
PARALLEL IMPLEMENTATION OF MULTIFILTERS

Niranjan Damera-Venkata and Brian L. Evans

Embedded Signal Processing Laboratory

Dept. of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712-1084 USA

fdamera-v,bevansg@ece.utexas.edu

ABSTRACT

A multi�lter is a �lter with matrix-valued coe�cients,
and is used in the processing of vector-valued signals,
e.g. color images. Convolution becomes a vector sum
of matrix-vector multiplication. In this paper, we e�-
ciently implement a multi�lter as a parallel combina-
tion of scalar �lters. Each scalar �lter works on one
component of the input vector signal, which increases
processing speed by the dimension of the vector-valued
signal. This means that by using N processors, the
throughput is increased by a factor of N while the to-
tal memory usage remains unchanged. We also present
a frequency-domain analysis of the �ltering.

1. INTRODUCTION

Vector-valued signals such as color images often have
signi�cant correlation among their components. Ap-
plying scalar �lters to each component ignores the cor-
relation. Multi�lters [1] are �lters with matrix-valued
coe�cients that can take into account the intercompo-
nent correlation of the vector signal being processed.
Multiwavelet �lter banks [2, 3, 4] are the extension of
conventional scalar �lter banks to the case of vector-
valued signals. These �lter banks employ multi�lters
as the analysis and synthesis �lters. Apart from signal
compression [5], multi�lters have been used in digital
image halftoning [6] to improve visual quality over con-
ventional scalar-valued �lters.

Multi�lters have high implementation complexity
even on programmable digital signal processors (DSPs),
which are optimized for matrix-vector multiplications
due to their single-cycle multiply-accumulate instruc-
tions [7]. In [4], the authors derive e�cient polyphase
implementations of multi�ltering followed by downsam-
pling. The �lters in the polyphase implementation are
themselves multi�lters.

This research was supported by a US NSF CAREER Award

under grant MIP-9702707.

In this paper, we express the operation of a mul-
ti�lter (not followed by a downsampling operation) in
terms of a conventional scalar �lters operating on the
the individual components of the vector-valued signal.
Section 2 de�nes the multi�lter in the time domain.
Sections 3 analyzes the direct implementation of one-
dimensional multi�lters on parallel programmable DSPs.
Section 4 derives an e�cient implementation of a one-
dimensional multi�lter in terms of scalar �lters. This
e�cient implementation is well suited for programmable
DSPs as well as VLIW DSPs and general-purpose pro-
cessors with Single Instruction Multiple Data (SIMD)
extensions. Section 5 compares the two parallel imple-
mentations. Section 6 extends the more e�cient par-
allel implementation to multiple dimensions. Section 7
concludes the paper.

2. NOTATION

In this paper, ~x(�) represents the input N -vector valued

signal to be �ltered. ~̂X(�) represents the z-transform of
the vector-valued signal sequence

~̂X(z) =
X
m

~x(m)z�m (1)

The multi�lter (which is assumed to be causal) will be
denoted by the N � N matrix valued sequence ~H(�).

~̂H(�) represents the z-transform of the matrix-valued
multi�lter sequence de�ned by

~̂H(z) =
X
m

~H(m)z�m (2)

A multi�lter with M N �N matrix coe�cients can be
expressed compactly as the N �NM matrix

~� =
h
~H(0) j ~H(1) j : : : j ~H(M � 1)

i
(3)

where ~H(0) � � � ~H(M�1) are the coe�cients. The �lter-
ing operation of a multi�lter is de�ned by matrix-vector

convolution is given by

~y(m) =

M�1X
k=0

~H(k)~x(m� k) (4)

where ~y(�) represents the N -vector valued output se-
quence. In the z domain the matrix-vector convolution
becomes a linear transformation by an N � N trans-
formation matrix given by

~̂Y(z) = ~̂H(z)~̂x(z) (5)

For a scalar signal x(m), we will denote the z-transform
by X(z) as usual.

3. PARALLEL PROGRAMMABLE DSPS

A direct implementation of (4) requires N separate
multiplication-accumulations to compute each compo-
nent of a single matrix-vector multiplication. The N
rows of the matrix multiply the same N vector in a
matrix-vector multiplication. By parallelizing each row
of computation, the data in the vector would have to
be shared among the processors, and the resulting in-
dividual vector dot products would have to be syn-
chronized. The input data is typically put into N cir-
cular bu�ers [7] of size M each to take advantage of
the hardware support for circular addressing on the
DSP. The �ltering would involve sharing of the circu-
lar bu�ers among the parallel processors. This means
that synchronization among the processors must be
performed within the loops, which will waste precious
clock cycles. Therefore, the naive (direct) implementa-
tion of (4) requiresMN2 multiplication-accumulations
performed sequentially, and does not make e�cient use
of multiple DSPs even if they are available.

4. PARALLEL BLOCK FILTERING

In the multi�lter operation in (4), the output vector
at each vector sample location m is computed by tak-
ing N linear combinations of all of the signal vector
components in the set

Sm = fxi(m� k); i = 0 � � �N; k = 0 � � �Mg (6)

The overall �ltering may be expressed in terms of the
matrix ~� as

~y(m) = ~�~x0(m) (7)

where

~x0(m) = [x0(m); x1(m) � � �xN (m�M + 1)]
T

(8)

We can reorder the vector-valued components of ~x0(m)
in (7) to create a scalar-valued sequence x00(�) by

x00(0) = x0(0)
x00(1) = x1(0)

...
x00(r) = xrmodN (

�
r

N

�
)

In many situations, the vector-valued signals are pro-
duced in \blocks" of an input scalar-valued signal via
the process described above. The samples of the nth
component of the output signal vector sequence ~y(�)
may be recovered exactly by �ltering the scalar se-
quence x00(�) with the �lter h(n)(�), with the additional
constraint that only everyNth output be retained. The
values of h(n)(�) are formed by reversing the nth row
of the matrix ~�, These operations may are represented
by

yn(m) =

MN�1X
k=0

h(n)(k)x00(Nm+N � 1� k) (9)

In the frequency domain, this operation may be ex-
pressed as

Yn(z) = (# N)
�
H(n)(z)X 00(z)z(N�1)

�
(10)

Filtering followed by subsampling may be implemented
e�ciently using the polyphase decomposition [8, 1]. If
we consider each of the N components of the input
signal vector, then the type-II polyphase decomposition
of the �lter is

H(n)(z) =

N�1X
i=0

H
(n)
i

(zN)z�(N�1�i) (11)

Substituting (11) into (10), and using the Noble Iden-
tity [8, 1] to commute the �ltering with the downsam-
pling, we get

Yn(z) =

N�1X
i=0

H
(n)
i

(z) (# N)X 00(z)z�(N�1�i)z(N�1)

(12)
For i = 0; 1; � � � ; N � 1

Xi(z) = (# N)X 00(z)zi (13)

where Xi(z) denotes the z-transform of the ith compo-
nent of the input signal vector.

Thus, we have the following decomposition of each
component of the output signal vector sequence yn(�) in
terms of conventional scalar �ltering operations on each
of the components of the input signal vector sequence:

Yn(z) =

N�1X
i=0

H
(n)
i

(z)Xi(z) (14)

The �ltering can be expressed in the time domain as

yn(m) =

N�1X
i=0

M�1X
k=0

h
(n)
i

(k)xi(m� k) (15)

This �ltering is illustrated in Fig. 1 where the �lters

h
(n)
i

, n = 0; 1; � � � ; N �1 and i = 0; 1; � � � ; N �1 are the
polyphase components of the nth row of the matrix
~� corresponding to the elements that multiply the ith
component of the input signal vector in (4).

5. EFFICIENCY ANALYSIS

Since ~� is �xed, the polyphase components of its rows
may be precomputed. The result is a set of conven-
tional �lters with scalar coe�cients, which enables the
components of the input signal vector sequence to be
bu�ered and �ltered independently of the other colors.
Since the size of a row of ~� is 1

N
, the throughput is

increased by a factor of N when the �ltering is imple-
mented in parallel. Because each �lter in the parallel
�lterbank of Fig. 1 hasM scalar coe�cients, the rate at
which these �lters operate to deliver the same through-
put is divided by a factor of N over the single processor
implementation of (4).

Equation (4) performs MN2 multiply accumulates
in a sequential fashion to compute all components of
the output signal vector. If we consider the �ltering
of an RGB image [6], then the parallel implementation
would speed up the processing by a factor of three,
although the total number of multiply-accumulates re-
mains the same. We may utilize three low-bandwidth,
low-cost processors instead of one high bandwidth pro-
cessor to obtain the same performance at a lower cost
[1], or exploit the instruction-level parallelism of a SIMD
or VLIW processor such as the Intel Pentium MMX or
Texas Instruments TMS320C6000, respectively. The
e�cient implementation computes the output N times
as fast if all of the operations are performed at the same
speed. The parallel implementation of Fig. 1 does not
require shared circular bu�ers. Each component of the
input vector sequence is put into a separate circular
bu�er on one of the N parallel processors. This allows
for fast, low-overhead loop code.

6. EXTENSION TO MULTIDIMENSIONAL

VECTOR-VALUED SIGNALS

The parallel implementation may easily be extended
for to the �ltering of multidimensional signals such as
images. The multi�lter operation on an L-dimensional

N -vector valued signal is given by

~y(~m) =
X
~k2R

~H(~k)~x(~m� ~k) (16)

where ~m and ~k are L-dimensional vectors and R is the
region of support of the multi�lter.

The multi�lter is equivalent to a block �lter consist-
ing of L samples per block. The �lter mask is speci�ed
in blocks, and the �lter moves from block to block in-
stead of from sample by sample. At each block, the
�ltering given by (16) computes N linear combinations
of all of the samples within the block mask. This
�ltering is illustrated in Fig. 2 for the case L = 2,
N = 3 (RGB image), and the four matrix-coe�cient
multi�lter (\error-�lter") mask in [6]. Each component
of the output N -vector is then recovered by �ltering
and downsampling the vector sequence rearranged into
blocks (see Fig. 2) by using the scalar L-dimensional
�lter corresponding to the rows of the matrix ~�0 by

~�0 =
h
~H0 j ~H1 j : : : j ~HjRj�1

i
(17)

where j R j is the cardinality of R and the ~Hi represent
the coe�cients of the multi�lter within the support or-
dered arbitrarily. The downsampling matrix is given
by � = N~IN�N . With this interpretation of block �l-
tering in L dimensions and (# �) replacing (# N), we
can use essentially the same arguments as in Section 4
to obtain the parallel form for the multi�lter given by

yn(~m) =

N�1X
i=0

X
~k2R

h
(n)
i

(~k)xi(~m� ~k) (18)

The speedup due to parallel implementation isN which
is identical to the one-dimensional case.

7. CONCLUSION

This paper presents an e�cient implementation of �l-
ters with matrix valued coe�cients. For �lters with M
N �N coe�cients, there are three possible implemen-
tations:

1. use the convolution de�nition on a single proces-
sor, which involves a sum of matrix-vector calcu-
lations: MN2 multiply-accumulates

2. apply N scalar �lters in parallel N times with
di�erent coe�cients each time: M multiply ac-
cumulates per �lter

3. apply N2 scalar �lters in parallel: M multiply
accumulates per �lter

We show that �ltering on an N -vector valued sequence
may be accomplished e�ciently by using N2 scalar val-
ued �lters, with N �lters applied in parallel N times.
We do not apply the N2 �lters in parallel because that
would involve data duplication of the input stream and
result in increased bu�er size over the naive implemen-
tation. The parallel implementation however, involves
synchronization of the parallel processors after each
parallel �lter has �nished its �ltering operation, if N
parallel processors are used to implement the �ltering.

8. REFERENCES

[1] G. Strang and T. Q. Nguyen, Wavelets and Filter

Banks, Wellesley-Cambridge Press, 1996.

[2] G. C. Donovan, J. S. Geronimo, D. P. Hardin, and P.

R. Massopust, \Construction of orthogonal wavelets

using fractal interpolation functions", SIAM Journal

of Mathematical Analysis vol. 27, no. 4, pp. 1158{1192,

July 1996.

[3] G. Strang and V. Strela, \Short wavelets and matrix

dilation equations", IEEE Trans. on Signal Processing

vol. 43, no. 1, pp. 108{115, Jan. 1995.

[4] X.-G. Xia and B. W. Suter, \Multirate �lter banks

with block sampling", IEEE Trans. on Signal Process-

ing, vol. 44, no. 3, pp. 484{496, March 1996.

[5] V. Strela, P. N. Heller, G. Strang, P. Topiwala and C.

Heil, \The application of multiwavelet �lterbanks to

image processing", IEEE Trans. on Image Processing

vol. 8, no. 4, pp. 548{563, Apr. 1999.

[6] L. Akarun, Y. Yardimci and A. E. Cetin, \Adaptive

methods for dithering color images", IEEE Trans. on

Image Processing vol. 6, no. 7, pp. 950{955. July 1997.

[7] P. Lapsley, J. Bier, A. Shoham and E. A. Lee, DSP

Processor Fundamentals, Berkeley Design Technology,

Inc., 1996

[8] P. P. Vaidyanathan, Multirate Systems and Filter

Banks, Prentice-Hall, Inc., 1993.

X0(z)

X1(z)

XN�1(z)

-

-

-

H
(n)
0 (z)

H
(n)
1 (z)

H
(n)

N�1(z)

C
C
C
C
C
C
C
C
C
C
C
C
CW

A
A
A
A
A
AU

�
�
�
�
�
����
��
�

Yn(z)
-

Figure 1: A parallel implementation of a multi�lter
which computes the nth component of the output sig-
nal N -vector sequence. N2 �lters are required for the
computation of all of the components of the output
vector sequence.

G

0 B

 R R R

 R G

GG

 B

 B B

0

0 0

Current sample-block

mask

location of error filter

of error filter mask

Sample-block

Figure 2: Example multi�lter operating on an RGB
image expressed as sample blocks. Three linear combi-
nations of all samples in the mask are computed at the
current location (denoted by the circle) to compute the
red, green and blue samples of the multi�lter output.
The �lter moves in a raster scan of the blocks.

