.263 encoder implementa-
tion. The UBC’s encoder is written in the C language for
a desktop environment. Our optimizations resulted in an
over all speedup of 61 times over the unoptimized ver-
sion. Our implementation uses the TI’s TMS320C6701
Evaluation Module.

Keywords: H.263 encoder, VLIW architecture,
TMS320C6000, optimization techniques.

1. INTRODUCTION

Two factors limit the use of real-time video communica-
tions: network bandwidth and processing resources.
H.263 is an ITU-T standard for video communication
over wireless and wireline networks. In this paper, we
attempt to minimize the processing resources required
for the H.263 video encoder [1] written by the University
of British Columbia [2, 3] on the TMS320C6000 [4]. We
report figures from our tests on the Texas Instrument's
TMS320C6701 (C6701) Evaluation Module running the
encoder with full-search algorithm for motion vector es-
timation on a sub-QCIF resolution video sequence. The
C6701 comes with 64 kilobytes of program and data
memory each. Like other video compression algorithms
based on motion compensation and block transform, the
H.263 encoder has a high computational complexity. A
related paper optimizes an MPEG II video decoder on
the TMS320C6000 [5].

2. BACKGROUND

Computationally complex operations in a typical video
encoder include block matching, motion compensation,
discrete cosine transform (DCT) and interpolation. How-
ever, for embedded digital signal processors, such as the
TMS320C6000 family of processors, a significant por-
tion of the complexity of video encoding consists of ac-
cessing huge amounts of picture data in slow off-chip
memory and performing arithmetic operations on them.

Table 1 (a) shows the cycle counts for various rou-
tines in the H.263’s encoding step when the C code was
compiled with -o2 option. The resulting code and data
memory requirements demanded that the entire program
and its associated data be placed in external SDRAM.
With the encoder taking one and a half billion cycles per
frame on a 100 MHz processor, we were far from
achieving real-time performance at a reasonable frame
rate.

Table 1 (a) shows that motion estimation is the most
computationally intensive task in an H.263 encoder. It
indeed is when considered in terms of the required num-
ber of arithmetic operations as well as the number of data
fetches from slow off-chip RAM. The complexity of
motion estimation lies predominantly in the computation
of the sum of absolute difference (SAD): the measure of
closeness of a macroblock in the current frame with an-
other in the previous frame. The unoptimized encoder
spends 67% of the encoding time in the computation of
SAD.

The TMS320C6000 family is a VLIW RISC proces-
sor that has two parallel 32-bit data paths, each data path
consisting of a 16 32-bit register file and four 32-bit
computational units: an adder, a 16 x 16 multiplier, a
shifter, and a load/store unit. The units in each data path
can read from and write to the register files of the other
data path, subject to certain constraints.

Hamid R. Sheikh, Serene Banerjee, Brian L. Evans, and Alan C. Bovik

Laboratory for Image and Video Engineering
Dept. of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX78712-1084 USA
{sheikh, serene, bevans, bovik}@ece.utexas.edu

http://signal.ece.utexas.edu

OPTIMIZATION OF A BASELINE H.263 VIDEO ENCODER
ON THE TMS320C6000

As we proceed through different stages of optimiz-
tion, other operations such as motion compensated pre-
diction, DCT, quantization, and interpolation begin to
take a bigger share of complexity. The C6000 family of
VLIW processors is well suited for such algorithms
where functional parallelism inherent in these algorithms
can be exploited to give major improvements in execu-
tion speed.

3. EFFICIENT IMPLEMENTATION

We performed optimization of the encoder in two steps:
efficient use of on-chip data and program memory, and
code optimizations of computationally intensive routines
in C as well as in assembly language.

3.1. Memory Optimizations

Table 1 (b) shows the results of performing memory op-
timizations of the encoder only. The code for computa-
tionally intensive routines was placed in internal on-chip
program memory. Some runtime support functions from
the TI’s library that were called repeatedly by the encoder
were also linked into internal memory. For the motion
estimation routine, the macroblock and the correspond-
ing search window were copied into internal data mem-
ory before the routine was called. Local data of some
complex routines was placed in internal RAM. Also,
each macroblock was copied into internal data memory
before the DCT, quantization, coding, transmission and
reconstruction routines were called. The computational
overhead of copying each macroblock in internal RAM
was about 10% of the savings.

As apparent from Table 1 (b), tremendous improve-
ments in execution speed can be achieved by intelligent
placement of data and code in internal memory. The total
speedup obtained by this step alone is about 29 times.

3.2. Code Optimizations

Several methods for optimizing code were employed,
ranging from the use of compiler intrinsics to linear as-
sembly to fully hand-coded parallel assembly of certain
sections of the code. In particular, the routine for calcu-
lation of the SAD was hand-coded in assembly and is
five times more efficient than the C version with fully
unrolled inner loop. Our SAD routine aborts computation
if the accumulated difference increases beyond the cur-
rent minimum for the search window. In full search mo-
tion estimation, our SAD routine performs at an average
of 110 cycles per macroblock. For fast-search motion es-
timation algorithm however, the routine performs at an
average 270 cycles per macroblock.

The interpolation routine was written in linear as-
sembly using packed fetches from and writes to off-chip
memory, thereby giving an improvement of about 10

times over the C version. Packed fetches and writes were
used in some other parts of the code as well. Assembly
routine for the computation of DCT from TI’s web site
was incorporated into the encoder.

Table 1 (c) shows the cycle counts with the code op-
timizations only (with code and data in external RAM).
With the code optimizations alone, an improvement by a
factor of four is achieved. Table 1 (d) shows the cycle
counts with code and memory optimizations. Both the
optimizations combined give an improvement of 61
times. The figures reported are for full search motion es-
timation. Fast search algorithms reduce the cycle counts
even further.

4. SIMULATION RESULTS

Figure 1 summarizes the improvements in speed ob-
tained by the optimization techniques described above. A
profile of the optimized code shows that most of the time
is still spent in data access to external RAM. Simulations
with fast motion vector search algorithm also suggest
that the complexity bottleneck is accesses to frame data
stored off-chip. Figure 2 shows the share of the compu-
tation of the SAD relative to the share of motion estima-
tion for different levels of optimizations. The effect of
slow off-chip memory accesses becomes the dominant
bottleneck as the code becomes more efficient in per-
forming computations.

5. CONCLUSION

We have demonstrated optimization of UBC's H.263 en-
coder that was originally written for a desktop environ-
ment. We have demonstrated that memory access to ex-
ternal memory are a significant bottleneck in the imple-
mentation of real-time embedded video systems that
have large memory requirements. Compiler’s ability to
understand generic C code written for desktops is also
limited. However, we conclude that for low-resource
embedded video applications, it is best to start with a
careful and implementation-dependent design rather than
to start with a generic high-level language code origi-
nally written for desktop environments.

6. REFERENCES

[1] ITU Telecom Standardization Sector, “Video
Coding for Low Bit Rate Communication,” Draft
ITU-T Recommendation H.263 Version 2, Sept.
1997.

[2] B. Erol and F. Kossentini and H. Alnuweiri, “Im-
plementation of a Fast H.263+ Encoder/Decoder,”
in Proc. IEEE Asilomar Conf. On Signals, sys-
tems and Comp., vol. 1, pp. 462-466, Nov. 1998.

[3] G. Cote and B. Erol and M. Galland and F.
Kossentini, “H.263+: Video Coding at Low Bit
Rates,” IEEE Trans. On Circuits and systems for
video Technology, vol. 8, pp. 849-866, Nov.
1998.

[4] “TMS320C6000 CPU and Instruction Set,” in
Digital Signal Processing Solutions 2000, Texas
Instruments, Inc., http://www.ti.com, no.
SPRU189E, Jan. 2000.

[5] S. Sriram and C. Y. Hung, “MPEG-2 Video De-
coding on the TMS320C6x DSP Architecture,” in
Proc. IEEE Asilomar Conf. On Signals, Systems
and Comp., vol. 2, pp. 1735-1739, Nov. 1998.

Operation
(a)

Before Optimiza-
tions

(b)
Memory Optimiza-

tions only

(c)
Code Optimizations

only

(d)
Code and Memory

Optimizations
Motion Estimation 1356000 33400 325000 13000
Motion Compensation 26200 4200 6400 3400
DCT 17200 670 6000 130
Quantization 7700 660 3300 660
Interpolation 16900 4200 2200 750
Reconstruction 31000 4000 9100 2260
Others 52000 8300 31200 6270
Total 1476000 51400 374000 24200

Table 1: Cycle counts (x1000) for various H.263 routines on the TMS320C6701 Evaluation Module.

Figure 1: Speedup of the H.263 encoder with different optimizations

0

10
20

30

40

50
60
70

Memory optimizations
only

 Code optimizations only Memory and code
optimizations

S
p

ee
d

u
p

 (
ti

m
es

)

0

20

40

60

80

100

No optimizations Memory
optimizations only

 Code
optimizations only

 Code and
memory

optimizations

Figure 2: Percent share of computation of the SAD between two macroblocks in full-search motion estimation
algorithm at different stages of optimizations

