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ABSTRACT

We optimize the noise shaping behavior of color error dif-
fusion by designing an optimized error �lter based on a
proposed noise shaping model for color error di�usion and
a generalized linear spatially-invariant model of the hu-
man visual system. Our approach allows the error �lter
to have matrix-valued coe�cients and di�use quantization
error across channels in an opponent color representation.
Thus, the noise is shaped into frequency regions of reduced
human color sensitivity. To obtain the optimal �lter, we
derive a matrix version of the Yule-Walker equations which
we solve by using a gradient descent algorithm.

1. INTRODUCTION

Color error di�usion is a high-quality method for color ren-
dering of continuous-tone 24-bit digital color images on de-
vices with limited color palettes such as low-cost displays
and printers. The rendered images are commonly referred
to as halftones. The high quality of error di�usion is due to
the fact that it is a nonlinear feedback system. Quantiza-
tion errors are �ltered using an error �lter and fed back to
the input in order to shape the quantization noise into fre-
quencies regions where humans are relatively less sensitive.

Kolpatzik and Bouman [1] and Akarun, Yardimci and
Cetin [2] use error �lters with matrix-valued coe�cients to
account for correlation among the color planes. The error
�lter by Kolpatzik and Bouman [1] �lters each color error
plane independently in an opponent color space [1]. Sepa-
rate optimum scalar error �lters are designed for the lumi-
nance and chrominance channels independently based on a
separable model of the human visual system. However, no
constraints are imposed on the error �lter to ensure that all
of the red-green-blue (RGB) quantization error is di�used.
Akarun, Yardimci and Cetin [2] adapt the matrix-valued er-
ror �lter coe�cients using a least mean squares algorithm.
This allows for cross-channel di�usion of color error. How-
ever, their method does not incorporate a human vision
model.
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In this paper, we derive the optimum matrix-valued er-
ror �lter using the matrix gain model [3] to model the noise
shaping behavior of color error di�usion and a generalized
linear spatially-invariant model (not necessarily separable)
for the human color vision. We also incorporate the con-
straint that all of the RGB quantization error be di�used.
We show that the optimum error �lter may be obtained
as a solution to a matrix version of the Yule-Walker equa-
tions. A gradient descent algorithm is proposed to solve the
generalized Yule-Walker equations. In the special case that
the constraints are removed, a separable color vision model
used and the linear transformation into the opponent color
space is unitary, our solution reduces to the solution derived
by Kolpatzik and Bouman [1].

2. NOTATION

In this paper, boldface quantities written with a ~ repre-
sent matrices, whereas boldface quantities written without
a ~ represent vectors. Capitalized quantities represent the
frequency domain while lower case quantities represent the
space domain. Scalar quantities are represented as usual as
plain characters. The ith component of a vector a will be
denoted by ai whereas the (i; j)th element of a matrix ~A

will be denoted by ai;j . The vector with all of its elements
equal to unity is denoted by 1.

Let x(m1;m2) 2 [0; 255]3 represent the input RGB im-
age to be halftoned. X(z1; z2) represents the z-transform
of the RGB input image.

X(z1; z2) =
X

m1;m2

x(m1; m2)z
�m1z�m2 (1)

We will use an index m to denote a 2-D spatial index
(m1;m2) and z to denote the z-domain index (z1; z2).

3. VECTOR COLOR ERROR DIFFUSION

Fig. 1 shows the system block diagram for vector color er-
ror di�usion halftoning. The rendering scalar quantizer is
de�ned by Q : R3 7! U where U = U1 � U2 � U3 maps
the modi�ed input vector u(m) into a rendered output vec-
tor b(m). Ui; i = 1; 2; 3 represents the alphabet used to
represent the ith component of the rendered output. We
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Figure 1: System block diagrams for block error di�usion
halftoning where ~h represents a �xed 2-D nonseparable FIR
error �lter with matrix valued coe�cients. The vector m
represents the 2-D index (m1; m2).

assume that the output to be restricted to one bit per color
plane with 255 representing the presence of a color compo-
nent and 0 representing the absence of a color component,
Ui = f0; 255g; 8i. The results of this paper are valid for
any equal, uniform bit allocation among the RGB channel
quantizers.

The quantization error vector e(m) is formed by sub-
tracting the quantizer input from the output

e(m) = b(m)� u(m) (2)

The error vector sequence is then �ltered by an error �lter
~h(�) to produce the feedback signal. The error �lter ~h(�) is
a �lter with matrix-valued coe�cients and will be denoted
by the 3 � 3 matrix-valued sequence ~h(�) with support set

S. ~H(�) represents the z-transform of the matrix-valued
multi�lter de�ned by

~H(z1; z2) =
X

m1;m2

~h(m1; m2)z
�m1z�m2 (3)

The �ltering operation of a 2-D multi�lter is de�ned by
matrix-vector convolution given by�

~h ? e
�
(m) =

X
k2S

~h(k)e(m� k) (4)

Here the error �lter is assumed to have a causal support S
with (0; 0) =2 S. We will assume a the standard 4-coe�cient
Floyd-Steinberg �lter [4] support set. In the z domain the
matrix-vector convolution becomes a linear transformation
by an 3 � 3 transformation matrix given by

Z
�
~h ? e

�
(z) = ~H(z)X(z) (5)

The modi�ed input is computed by subtracting the feedback
signal from the input signal

u(m) = x(m)�
�
~h ? e

�
(m) (6)

4. FORMULATION OF THE DESIGN

PROBLEM

We use the matrix gain model described in [3, 5] to pre-
dict the noise shaping behavior of the color error di�usion
system. The matrix gain model linearizes the quantizer by
considering the error di�usion system as two decoupled lin-
ear systems. The �rst linear system shapes the accounts
for signal distortion and is called the signal path while the
second linear system accounts for the noise shaping and is

called the noise path. Validation methods for the matrix
gain model are presented in [3, 5].

Based on the matrix gain model, we obtain the net noise
component of the output as

bn(m) =
�
[~I� ~h] ? n

�
(m) (7)

Since signal shaping is typically desirable or in any case un-
der user control [5] we only need to concentrate on the noise
shaping. We de�ne the objective function J as the average
visually weighted noise energy in the output halftone. We
use a linear spatially-invariant matrix-valued model for the
human visual system denoted by the matrix valued �lter
function ~v(�). We also de�ne a constraint set C to ensure
that all the quantization error (represented in a device in-
dependent RGB space) is di�used [5] .

Thus, the color error di�usion system (~h(�); ~v(�)) for a
given vision model ~v(�) may be solved for an optimum �lter
~hopt(�)

~hopt(�) = arg min
~h(�)2C

J (8)

where
J = E

�
k
�
~v ?
�
~I� ~h

�
? n
�
(m) k2

�
(9)

and

C =

(
~h(i); i 2 S j

X
i

~h(i)1 = 1

)
(10)

5. OPTIMUM ERROR FILTER DESIGN

The objective function of (9) may be rewritten as

J = E Tr

"
~a(m)�

X
k

X
k0

~v(k
0
)~h(k)n(m� k

0
� k)

#
"
~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k
0 � k)

#T
(11)

where we have substituted a(m) = (~v ? n) (m) and used

the fact that for a vector x, k x k2= Tr
�
xxT

�
, where Tr

denotes the trace operation.
By taking the �rst partial derivatives of (9) with respect

to ~h(i) for all i 2 S and setting them to zero, we obtain the
�rst-order necessary conditions for an optimum solution.
This requires that the trace be di�erentiated with respect
to a matrix. To do this some results from linear algebra are
required.

The following results are stated here without proof. For
proofs of the following, please see [6]:

d

d~XT
f(~X) =

�
d

d~X
f(~X)

�T
d

d~X
Tr(~A~X) = ~A

T

d

d~X
Tr(~A~X~B) = ~A

T ~B
T

d

d~X
Tr(~XT ~A~X~B) = ~A~X~B+ ~A

T ~X~B
T

Tr(~A~B) = Tr(~B~A) (12)



Using the above results and the linearity of the trace
operator we obtain after considerable algebra [5]X

k

~v
T
(k)~ran(�i� k) =

P
p

P
q

P
s
~vT (s)~v(q)~h(p)

~rnn(p+ q� s� i) (13)

These equations may be regarded as a generalization of the
Yule-Walker equations [6] from linear prediction theory to
the matrix case, with a generalized linear spatially-invariant
weighting. The above set of generalized Yule-Walker equa-
tions may be solved for the optimal �lter subject to the
constraints of (10) using the steepest descent algorithm [6].

We use a white noise image as an approximation to the
uncorrelated noise image n(m). Thus, the required auto-
correlation matrices are approximated as:

~rnn(k) = E
�
n(m)n

T
(m+ k)

�
� �(k) (14)

~ran(k) = E

 X
t

~v(t)n(m� t)

!
n
T
(m+ k)

�
X
t

~v(t)�(k+ t) = ~v(�k) (15)

where �(k) is the two-dimensional Kronecker delta func-
tion [6]. In the optimization the constraint is enforced by
projection onto the convex constraint set. The convergence
behavior of this algorithm is discussed in [7]. The algorithm
is guaranteed to converge if the convergence parameter in
the descent algorithm is chosen to be small enough [7].

The descent algorithm may be formulated as follows:

(rJ)(~h(i))
�
= �

X
k

~v
T
(k)~v(i+ k) +

X
p

X
q

X
s

~v
T
(s)~v(q)~h(p)�(p+ q� s� i)

~f
(�)(i)

�
= ~h

(�)(i)� �(rJ)(~h(�)(i))

~h
(�+1)

(i) = P
�
~f
(�)
(i)
�

(16)

where � refers to the iteration number, and P is the projec-
tion operator that projects the iterate into the constraint set
C, de�ned by (10). The convergence parameter � = 0:005
in my simulations. The projection operator is de�ned as [8]

P
�
~f
(�)
(i)
� �
= ~f

(�)
(i)�

1

3 j S j

 X
i2S

~f
(�)
(i)�~I

!
1 (17)

Several random initial guesses were tried, and the descent
algorithm was terminated when the changes in the objec-
tive function were below a prede�ned threshold. Using
this method one may explore di�erent minimizers (solutions
that result in nearly the same objective function value).
The uniformity in the dot distributions produced by di�er-
ent initial guesses was di�erent. It has been shown [9] that
frequency weighted mean squared error alone cannot guar-
antee optimum dot distributions. We chose a solution that
had a reasonably uniform dot distribution.

6. SIMULATION RESULTS

The optimal �lter that was obtained based on our calibrated
color monitor and was tested on �ve standard color test im-
ages (lena, peppers, pasta, fruits, hats). Monitor calibration
was performed by �rst measuring the monitor gamma, and
then recording the CIE (X,Y,Z) co-ordinates of the monitor
R, G, B guns respectively. First we undo the gamma correc-
tion on the RGB image to obtain device independent linear
RGB tristimulus values, which are then transformed into
XYZ space using the XYZ calibration matrix [10]. We used
the pattern-separable model for the human visual system
based on the work of Poirson and Wandell [11, 12] although
our derivation of the optimum solution assumes the most
general linear spatially-invariant color model. The Poirson
and Wandell model consists of

1. A linear transformation ~T from XYZ into an oppo-
nent space and,

2. Separable spatial �ltering on each channel using a
di�erent spatial �lter on each channel. This opera-
tion may be regarded as a matrix convolution in the
frequency domain by a �lter with diagonal matrix-
valued coe�cients ~d(�).

Thus, ~v(m) is computed as

~v(m) = ~d(m)~T (18)

The parameter spaci�cations for the model are given in [13].
To evaluate the noise shaping behavior, we produced

undistorted halftones using the color signal distortion can-
celing method developed in [3]. In [3], it was shown that
according to the matrix gain model, the quantization error
image in the distortion canceling method is in fact the un-
correlated noise injection into the halftoning system. The
e�ective noise shaping gain (in dB) of the optimal �lter over
the separable Floyd-Steinberg �lter may be computed as

NG = 10 log10

�
Jfs
Jopt

�
(19)

where the numerator and denominator in the argument of
the log function are the objective functions computed us-
ing (9) for the optimal �lter and the Floyd-Steinberg �lter,
respectively. Sample averages were used to estimate the ex-
pectations. Table 1 tabulates the noise gain of the optimal
�lter over using a separable Floyd-Steinberg error �lter.

Fig. 2(a) shows a magni�ed view of the pasta image
halftoned using a separable Floyd-Steinberg error �lter on
the R, G, and B color planes independently and 2(b) show
the corresponding results for halftoning with the optimal er-
ror �lter. The optimal �lter results in less visible halftone
noise. It signi�cantly reduces color impulses when com-
pared with scalar error di�usion using �lters with scalar co-
e�cients. The halftone noise patterns produced by conven-
tional Floyd-Steinberg error scalar �lter were signi�cantly
more visible when observed on the calibrated monitor as
compared to the noise patterns produced by the optimal
�lter. It must be emphasized that since the optimal �l-
ter coe�cients are dependent on a particular monitor con-
�guration, the above design process must be applied on a
case-by-case basis.



Image Noise gain (dB)

lena 3.29

peppers 1.88

fruits 1.37

pasta 1.47

hats 1.05

Table 1: Noise gain of the optimal �lter on standard test
images.

(a)

(b)

Figure 2: Performance of the optimal �lter. (a) Floyd-
Steinberg error �lter applied to the R, G, and B planes.
(b) Optimum matrix-valued error �lter performance. Note
the decrease in visibility of color halftone noise achieved by
using the optimum �lter.

7. CONCLUSION

We have presented a method for optimum error �lter de-
sign for RGB color error di�usion. The optimum �lter min-
imizes the visibility (on average) of color halftone noise en-
ergy with respect to any given linear time-invariant human
color vision model. The optimum �lter has matrix-valued
coe�cients allowing for cross-channel di�usion of color er-
rors and is obtained by solving a matrix extension of the
Yule-Walker equations subject to di�usion constraints via
a gradient descent algorithm.
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