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ABSTRACT

In the early 1990s, the state-of-the-art in commercial
chromosome image acquisition was grayscale. Automated
chromosome classification was based on the grayscale
image and boundary information obtained during
segmentation. Multi-spectral image acquisition was
developed in 1990 and commercialized in the mid-1990s.
One acquisition method, multiplex fluorescence in-situ
hybridization (M-FISH), uses five color dyes. We
propose a segmentation algorithm for M-FISH images that
minimizes the entropy of classified pixels within possible
chromosomes. This method is shown to correctly
decompose even difficult clusters of touching and
overlapping chromosomes. Finally, an example image is
given to illustrate the algorithm.

1. INTRODUCTION

Chromosomes are the cell structures that contain genetic
information. When chromosomes are photographed, the
images contain much information about the health of an
individual. The images are useful for diagnosing
disorders and studying various diseases. In the past, it has
been necessary for laboratory technicians to examine these
images visually to collect the useful information contained
in these images. However, since many images often have
to be inspected and since visual inspection is time
consuming and expensive, many attempts have been made
to automate chromosome image analysis. For example,
automated segmentation algorithms for grayscale
chromosome images have been able to correctly
decompose about 80-90% of touching and overlapping
chromosomes [1, 2, 3]. These automated procedures rely
on chromosome shape and texture.

In the 1990’s, new techniques were developed to dye
chromosomes with multiple colors so that each

chromosome class appears to be a distinct color. This
makes analysis of chromosome images easier, not only for
human inspection, but also for computer analysis. This
research focuses on one such dying technique, known as
M-FISH (multiplex fluorescence in-situ hybridization).
This work takes advantage of the multi-spectral
information in M-FISH images to improve past methods
of computer segmentation and analysis of chromosome
images.

2. MULTI-SPECTRAL IMAGES

A new way to image chromosomes came about with the
invention of chromosome painting [4], combinatorial
labeling [5] and ratio labeling [6]. These techniques made
use of fluorophores (dyes) that attach to a single class of
chromosomes, parts of chromosomes, or specific
sequences of DNA. Using these techniques, one could
create a combination of fluorophores such that each class
of chromosomes absorbed a different combination of these
fluorophores [7, 8, 9]. Therefore, each chromosome class
would appear to be a different color and would be visually
distinguishable from all of the other classes.

An image of each fluorophore can be obtained by
employing appropriate optical filters. This way, each
pixel could be represented as a vector, where each element
represents the intensity of the response to one fluorophore.
Instead of obtaining a grayscale image by traditional
chromosome imaging techniques, such as Giemsa banding
[10], a multi-spectral image could now obtained in which
the spectral composition at each point reveals the
combination of fluorophores and, thus, the chromosome
class of the matter at that point. Using this combinatorial
labeling, known as M-FISH, one can determine the
chromosome class at every pixel.

Such an imaging technique has a couple of obvious
advantages. First, the task of chromosome classification
is greatly simplified. Instead of determining and then
comparing the chromosome lengths, centromere positions,
and banding patterns, one only has to look at the spectral
information within that chromosome. The second
advantage is that it is possible to detect smaller
translocations and rearrangements than were discernible
with grayscale chromosome banding patterns only [11].
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3. CHROMOSOME SEGMENTATION

Many previous chromosome segmentation methods [1]
begin with thresholding, or adaptive thresholding,
followed by labeling of connected components. Then
these methods examine the connected components to
determine which of them are single chromosomes and
which are clusters of multiple chromosomes. Finally, the
clusters are divided by choosing cut points on the
boundary of the cluster, which are the points at which the
boundaries of two different chromosomes meet. For the
case of two touching chromosomes, two points must be
found, which denote a line that separates the two
chromosomes. For the case of two overlapping
chromosomes, four cut points must be found in order to
create a polygon that defines the area of overlap. Once the
proper cut points are discovered, the touching or
overlapping chromosomes can then be decomposed by
straight cut lines between the points [3] or best-fit cubic
curves [2].

Traditional chromosome segmentation methods use
shape information from the boundary of the chromosomes
to detect and decompose clusters. Cut points are then
found by examining the shape of boundary of the cluster
[2, 3, 12]. Occasionally, grayscale information from
inside the chromosome clusters is also used. One popular
method is “valley searching” [13] where a minimum cost
algorithm attempts to locate low gray-value valleys
running through the cluster to locate separation between
the chromosomes.

With M-FISH images, a new source of information is
available for segmentation. If one observes the example
in Figure 1, it is not immediately clear, by looking only at
the boundary of the cluster, what the proper segmentation

of the cluster is. It is not apparent, even to many trained
observers, whether there is an overlap involved or even
how many chromosomes are included in this cluster.
However, the M-FISH multi-spectral information makes it
more clear what the proper segmentation should be since
each chromosome has its own color.

To use the multi-spectral information available in M-
FISH, it is necessary to introduce an objective function
that uses this multi-spectral information to evaluate
possible cut lines. It would then be possible to examine
all possible cut lines, or some reasonable subset of them,
and pick the pair that maximizes (or minimizes) this
function.

For the objective function, we use a measure of
entropy. In particular, we use Shannon’s definition of
entropy [14]
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wheren is the number of possible classes. In a perfectly
classified and segmented image, the entropy of each
segment will be zero, since all the pixels in each segment
will be classified into the same class. The larger the
number of different classes that are found within a
segment, the higher the entropy will be.

The probabilities of the classes are calculated
empirically. That is, the probability of any class is the
number of pixels of that class in an object divided by the
number of pixels in that object.

The following algorithm (outlined in Fig. 3), which
segments chromosomes using M-FISH multi-spectral data
and entropy, was proposed and tested.

(1)

a) Boundary of cluster b) Multi-spectral information in cluster

Figure 1: Comparison of two types of cluster information



4. MINIMUM ENTROPY ALGORITHM

We locate the chromosome material (via thresholding or
some other method) an image of a sixth dye, DAPI (4,6-
diamidino-2-phenylindole nucleic acid stain), which binds
to all chromosomes, and then find the connected
components. Next, we label every connected component
as a separate object and calculate its entropy. If its
entropy is above a given threshold, then we examine that
object for possible cut lines.

Initially all boundary points of the object are taken to
be possible cut points, where every combination of two
boundary points makes a cut line. However, this is a large
number of combinations that can be narrowed down. For
instance, in order to preserve connectivity, all points in a
valid cut line must be contained within the cluster.
Furthermore, we can prudently remove a number of other
points. Some have suggested using only points of high
curvature along the boundary of the cluster [3].

We consider only points whose cut line was contained
within the chromosome clusters and had an 8-connected
neighbor whose class differed from theirs. We also
require that the cut line not result in a division whose size
was smaller than a certain threshold. This avoids the
removal of single pixels, whose entropy is always zero, as
well as other small sections of noise along the boundary.

Candidate cut lines are made by straight lines between
all combinations of candidate cut points. For each
candidate cut line, we calculate the entropy of the
resulting division. If the sum of the resulting entropies is
less than the entropy of the original cluster, then the cut
line is considered valid. We choose the valid cut line that
results in the least total entropy. If no valid cut lines exist,
then the object is not divided. If a valid cut line is found,
we remove the points in the optimal cut line from the
object so that the two divisions are no longer connected.
These two divisions are then considered two new objects.
We then examine the two new objects and entropies to see
if these new objects need to be further divided.
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d) Entropy-segmented image

Figure 2: Example of an M-FISH image segmented with entropy segmentation

a) M-FISH image



Once all entropy-reducing divisions are made, we
recombine objects that may have been labeled as separate
objects due to overlap. To do this, we combine all objects
within a cluster in pairs. If the entropy of any pair is
greater than the sum of the entropies of the two individual
objects, we label the combination as valid. We choose the
combination that yields the lowest entropy. After these
two objects are combined, we examine the cluster again,
using the same method to look for other objects in it that
need to be combined. If no valid combination is found,
the algorithm stops and moves to the next cluster.

5. EXAMPLE

Fig. 2 segments an M-FISH image using the entropy
method. The original chromosome image is in Fig. 2a.
Fig. 2b classifies each pixel in Fig. 2a where color
represents the class. Pixel classification was done with
Applied Imaging’s Powergene M-FISH software [15].
Fig. 2c shows the connected components of the image
after thresholding. In this image, several groups of
chromosomes (those labeled 16, 19, 23, 29, and 35) are
labeled as a single object. Fig. 2d shows the entropy-
segmented chromosomes. All touching chromosomes
were correctly split. The two overlapped chromosomes
(40 and 43) were correctly identified. In these
chromosomes, both ends are labeled as one chromosome.

6. CONCLUSION

This paper introduces entropy as a criterion for selecting
cut lines to decompose groups of chromosomes that touch
and overlap each other. This algorithm uses multi-spectral
information in chromosome images for more accurate
segmentation. This algorithm was able to decompose
clusters of touching and overlapping chromosomes.
Furthermore, this algorithm may be applied to other types

of multi-spectral images if these images contain touching
or overlapping objects with different spectral signatures.

C code for this algorithm is available at
http://www.ece.utexas.edu/~wade/mfish

A public database of 200 hand-segmented M-FISH images
is available from Advanced Digital Imaging Research at

http://www.adires.com/projects/mfish_db.shtml
This database contains 200 hand-segmented M-FISH
images, or approximately 9000 individual chromosomes.
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1. Separate DAPI image background/foreground.
2. Find connected components of foreground image.
3. Classify pixels in each connected component with

multi-spectral information.
4. For each connected component,

A. Find the cut line that gives the lowest entropy
as measured by (1). If dividing decreases the
total entropy of the object, then split object.

B. Continue dividing until no more entropy-
reducing cut lines can be found.

C. Match resulting segments within the cluster
pairwise. If combining the pair decreases the
total entropy, then recombine segments.

D. Continue recombining pairs until no entropy-
reducing segments can be found.

Figure 3: Minimum entropy algorithm


