IEEE Transactions on Image Processing, vol. 10, no. 1, pp. 104-116, Jan. 2001.

Adaptive Threshold Modulation for Error Diffusion Halftoning

Niranjan Damera-Venkata, and Brian L. Evans

Department of Electrical and Computer Engineering, Engineering Science Building, The University of Texas at Austin, Austin, TX 78712-1084 USA

Halftoning Toolbox for Matlab - Halftoning Research at UT Austin


Grayscale digital image halftoning quantizes each pixel to one bit. In error diffusion halftoning, the quantization error at each pixel is filtered and fed back to the input in order to diffuse the quantization error among the neighboring grayscale pixels. Error diffusion introduces nonlinear distortion (directional artifacts), linear distortion (sharpening), and additive noise. Threshold modulation, which alters the quantizer input, has been previously used to reduce either directional artifacts or linear distortion. This paper presents an adaptive threshold modulation framework to improve halftone quality by optimizing error diffusion parameters in the least squares sense. The framework models the quantizer implicitly, so a wide variety of quantizers may be used. Based on the framework, we derive adaptive algorithms to optimize In edge enhancement halftoning, we minimize linear distortion by controlling the sharpening control parameter. We may also break up directional artifacts by replacing the thresholding quantizer with a deterministic bit flipping (DBF) quantizer. For green noise halftoning, we optimize the hysteresis coefficients.

COPYRIGHT NOTICE: All the documents on this server have been submitted by their authors to scholarly journals or conferences as indicated, for the purpose of non-commercial dissemination of scientific work. The manuscripts are put on-line to facilitate this purpose. These manuscripts are copyrighted by the authors or the journals in which they were published. You may copy a manuscript for scholarly, non-commercial purposes, such as research or instruction, provided that you agree to respect these copyrights.

Last Updated 11/08/04.