PARALLEL IMPLEMENTATION OF MULTIFILTERS

Niranjan Damera-Venkata and Brian L. Evans

Embedded Signal Processing Laboratory
Dept. of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712-1084 USA
{damera-v,bevans}@Qece.utexas.edu

ABSTRACT

A multifilter is a filter with matrix-valued coefficients,
and is used in the processing of vector-valued signals,
e.g. color images. Convolution becomes a vector sum
of matrix-vector multiplication. In this paper, we effi-
ciently implement a multifilter as a parallel combina-
tion of scalar filters. Each scalar filter works on one
component of the input vector signal, which increases
processing speed by the dimension of the vector-valued
signal. This means that by using N processors, the
throughput is increased by a factor of N while the to-
tal memory usage remains unchanged. We also present
a frequency-domain analysis of the filtering.

1. INTRODUCTION

Vector-valued signals such as color images often have
significant correlation among their components. Ap-
plying scalar filters to each component ignores the cor-
relation. Multifilters [1] are filters with matrix-valued
coefficients that can take into account the intercompo-
nent correlation of the vector signal being processed.
Multiwavelet, filter banks [2, 3, 4] are the extension of
conventional scalar filter banks to the case of vector-
valued signals. These filter banks employ multifilters
as the analysis and synthesis filters. Apart from signal
compression [5], multifilters have been used in digital
image halftoning [6] to improve visual quality over con-
ventional scalar-valued filters.

Multifilters have high implementation complexity
even on programmable digital signal processors (DSPs),
which are optimized for matrix-vector multiplications
due to their single-cycle multiply-accumulate instruc-
tions [7]. In [4], the authors derive efficient polyphase
implementations of multifiltering followed by downsam-
pling. The filters in the polyphase implementation are
themselves multifilters.

This research was supported by a US NSF CAREER Award
under grant MIP-9702707.

In this paper, we express the operation of a mul-
tifilter (not followed by a downsampling operation) in
terms of a conventional scalar filters operating on the
the individual components of the vector-valued signal.
Section 2 defines the multifilter in the time domain.
Sections 3 analyzes the direct implementation of one-
dimensional multifilters on parallel programmable DSPs.
Section 4 derives an efficient implementation of a one-
dimensional multifilter in terms of scalar filters. This
efficient implementation is well suited for programmable
DSPs as well as VLIW DSPs and general-purpose pro-
cessors with Single Instruction Multiple Data (SIMD)
extensions. Section 5 compares the two parallel imple-
mentations. Section 6 extends the more efficient par-
allel implementation to multiple dimensions. Section 7
concludes the paper.

2. NOTATION

In this paper, X(-) represents the input N-vector valued

signal to be filtered. X(-) represents the z-transform of
the vector-valued signal sequence

X(z) = 3 %(m)z" (1)

The multifilter (which is assumed to be causal) will be
denoted by the N x N matrix valued sequence H(-).

H() represents the z-transform of the matrix-valued
multifilter sequence defined by

H(z) = S H(m)z" 2)

A multifilter with M N x N matrix coefficients can be
expressed compactly as the N x NM matrix

= [ﬁ(O) | FL(1) | ... |H(M - 1)] (3)

where F(0) - - - H(M —1) are the coefficients. The filter-
ing operation of a multifilter is defined by matrix-vector

convolution is given by

M—

[

— k) (4)

k=0

where ¥(-) represents the N-vector valued output se-
quence. In the z domain the matrix-vector convolution
becomes a linear transformation by an N x N trans-
formation matrix given by

~ ~

Y(2) = H(2)X(2) (5)

For a scalar signal z(m), we will denote the z-transform
by X (z) as usual.

3. PARALLEL PROGRAMMABLE DSPS

A direct implementation of (4) requires N separate
multiplication-accumulations to compute each compo-
nent of a single matrix-vector multiplication. The N
rows of the matrix multiply the same N vector in a
matrix-vector multiplication. By parallelizing each row
of computation, the data in the vector would have to
be shared among the processors, and the resulting in-
dividual vector dot products would have to be syn-
chronized. The input data is typically put into N cir-
cular buffers [7] of size M each to take advantage of
the hardware support for circular addressing on the
DSP. The filtering would involve sharing of the circu-
lar buffers among the parallel processors. This means
that synchronization among the processors must be
performed within the loops, which will waste precious
clock cycles. Therefore, the naive (direct) implementa-
tion of (4) requires M N? multiplication-accumulations
performed sequentially, and does not make efficient use
of multiple DSPs even if they are available.

4. PARALLEL BLOCK FILTERING

In the multifilter operation in (4), the output vector
at each vector sample location m is computed by tak-
ing N linear combinations of all of the signal vector
components in the set
Sm={zim—-k),i=0---N,k=0---M} (6)

The overall filtering may be expressed in terms of the
matrix I' as

¥(m) =TX'(m) (7)

where

X'(m) = [zo(m),z1(m) -+ xN

We can reorder the vector-valued components of X'(m)
in (7) to create a scalar-valued sequence z"(-) by

z"(0) = x0(0)
z"(1) = z1(0)
.’L'”(T) : «TrmodN(L%J)

In many situations, the vector-valued signals are pro-
duced in “blocks” of an input scalar-valued signal via
the process described above. The samples of the nth
component of the output signal vector sequence y(-)
may be recovered exactly by filtering the scalar se-
quence z'(-) with the filter (") (-), with the additional
constraint that only every Nth output be retained. The
values of h(™(.) are formed by reversing the nth row
of the matrix f‘, These operations may are represented
by

MN -1

Z A (&

In the frequency domain, this operation may be ex-
pressed as

Ya(2) = (L N) (H™(2)X"(2)2N7D) (10)

Filtering followed by subsampling may be implemented
efficiently using the polyphase decomposition [8, 1]. If
we consider each of the N components of the input
signal vector, then the type-II polyphase decomposition
of the filter is

2" (Nm+N—-1—k) (9)

N-1

=0
Substituting (11) into (10), and using the Noble Iden-
tity [8, 1] to commute the filtering with the downsam-
pling, we get

N -1
— (1 N) X" (2)2 (13)

where X;(z) denotes the z-transform of the ith compo-
nent of the input signal vector.

Thus, we have the following decomposition of each
component of the output signal vector sequence y,,(+) in
terms of conventional scalar filtering operations on each
of the components of the input signal vector sequence:

N—-1
2) =Y H"(2)Xi(2) (14)
=0

—(N—=1—1) (11)

\l/N) XII() —(N—l—i)Z(N—l)

(12)
Fori=0,1,---

Xi(2)

The filtering can be expressed in the time domain as

N—-1M-1

yu(m) =3 3 B (k)ai(m — k) (15)

i=0 k=0

This filtering is illustrated in Fig. 1 where the filters
W™ n=0,1,---,N—1landi=0,1,---,N —1 are the
polyphase components of the nth row of the matrix
r corresponding to the elements that multiply the ith
component of the input signal vector in (4).

5. EFFICIENCY ANALYSIS

Since T is fixed, the polyphase components of its rows
may be precomputed. The result is a set of conven-
tional filters with scalar coefficients, which enables the
components of the input signal vector sequence to be
buffered and filtered independently of the other colors.
Since the size of a row of I is %, the throughput is
increased by a factor of N when the filtering is imple-
mented in parallel. Because each filter in the parallel
filterbank of Fig. 1 has M scalar coefficients, the rate at
which these filters operate to deliver the same through-
put is divided by a factor of IV over the single processor
implementation of (4).

Equation (4) performs M N? multiply accumulates
in a sequential fashion to compute all components of
the output signal vector. If we consider the filtering
of an RGB image [6], then the parallel implementation
would speed up the processing by a factor of three,
although the total number of multiply-accumulates re-
mains the same. We may utilize three low-bandwidth,
low-cost processors instead of one high bandwidth pro-
cessor to obtain the same performance at a lower cost
[1], or exploit the instruction-level parallelism of a SIMD
or VLIW processor such as the Intel Pentium MMX or
Texas Instruments TMS320C6000, respectively. The
efficient implementation computes the output N times
as fast if all of the operations are performed at the same
speed. The parallel implementation of Fig. 1 does not
require shared circular buffers. Each component of the
input vector sequence is put into a separate circular
buffer on one of the N parallel processors. This allows
for fast, low-overhead loop code.

6. EXTENSION TO MULTIDIMENSIONAL
VECTOR-VALUED SIGNALS

The parallel implementation may easily be extended
for to the filtering of multidimensional signals such as
images. The multifilter operation on an L-dimensional

N-vector valued signal is given by

Fi) = 3 F(R)%(- K) (16)
KeR

where m and k are L-dimensional vectors and R is the
region of support of the multifilter.

The multifilter is equivalent to a block filter consist-
ing of L samples per block. The filter mask is specified
in blocks, and the filter moves from block to block in-
stead of from sample by sample. At each block, the
filtering given by (16) computes N linear combinations
of all of the samples within the block mask. This
filtering is illustrated in Fig. 2 for the case L = 2,
N = 3 (RGB image), and the four matrix-coefficient
multifilter (“error-filter”) mask in [6]. Each component
of the output N-vector is then recovered by filtering
and downsampling the vector sequence rearranged into
blocks (see Fig. 2) by using the scalar L-dimensional
filter corresponding to the rows of the matrix IV by

I = [ﬁo B TE: (17)

where | R | is the cardinality of R and the H; represent
the coefficients of the multifilter within the support or-
dered arbitrarily. The downsampling matrix is given
by A = NIyxny. With this interpretation of block fil-
tering in L dimensions and ({ A) replacing (} N), we
can use essentially the same arguments as in Section 4
to obtain the parallel form for the multifilter given by

N-1
yu (@) = > 3 A K)e(m-K) (18)

=0 keR

The speedup due to parallel implementation is N which
is identical to the one-dimensional case.

7. CONCLUSION

This paper presents an efficient implementation of fil-
ters with matrix valued coefficients. For filters with A/
N x N coefficients, there are three possible implemen-
tations:

1. use the convolution definition on a single proces-
sor, which involves a sum of matrix-vector calcu-
lations: M N? multiply-accumulates

2. apply N scalar filters in parallel N times with
different coefficients each time: M multiply ac-
cumulates per filter

3. apply N2 scalar filters in parallel: M multiply
accumulates per filter

We show that filtering on an N-vector valued sequence
may be accomplished efficiently by using N2 scalar val-
ued filters, with NV filters applied in parallel N times.
We do not apply the N2 filters in parallel because that
would involve data duplication of the input stream and
result in increased buffer size over the naive implemen-
tation. The parallel implementation however, involves
synchronization of the parallel processors after each
parallel filter has finished its filtering operation, if N
parallel processors are used to implement the filtering.

8. REFERENCES

[1] G. Strang and T. Q. Nguyen, Wauvelets and Filter
Banks, Wellesley-Cambridge Press, 1996.

[2] G. C. Donovan, J. S. Geronimo, D. P. Hardin, and P.
R. Massopust, “Construction of orthogonal wavelets
using fractal interpolation functions”, SIAM Journal
of Mathematical Analysis vol. 27, no. 4, pp. 1158-1192,
July 1996.

[3] G. Strang and V. Strela, “Short wavelets and matrix
dilation equations”, IEEE Trans. on Signal Processing
vol. 43, no. 1, pp. 108-115, Jan. 1995.

[4] X.-G. Xia and B. W. Suter, “Multirate filter banks
with block sampling”, IEEE Trans. on Signal Process-
ing, vol. 44, no. 3, pp. 484-496, March 1996.

[6] V. Strela, P. N. Heller, G. Strang, P. Topiwala and C.
Heil, “The application of multiwavelet filterbanks to
image processing”, IEEE Trans. on Image Processing
vol. 8, no. 4, pp. 548-563, Apr. 1999.

[6] L. Akarun, Y. Yardimci and A. E. Cetin, “Adaptive
methods for dithering color images”, IEEE Trans. on
Image Processing vol. 6, no. 7, pp. 950-955. July 1997.

[7] P. Lapsley, J. Bier, A. Shoham and E. A. Lee, DSP
Processor Fundamentals, Berkeley Design Technology,
Inc., 1996

[8] P. P. Vaidyanathan, Multirate Systems and Filter
Banks, Prentice-Hall, Inc., 1993.

[
RS
AN NS

Figure 1: A parallel implementation of a multifilter
which computes the nth component of the output sig-
nal N-vector sequence. N? filters are required for the
computation of all of the components of the output
vector sequence.

Sample-block
of error filter mask
R G| R G| R G /
B B 0 |B 0
R G Current sample-block
O =~ location of error filter
B 0 mask

Figure 2: Example multifilter operating on an RGB
image expressed as sample blocks. Three linear combi-
nations of all samples in the mask are computed at the
current location (denoted by the circle) to compute the
red, green and blue samples of the multifilter output.
The filter moves in a raster scan of the blocks.

