
Future Work
 Combine methods 1 and 2

 Solve inverse problem to separate ∆zv and zg random processes

 Apply adaptive linear filtering and data fusion techniques to

         ∆zv and zg images

 Use scattering model that includes surface scattering

 Consider contextual information during optimization

 Re-train SAR imagery classifier to better isolate tall

   vegetation 

This work was supported by the National Aeronautics
and Space Administration, under the Topography and
Surface Change Program (Grant NAG5-2954) and the
Graduate Student Research Fellowship Program (Grant
NGT-50239).  

Acknowledgments

References
[1] F. Li and R. M. Goldstein, "Studies of multi-baseline

spaceborne interferometric synthetic aperture radars,"

IEEE Trans. Geosci. Remote Sensing, vol. 28, no. 5,

pp. 88-97, 1990.

[2] M. M. Crawford, S. Kumar, M. R. Ricard, J. C.

Gibeaut, and A. Neuenschwander, "Fusion of Air-

borne Polarimetric and Interferometric SAR For Clas-

sification of Coastal Environments," IEEE Trans.

Geosci. Remote Sensing, vol. 37, no. 3, pp. 1306-1315,

1999.

[3] R. N. Treuhaft and P. R. Siqueira, "Vertical structure

of vegetated land surfaces from interferometric and

polarimetric radar," Radio Science, vol. 35, no. 1, pp.

141-177, 1999.

[4] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty,

Nonlinear Programming: Theory and Algorithms,

John Wiley and Sons, Inc., 2nd ed., New York, NY,

1993.  

Conclusions
 Two methods developed to correct errors in INSAR images due to vegetation

 Data fusion approach employed adaptive linear filtering and combining of LIDAR and SAR data

 Inversion approach employed scattering models and nonlinear optimization

 Data fusion method
 Takes advantage of complementary measurement types

 Achieves moderate improvement in zSc

 Inversion method
 Directly solves for desired parameters and does not require additional data types

 Shows promise, but must be tested on real data

Method 2 Results

Variation of b with vegetation height.  NICC is normalized

interferometric cross correlation

 Using simulated terrain data
 Include measurement noise and random variations in free parameters {∆zv, zg, τ}

 Magnitude is scaled  relative to phase to improve convergence

 No phase wrapping in feasible region

 Robust to choice of  initial guess 

Estimates of ground and vegetation heights versus true values 

variance of detrended z
g
 =1.7 m

estimates:
bias = 0.02 m
std about true values = 0.53 m 

variance of detrended ∆z
v
 =1.0 m

estimates:
bias = 0.01 m
std about true values = 0.053 m 

Method 2: Solve an Inverse Problem
 Relate INSAR measurement to ground and vegetation heights

 Use electromagnetic scattering model A  to relate observations b to terrain parameters x [3]

 Observation vector b is  4 x 1 vector of magnitude and phase for two INSAR images

 Transform inverse problem into constrained nonlinear optimization problem
 Inequality constraints bound feasible region X

 Objective function and constraints are twice differentiable and convex on feasible region

 Model as sequential quadratic programming problem [4] 
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∆zv = vegetation height above ground
zg = ground elevation
τ = vegetation extinction coefficient

Method 1 Results
 Achieve 6% reduction in global mean squared error (MSE) relative to filtering alone

 Disadvantages
 Requires LIDAR and multiple-polarization SAR data

 Still must overcome inherent ambiguity of INSAR height measurement over vegetation

zSf zSc

SMSEBarren 0.72 m          SMSEBarren 0.69 m
SMSEMedium 0.50 m           SMSEMedium 0.50 m
SMSETrees       0.63 m           SMSETrees       0.59 m
SMSEGlobal 0.60 m           SMSEGlobal 0.57 m
∆MSEGlobal 13%           ∆MSEGlobal 19%

Square root of MSE (SMSE) relative to LIDAR after noise reduction zSf and after noise
reduction plus vegetation correction zSc.  ∆MSEGlobal is percent reduction in global MSE
from unfiltered zS.  

Transects from column 23 of test images

Barren      -0.23 m
Medium 0.03 m
Trees  0.20 m

Class-dependent height offsets added to  zSf 

Method 1: Data Fusion
 Two-step approach

 Reduce measurement noise in zS image with adaptive minimum mean squared error filter  zSf

 Use SAR and laser altimeter (LIDAR) images to correct zSf for vegetation errors  zSc

 Classify SAR magnitude images to locate pixels containing vegetation [2]

 Determine class-dependent height corrections using LIDAR data
 LIDAR has limited coverage, but high vertical resolution 

 LIDAR height image (λ = 1047 nm): zLINSAR height image (λ = 5.7 cm): zS Corrected INSAR height image: zSc

tall trees

Introduction
 Terrain topography can be determined over large areas using interferometric radar (INSAR)

 Synthetic aperture radar (SAR) produces complex-valued images

 Cross-correlating two images yields a phase φ used to solve for terrain heights zS [1]

 Vegetation introduces error into height measurements
 Scattering from both ground and vegetation leads to ambiguity (zg  zS  zv)

Single-pass
INSAR system

θS
ρS1

ρS2

zS

yS

hS

(ρS2 - ρS1)

B

α

1

2

ρS1, ρS2 >> B

hS = altitude of antenna 1
B = baseline distance
α = baseline angle
θS = incidence angle
ρS1 = path length from antenna 1
ρS2 = path length from antenna 2
yS and zS = target coordinates
azimuth direction is out of the plane
range direction is to the right

zg

zv

zS

vegetated

INSAR

non-vegetated

zg  zS  zvzS = zg

zS = hS
− ρS1

cosθS

yS
= ρ

S1 sinθS

φ = 2π
λ ρ

S 2
− ρ

S1
( )

geometry

−2π
λ Bsin θS −α( )

system parameters

Improved Accuracy for Interferometric Radar Images Using Polarimetric Radar and Laser Altimetry Data
K. Clint Slatton, Melba M. Crawford, and Brian L. Evans

The University of Texas at Austin
E-mail: slatton@csr.utexas.edu,  Ph: +1.512.471.5509,  Fax: +1.512.471.3570

Center for Space Research

The University of Texas at Austin


