
1

Optimization of Vertical and Horizontal Beamforming Kernels
on the PowerPC G4 Processor with AltiVec Technology

Young H. Cho, David Brunke, and Greg E. Allen
Applied Research Laboratories:

The University of Texas at Austin
Austin, TX 78758 U.S.A.

{young, dbrunke, gallen}@arlut.utexas.edu

Brian L. Evans
Embedded Signal Processing Laboratory

The University of Texas at Austin
Austin, TX 78712-1084 U.S.A.

bevans@ece.utexas.edu

Abstract

Three-dimensional real-time digital sonar
beamforming requires 4 to 12 GFLOPS, 1 to 2 GB of
memory, and about 100 MB/s of I/O bandwidth. Allen and
Evans have implemented a 4-GFLOP sonar beamformer in
real-time on a Sun UltraSPARC II server with 16 333-MHz
processors by utilizing the Visual Instruction Set (VIS)
single-instruction multiple-data (SIMD) extensions. In this
paper, we rewrite the horizontal and vertical beamforming
kernels to use AltiVec SIMD extension for the PowerPC.
AltiVec can execute up to four 32-bit floating-point
multiply and accumulate (MAC) operations per
instruction. In the PowerPC implementation, we prefetch
and realign data for the 128-bit SIMD registers of AltiVec.
We evaluate the performance of these beamforming
kernels on the PowerPC and the UltraSPARC-II to
evaluate the impact of the compiler, SIMD word
alignment, and cache block alignment on performance.

1.0 Introduction

Since 1992, the digital signal processor (DSP) market has
grown at a rate of 40% per year. In response, designers of
general-purpose processors began to embed signal
processing architectures into their processing cores. These
native signal processing (NSP) extensions enable
integrated processing system solutions for multimedia and
signal processing applications [1].

Real-time digital sonar beamforming can require
several GFLOPS of computation and 50-200 MB/s of I/O.
Beamformers were initially implemented in custom
hardware (before 1990), then in commercial off-the-shelf
components (1990s). Work is underway to implement
these systems in commodity multiprocessor servers. One
recent implementation by Allen and Evans [2] uses a
commercial general-purpose 12 processor symmetric
multiprocessor (SMP) workstation from Sun
Microsystems.

Signal processing kernels can exploit data parallelism
by using Single Instruction Multiple Data (SIMD)
arithmetic operations, which are available in native signal
processing extensions [2,6], such as the Visual Instruction
Set (VIS) on the Sun UltraSPARC-II processor [4]. By
using a Sun Ultra Enterprise server with 12 333-MHz

UltraSPARC-II CPUs, a real-time beamformer delivering
4 GFLOPS on 160 MB/s of streaming data was realized
using 1.2 GB of memory [2,6].

The goal of our research is to further explore the
effectiveness of NSP extensions by optimizing and
assessing the performance of beamforming kernels using
AltiVec on the PowerPC [5]. We evaluate the performance
of these beamforming kernels on the PowerPC and the
UltraSPARC-II to evaluate the impact of the compiler,
SIMD word alignment, and cache block alignment on
performance.

2.0 Native Signal Processing Extensions

Many high performance embedded applications are
programmed on systems with a few general-purpose
processors as system controllers with a larger number
(possibly hundreds) of specialized DSPs to perform
scientific calculations. However, this type of system has
many disadvantages such as different programming
platforms and unequal performance advances in processor
technologies. Since 1995, many manufacturers of high
performance general-purpose processors have integrated
native signal processing instructions onto their processor
cores to offer integrated solutions that combine the
functions of both DSP and general-purpose processors.
Such processors usually have a common programming and
executing environment allowing easier and faster software
development.

2.1 UltraSPARC Visual Instruction Set

A SIMD architecture allows an instruction to be performed
on multiple data, thereby potentially increasing the
computation performance proportional to the size of the
SIMD registers. However, most SIMD architectures
require that the input data is aligned in the memory
according to the size of the register. Therefore, if the data
is not aligned in the memory, additional instructions may
be needed for the data permutation to align the data.

The Visual Instruction Set (VIS) is a set of signal
processing instructions based on a SIMD architecture. The
floating-point data of the UltraSPARC processor core is
enhanced with graphics integer units to support VIS. With
50 new CPU instructions, VIS can perform integer

2

operations on multiple words with a single instruction.
Thus, VIS can achieve up to four times speedup with 8-bit
by 16-bit fixed-point multiplication using the SIMD
arithmetic logic [4].

2.2 PowerPC AltiVec

The AltiVec vector unit is sectioned into a separate sub-
unit of the processor as are with the floating-point and
integer units. As shown in Fig. 1, the vector unit has its
own 32 by 128-bit wide register file for use with 150 new
floating point and integer SIMD instructions. It allows
execution of up to four 32-bit floating point MAC
operations per instruction [5]. AltiVec offers greater
computing resources than VIS, and is potentially a much
more powerful signal processing extension.

3.0 Beamforming Algorithm

Sonar beamformers use the output of an array of sensor
elements to determine from which direction a sound is
coming. We implement a time-domain beamforming
algorithm which weights, appropriately delays and sums
the outputs of the sensor array. The weighting of the sensor
outputs helps to improve the spatial response [3].

The time delay resolution required is typically several
times the Nyquist rate for preserving the signal frequency
content. Instead of sampling at a higher rate, digital
interpolation with Finite Impulse Response (FIR) filters to
gives a satisfactory time delay resolution [3]. This is called
digital interpolation beamforming, and is shown in Fig. 2.
Analog data is sampled at just above the Nyquist rate and

then interpolated, delayed, and summed.
Our implementations decompose a 3-D beamformer

into horizontal and vertical subsystems. This method of
beamforming enables 3-D mapping of underwater surfaces
[2]. The vertical beamformer computes three sets of
vertical outputs called staves. Three dot products are
computed with each column of 10 vertical transducers and
three coefficient vectors as shown in Figs. 3 and 4. For
improved performance, we use SIMD integer computation.
The vertical beamformer also converts the data to floating-
point format for the following horizontal stages.

Three identical horizontal beamformers process the
three sets of stave results to calculate horizontal beams.
The horizontal beamformers use digital interpolation
beamforming. The interpolation in the horizontal
beamforming kernel is simplified by using a two-point FIR
filter, which gives enough accuracy for this system. The
overall system description is shown in Fig. 3.

The system also leverages the Computational Process
Network model [2]. The beamforming kernels are broken
into many process nodes (threads) connected by queues.
Since the application will run in real time, dynamically
changing the queue sizes is not desirable. The queue sizes
are set at initialization time to be large enough to never
cause artificial deadlock from writing to a full queue.

4.0 AltiVec Implementation

Using recent PowerPC G4/7400 processors with AltiVec,
we confirm the evaluations assessed with various PowerPC
simulators [7]. We evaluate the results of the vertical and
horizontal beamforming kernels programmed with AltiVec
on the G4 processor in a real-time working context.

We implement the kernels in the Linux operating

Fig. 1: Block Diagram of PowerPC AltiVec Unit

128-bit register out

InA

InC

32 by 128 bit Vector Register File

Vector Logic Unit

InB

Fig. 2: Digital Interpolation Beamformer

Sensor
Array

•
•
•

τ N

∑ Beam

τ 1

•
•
•

Interpolate

Interpolate

Vertical
Beamformer

40 MB/s

32 MB/s
V

32 MB/s

32 MB/s

Sensor
Elements H

H

H

Horizontal
Beamformers

24 MB/s

24 MB/s

24 MB/s

Three Staves

Fan 1 Beam

Fan 2 Beam

Fan 3 Beam

Figure 3: Block Diagram of the 3-D sonar beamformer

40 MB/s

40 MB/s

40 MB/s

queues

1 x 10 - data
samples
(Stave)

Figure 4: Sensor array model with 80 staves

80 staves

3

system using the GCC compiler. An AltiVec enabling
patch [8] provided by Motorola is applied to GNU C
Compiler (GCC) to enable compilation of AltiVec
instructions in C++. This simplifies development by
allowing both the signal processing kernels and the
supporting framework software to be written in the same
language and environment.

Like the VIS extension in UltraSPARC, AltiVec is a
SIMD extension in PowerPC. However, the programming
approaches are very different due to different hardware
design. One of the major differences is the width of the
data that each processor uses in its extension instructions.
For the most efficient usage, the input and output data used
with AltiVec should be 128-bit aligned [5,8,9].

4.1 Process Network Programming Model

The inputs and the outputs of the beamforming kernels are
queues. In the previous implementation, the queue was
allocated contiguously with each set of stave samples
addressed consecutively according to the time at which
they were sampled. Since the two-point interpolation in the
horizontal beamformer uses the samples collected from a
stave two consecutive times, the original queue structure
would require the sample points to be referenced with two
different addresses distanced by the size of a stave. By
transposing the queue, the samples for each stave become
contiguous according to the sampling times. Such an
arrangement would allow each vector load instruction to
load up to four samples required for the calculation at
once. We refer to the transposing of the queue as corner
turning.

Even though the corner turning may benefit the vector
load, it introduces a few problems. First, the index
calculation becomes more complex, requiring the queue
size to be added or subtracted to address the adjacent set of
stave samples. Second, due to the necessary arrangement
of the queue in memory, it is more difficult to implement
dynamically growing queues. The effect of the first
problem is inevitable without significant change in our
data structure. However, the second problem disappears
because we allocate the queue to be large enough to
prevent artificial deadlock.

4.2 Vertical Beamforming Kernel

In the vertical beamformer, we need to compute three dot
products on each set of ten 16-bit integer samples with
three sets of coefficients. To avoid arithmetic overflow or
underflow, the results are stored into 32-bit integers. To
accommodate the horizontal beamforming kernel, the
results are first converted to 32-bit floating-point numbers
then corner-turned into the queue.

The input and output structure of the vertical
beamforming kernel remains the same because of the way

in which the hardware collects and stores the data into the
queue. The vertical beamformer uses AltiVec instructions
to load four 16-byte word aligned data from the queue at a
time. The words are then transposed to perform dot
products with three different sets of coefficients.

The resulting vectors are stored in strides to
accomplish corner turning of the entire contents of the
queue. The corner turned data in the queue is fed into the
horizontal kernels to minimize data permutations required
for the input vectors.

The vertical beamforming algorithm performs dot
products requiring large amounts of sequential data in a
short time. Therefore, every time the process attempts to
access data that is not in the data cache, it is stalled until
the block of the data is loaded into the cache. We use the
AltiVec data pre-fetching instructions to reduce data cache
misses.

4.3 Horizontal Beamforming Kernel

The horizontal beamformer loads the corner turned
samples using the vector load operation. Although the
number of load instructions is reduced due to the AltiVec
vector operations, the data is permuted to meet the
alignment constraints for the instructions before the
computation.

As described earlier, the algorithm performs two-point
interpolation with consecutive samples from each stave.
Because the input to the horizontal kernel has been corner
turned, consecutive samples in memory are consecutive
samples of the same stave in time. As shown on Fig. 5,
data blocks labeled 1 through 9 represent sequential
samples collected from a given stave.

To reduce the number of load and the permute
instructions, two sets of the same coefficients are stored,
each of which are aligned differently by one. The vector
multiply and accumulate instructions compute the result
using two coefficient sets to yield the two-point

1 2 3 4 5 6 7 8 9

a b a b

b a b a

9 2 3 4

9 2 3 4 5 6 7 8

⊗ = α ⊗ = β

⊗ = ε ⊗ = δ

Figure 5: AltiVec Implementation of 2-point Interpolation

a1 b2 a3 b4

a5 b6 a7 b8

b9 a2 b3 a4

b5 a6 b7 a8

a2 b3 a4 b5

a6 b7 a8 b9

ε:

δ:

α:

β:

vector shiftCoefficient 1a

Coefficient 1b

Results

Data

Data

4

multiplication. Up to four floating-point multiply and
accumulates are computed with each AltiVec instruction.
These results are then summed and permuted to yield two-
point interpolated beams.

By unrolling the instruction loops, more data
independent instructions can be executed at the same time.
Thus, the vector unit pipeline can be filled without having
to wait for the expensive floating-point calculation to
complete. The results are once again placed in a corner
turned output queue of the horizontal beamformer.

5.0 Results and Analysis

Fig. 6 shows the performance measurements in operations
per cycle for the new beamforming kernels written in
AltiVec versus previous implementation in VIS for
UltraSPARC. The results are organized according to the
development platform such as the operating system and
compiler, as well as the usage of the native signal
processing extensions, pre-fetch instructions, and input
data size.

For the horizontal kernel, performance is measured
from several versions of loop-unrolled kernels. Due to
different optimizations used in compilers and the processor
architecture, the compiled kernels gave different optimal
number of loop unrolling iterations for the generated code.
Fig. 6b shows the performances of the versions with the
best number of unrolled loops.

As performance results indicate, the compiler plays a
large role in the performance. Unlike SunCC, GCC is a
generic, non-commercial C compiler that does not consider
many potential architectural advantages of each processor.
Even with optimization and architectural tuning flags
enabled, GCC compiled code performed as much as 50%

slower than the SunCC compiled code on the same
machine.

Adding VIS to the vertical kernel increased the
performance by a factor of two to three, whereas adding
AltiVec into the kernel increased the performance by a
factor of four. Initially, adding the AltiVec extensions to
the code doubled the performance of the kernel whereas
the upper limit was four due to the SIMD architecture.
This discouraging result led us to focus on the overhead
from vector permutation. Altering the algorithm to reduce
the vector instructions in the code did not significantly
increase the performance, which indicated that the
bottleneck of the vertical beamforming implementation
was not the instruction count.

So, we turned our attention to the memory
performance. Through several iterations of performance
tests, we found that adding prefetch instructions increased
the performance up to 1.4 times. We also unexpectedly
discovered that by not allocating the queue lengths to be a
multiple of 16 Kbytes, we increased the performance by
1.2 times. By examining the instructions generated from
the code, we found that this alignment was most likely
causing cache thrashing. With these adjustments, the best
kernel with AltiVec executed over four times faster than
the version without the AltiVec.

The horizontal kernel also executed approximately
four times faster with the AltiVec extensions. A similar
performance increase occurred when the input data queues
sizes were not a multiple of 16 Kbytes. However, the data
pre-fetching did not affect the performance significantly in
the optimal case. This is likely due to our kernel
implementation that emphasizes coefficient and sample
data reuse, thereby reducing the total number of cache
misses.

(a) Vertical Kernel Performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1

2

3

4

5

6

7

8

Integer Operations per Cycle

Ult raSP A R C w/ VIS o n SunOS/SunC C w/ D ata P refetc hing 65k s am ples

Ult raSP A R C w/ VIS o n SunOS/SunC C w/ D ata P refetc hing 64k s am ples

Ult raSP A R C w/o VIS o n SunOS/SunC C w/o D ata P refetc hing

Ult raSP A R C w/o VIS o n SunOS/GC C w/o D ata P refetc hing

G 4 w/ A l t iV e c o n L in u x/ G C C w/ D a t a P re f e t c h in g 6 5 k s a m p le s

G4 w/ A lt iVec o n Linux/GC C w/ D ata P refetc hing 64k s am ples

G4 w/ A lt iVec o n Linux/GC C w/o D ata P refetc hing

G4 w/o A lt iVec o n Linux/GC C w/o D ata P refetc hing

(b) Horizontal Kernel Performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

1

2

3

4

5

6

7

8

9

10

Floating-point Operations per Cycle

Ult raSP A R C w/o VIS o n SunOS/SunC C w/ D ata P refetc hing 65k s am ples

Ult raSP A R C w/o VIS o n SunOS/SunC C w/ D ata P refetc hing 64k s am ples

Ult raSP A R C w/o VIS o n SunOS/GC C w/o D ata P refetc hing 65k s am ples

Ult raSP A R C w/o VIS o n SunOS/GC C w/o D ata P refetc hing 64k s am ples

Ult raSP A R C w/o VIS o n SunOS/GC C w/o D ata P refetc hing

G4 w/ A lt iVec o n L inux/GC C w/ D ata P refetc hing 64k s am ples

G4 w/ A lt iVec o n L inux/GC C w/o D ata P refetc hing 65k s am ples

G4 w/o A lt iVec o n Linux/GC C w/o D ata P refetc hing

G4 w/ A lt iVec o n L inux/GC C w/o D ata P refetc hing 64k s am ples

G 4 w / A l t iV e c o n L in u x/ G C C w/ D a t a P re f e t c h in g 6 5 k s a m p le s

Figure 6: Beamforming Kernel Performance Measurements

5

6.0 Conclusion

In this paper, we program horizontal and vertical
beamforming kernels for a 3-D sonar system on the
PowerPC G4 processor using GNU C compiler. We
develop a version of each beamformer with and without
the PowerPC AltiVec extensions. The vertical
beamforming kernel requires rearrangement and
cornerturning of the data for efficient use of the 128-bit
long word SIMD units. For the horizontal beamforming
kernel, a new data structure has to be integrated to
minimize the number of permutations needed to align the
data for more efficient use of the SIMD instructions.

We evaluate the performance of our beamforming
kernels on the PowerPC G4 and previously developed
beamforming kernels on the UltraSPARC-II

• with and without handcoded AltiVec extensions,
• with and without data prefetching, and
• with and without alignment of data blocks on

cache boundaries.
Compiler optimization and SIMD word alignment

improve performance on both processors. Better backend
compilation methods optimized for the processor can make
the same code execute two to three times faster. The longer
the SIMD word, the more difficult it is to align data with a
SIMD register. Because a SIMD word on the PowerPC is
twice that of the UltraSPARC’s SIMD word, the AltiVec
implementation of the horizontal beamformer requires use
of permute instructions to align the data.

For cache usage, aligning blocks of data along cache
boundaries improved performance on the UltraSPARC but
degraded performance on the PowerPC. The architectural
difference in the caches can cause the PowerPC G4 cache
to be used inefficiently when the code for the UltraSPARC
is ported directly onto the G4. This was first observed in
the vertical kernel implementation under PowerPC, as
there was a 15 to 20% performance loss whenever the
sample size was a multiple of 16 kbytes.

PowerPC with AltiVec extensions outperformed
UltraSPARC with VIS despite the fact that the compiler
optimization used for the PowerPC is relatively immature.
In the vertical beamformer, the overall performance was
approximately 1.56 times that of UltraSPARC whereas the
horizontal beamformer was about 1.83 times.

The benchmark measurements of the current
implementation indicates the possibility of running the 4-
GFLOP beamforming system on six 450-MHz PowerPC
G4 processors replacing our current system which requires
ten 450-MHz UltraSPARC II processors. However, our
ultimate goal is to implement the beamforming algorithm
on one quad-PowerPC G4 SMP system. By optimizing the
code with precise examination of the low-level instruction
trace, as it has been done for the UltraSPARC
implementation, we predict a successful implementation in
the near future.

7.0 References

[1] J. Bier, "DSP on General Purpose Processors,"
MicroDesign Resources Dinner Meeting Slides,
Berkeley Design Technology, Inc., Jan. 1997.

[2] G. E. Allen and B. L. Evans, "Real-Time Sonar
Beamforming on Workstations Using Process
Networks and POSIX Threads," IEEE Trans. on
Signal Processing, vol. 48, no. 3, pp. 921-926,
March 2000.

[3] R. G. Pridham and R. A. Mucci, "A Novel
Approach to Digital Beamforming," Journal of
Acoustical Society of America, vol. 63, no. 2, pp.
425-434, Feb. 1978.

[4] Sun Microsystems, "VIS Instruction Set User's
Manual," http://solutions.sun.com/embedded/data
book/pdf/manuals/805-1394-01.pdf.

[5] AltiVec Programming Environment/Interface
Manual, Motorola Inc., 1998.

[6] G. E. Allen, B. L. Evans, and L. K. John, "Real-
Time High-Throughput Sonar Beamforming
Kernels Using Native Signal Processing and
Memory Latency Hiding Techniques," Proc.
IEEE Asilomar Conf. on Signals, Systems, and
Computers, Oct. 25-28, 1999, vol. I, pp. 137-141,
Pacific Grove, CA.

[7] H. Nguyen and L. K. John, "Exploiting SIMD
parallelism in DSP and multimedia algorithms
using the AltiVec technology," Proc. ACM Int.
Conf. on Supercomputing, June 20 - 25, 1999, pp.
11-20, Rhodes Greece.

[8] Motorola, "AltiVec Technology."
http://www.mot.com/AltiVec.

[9] AltiVec Information Source.
http://www.altivec.org.

[10] J. D. Allen and D. E. Schimmel, "Issues in the
Design of High Performance SIMD
Architectures," IEEE Trans. on Parallel and
Distributed Systems, vol. 7, pp. 828-839, Aug.
1996.

