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Abstract

Traditional error di�usion halftoning is a high quality method for producing binary images

from digital grayscale images. Error di�usion shapes the quantization noise power into the high

frequency regions where the human eye is the least sensitive. Error di�usion may be extended to

color images by using error �lters with matrix-valued coe�cients to take into account the corre-

lation among color planes. For vector color error di�usion, we propose three contributions. First,

we analyze vector color error di�usion based on a new matrix gain model for the quantizer, which

linearizes vector error di�usion. The model predicts key characteristics of color error di�usion,

esp. image sharpening and noise shaping. The proposed model includes linear gain models for

the quantizer by Ardalan and Paulos and by Kite, Evans, and Bovik as special cases. Second,

based on our model, we optimize the noise shaping behavior of color error di�usion by designing

error �lters that are optimum with respect to any given linear spatially-invariant model of the

human visual system. Our approach allows the error �lter to have matrix-valued coe�cients and

di�use quantization error across color channels in an opponent color representation. Thus, the

noise is shaped into frequency regions of reduced human color sensitivity. To obtain the optimal

�lter, we derive a matrix version of the Yule-Walker equations which we solve by using a gradient

descent algorithm. Finally, we show that the vector error �lter has a parallel implementation as

a polyphase �lterbank.
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I. Introduction

Traditional grayscale error di�usion halftoning quantizes an eight bit/pixel grayscale image to a

one bit/pixel image for reproduction on binary devices. The reproduction is high quality because

error di�usion shapes the quantization noise into the high frequencies (a.k.a. \blue noise") where

the human visual system is least sensitive [1]. In addition to adding noise, grayscale error

di�usion also sharpens the image [2], [3], [4]. The amount of sharpening depends on the error

�lter. The twelve-tap Jarvis error �lter [5] produces signi�cant image sharpening whereas the

four-tap Floyd-Steinberg error �lter [6] produces only modest sharpening.

Kite, Evans and Bovik [3], [7] quantify the sharpening and noise introduced by grayscale error

di�usion by linearizing error di�usion. They replace the quantizer with the linear gain model

developed by Ardalan and Paulos [8] for sigma-delta modulation. The model accurately predicts

the noise shaping and image sharpening in error di�used halftones. Based on the model, they

develop an objective measure of the human visual system response to each type of degradation,

and a low-complexity method for compensating the image sharpening. Their analysis assumes

that the error �lter is �xed.

This paper generalizes the linear system model of grayscale error di�usion in [3] to vector

color error di�usion by replacing the linear gain model with a new matrix gain model and by

using properties of �lters with matrix-valued coe�cients. The new model includes the earlier

linear gain model [3], [7] as a special case. The new model describes vector color di�usion in

the frequency domain, and predicts noise shaping and linear frequency distortion produced by

halftoning.

Color error di�usion is a high-quality method for color rendering of continuous-tone 24-bit

digital color images on devices with limited color palettes such as low-cost displays and printers.

The rendered images are commonly referred to as color halftones. Quantization errors are �ltered

using an error �lter and fed back to the input in order to shape the quantization noise into

frequency regions where humans are relatively less sensitive.

Kolpatzik and Bouman [9] and Akarun, Yardimci and Cetin [10] use error �lters with matrix-

valued coe�cients to account for correlation among the color planes. The error �lter by Kolpatzik

and Bouman [9] �lters each color error plane independently in an opponent color space [9].

Separate optimum scalar error �lters are designed for the luminance and chrominance channels
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independently based on a separable model of the human visual system. However, no constraints

are imposed on the error �lter to ensure that all of the red-green-blue (RGB) quantization error is

di�used. Akarun, Yardimci and Cetin [10] adapt the matrix-valued error �lter coe�cients using

a least mean squares algorithm. This allows for cross-channel di�usion of color error. However,

their method does not incorporate a human vision model.

In this paper, we derive the optimum matrix-valued error �lter using a matrix gain model

to model the noise shaping behavior of color error di�usion and a generalized linear spatially-

invariant model (not necessarily separable) for the human color vision. We also incorporate the

constraint that all of the RGB quantization error be di�used. We show that the optimum error

�lter may be obtained as a solution to a matrix version of the Yule-Walker equations. A gradient

descent algorithm is proposed to solve the generalized Yule-Walker equations.

In the special case when we do not constrain all the error to be di�used, a separable color vision

model is used and the linear transformation into the opponent color space is unitary, our solution

reduces to the solution derived by Kolpatzik and Bouman [9]. In our formulation based on the

matrix gain model, an uncorrelated noise image replaces the highly correlated error image in

the objective function in [11], [12]. Because the error �lter does not need to minimize correlated

signal components, the �lter can be solely optimized for noise shaping.

To increase the e�ciency of vector color error di�usion, we reorder the computations per-

formed by the error �lter (which has matrix-valued coe�cients) to derive an equivalent e�cient

implementation as a polyphase �lter bank. Polyphase �lter banks are used for e�cient parallel

implementations of �lter banks in digital audio [13]. The implementation of the error �lter may

be improved up by a factor of three because each of the three color planes being input can be

bu�ered and �ltered independently of the other color planes. Such an implementation makes

vector color error di�usion attractive for raster image processing.

Section II reviews the mathematical notation used in the paper for scalar, vector, and matrix-

valued signals and their transforms. Section III introduces the matrix gain model for vector

color error di�usion and validates the model by predicting linear frequency distortion and noise

shaping e�ects of vector color error di�usion. The necessary and su�cient condition to eliminate

linear frequency distortion in vector color error di�usion using a pre-�lter is derived. Section IV

designs optimum �xed error �lters for vector color error di�usion using the matrix gain model and

a model for color appearance. The model for color appearance [14] incorporates human visual
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sensitivity to color patterns of di�erent spatial frequencies. The color of a pattern is de�ned

according to the model by the excitation of the fundamental cone photoreceptors in the visual

system. Thus it is possible to obtain optimal error �lters for calibrated imaging devices such as

color monitors. Section V derives a parallel implementation for an error �lter with matrix-valued

coe�cients. Section VI concludes the paper by summarizing the contributions.

II. Notation

A. General Notation

In this paper, boldface quantities written with a ~ represent matrices, whereas boldface quan-

tities written without a ~ represent vectors. Capitalized quantities are in the frequency domain

while lower case quantities are in the spatial domain. Scalar quantities are represented as usual

as plain characters. The ith component of a vector a will be denoted by ai whereas the (i; j)th

element of a matrix ~A will be denoted by ai;j. The vector with all of its elements equal to unity

is denoted by 1.

Let x(m1;m2) 2 [0; 255]3 represent the input RGB image to be halftoned. X(z1; z2) represents

the z-transform of the RGB input image.

X(z1; z2) =
X

m1;m2

x(m1;m2)z
�m1z�m2 (1)

We will use an index m to denote a 2-D spatial index (m1;m2) and z to denote the z-domain

index (z1; z2).

B. Notation for Vector color error di�usion

Fig. 1 shows the system block diagram for vector color error di�usion halftoning. The rendering

scalar quantizer is de�ned by Q : R3 7! U where U = U1 � U2 � U3 maps the modi�ed input

vector u(m) into a rendered output vector b(m). Ui; i = 1; 2; 3, represents the alphabet used

to represent the ith component of the rendered output. We assume that the output to be

restricted to one bit per color plane with 255 representing the presence of a color component and

0 representing the absence of a color component, Ui = f0; 255g; 8i. The results of this paper are

valid for any equal, uniform bit allocation among the RGB channel quantizers.

The quantization error vector e(m) is formed by subtracting the quantizer input from the

output

e(m) = b(m)� u(m) (2)
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The error vector sequence is then �ltered by an error �lter ~h(�) to produce the feedback signal.

The error �lter ~h(�) is a �lter with matrix-valued coe�cients and will be denoted by the 3 � 3

matrix-valued sequence ~h(�) with support set S. ~H(�) represents the z-transform of the matrix-

valued multi�lter de�ned by

~H(z1; z2) =
X

m1;m2

~h(m1;m2)z
�m1z�m2 (3)

The �ltering operation of a 2-D multi�lter is de�ned by matrix-vector convolution given by

h
~h ? e

i
(m) =

X
k2S

~h(k)e(m� k) (4)

Here the error �lter is assumed to have a causal support S with (0; 0) =2 S. We will assume

the standard four-coe�cient Floyd-Steinberg �lter [6] support set. In the z domain, the matrix-

vector convolution becomes a linear transformation by an 3 � 3 transformation matrix given

by

Z
h
~h ? e

i
(z) = ~H(z)E(z) (5)

The modi�ed input is computed by subtracting the feedback signal from the input signal

u(m) = x(m)�
h
~h ? e

i
(m) (6)

III. Matrix Gain Model for Vector Color Error Diffusion

This section generalizes the linear system model of grayscale error di�usion in [3] to vector

color error di�usion by replacing the \linear gain model" with a new \matrix gain model" and

using properties of �lters with matrix-valued coe�cients discussed in Section II. The new model

includes the earlier model [3], [7] as a special case. The new model describes vector color di�usion

in the frequency domain, and predicts noise shaping and linear frequency distortion produced by

error di�usion halftoning. For vector color halftoning, we also derive the necessary and su�cient

condition for linear distortion elimination via pre�ltering.

Section III-A describes how vector error di�usion may be linearized via the proposed ma-

trix gain model. Signal and noise shaping transfer functions are derived based on an analysis

of the linearized system. Section III-B validates the predictions of the matrix gain model by

halftoning test images. We show that a linear shift-invariant pre�lter can eliminate the linear

signal frequency-distortion e�ects of error di�usion. Further, we show that such a pre-�lter can

be incorporated with low-complexity by modifying the error di�usion system to feed a linear
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transformation of the quantizer input. Section III-C considers the mathematical validity of the

modeling and comments on the invertibility of certain matrices used in the matrix gain model.

A. Linearizing Vector Color Error Di�usion

We model the quantizer of Fig. 1 by a constant linear transformation denoted by a matrix ~K

which is applied to the signal components of the quantizer input plus spatially-varying additive

noise n(m) applied to the noise components (components uncorrelated with the input signal) of

the quantizer input, as shown in Fig. 2. This is a generalization of modeling the quantizers in

sigma-delta modulators [8] and grayscale error di�usion [3], [7]. Correlation among the signal

color planes is represented by the o�-diagonal terms in the matrix ~K. We choose the matrix ~K

to minimize the error in approximating the quantizer with a linear transformation, in the linear

minimum mean squared error (LMMSE) sense,

~K = argmin
~A

E[k b(m)� ~A u(m) k2] (7)

where b(�) represents the quantizer output process, and u(�) represents the quantizer input

process. The solution to (7) when b(�) and u(�) are wide sense stationary processes is [15]

~K = ~Cbu
~C�1
uu (8)

where ~Cbu and ~Cuu are covariance matrices. As a direct consequence of this modeling [15], the

noise process n(�) due to the signal approximation error is uncorrelated with the signal input to

the quantizer u(�). We will analyze error di�usion by assuming a matrix gain of ~K for the signal

path and a matrix gain of ~I (identity matrix) for the noise path. This corresponds to using the

estimator to estimate signal components in the output of the quantizer from signal components

at its input, and assuming an uncorrelated noise injection to model the noise. In this way, one

may treat the signal shaping and noise shaping independently. This is similar to the analysis for

grayscale error di�usion in [3], [7].

Analyzing the linearized vector color error di�usion model of Fig. 2 in the frequency domain

using z-transforms yields

Z
h
~h ? e

i
(z) = ~H(z)E(z) (9)

By analyzing the signal path and ignoring the noise path by setting n(m) = 0

X(z) = U(z) + ~H(z)E(z) (10)
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E(z) = (~K�~I)U(z) (11)

Bs(z) = ~KU(z) (12)

By manipulating (10), (11), and (12), the response to the signal component becomes

Bs(z) = ~K[~I+ ~H(z)(~K �~I)]�1X(z) (13)

By considering the contribution of the noise component B(z) to the output Bn(z),

Bn(z) = N(z) +U(z) (14)

U(z) = �~H(z)E(z) (15)

E(z) = N(z) (16)

By rearranging (14), (15) and (16),

Bn(z) = [~I� ~H(z)]N(z) (17)

The overall system response is given by

B(z) = Bs(z) +Bn(z) (18)

Equations (13) and (17) reduce to the analogous ones for grayscale error di�usion [3], in which

the error �lter coe�cients and signal gain are scalar valued. The next section validates the

analysis given in this section, and shows that it accurately models the linear distortion and noise

shaping of vector color error di�usion.

B. Validating the Matrix Gain Model

This section validates the matrix gain model by using it to predict the linear distortion and

noise shaping e�ects of vector color error di�usion. Section III-B.1 shows that the signal path

distortion given by (13) accurately models the linear distortion to which the original color image

is subjected in vector color error di�usion. Section III-B.2 shows that by adding a speci�ed

linear transformation of the input image to the quantizer input, the linear distortion may be

eliminated. Thus, the modeling predicts that a at frequency response can be achieved. This

will be validated through simulation. Section III-B.3 validates that the model accurately predicts

the noise shaping behavior of vector color error di�usion. In the validation process, we use a

�xed matrix-valued error �lter whose coe�cients were obtained by terminating the adaptive
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algorithm of [10] after a �xed number of iterations. The results hold for an arbitrary �xed set of

matrix-valued �lter coe�cients, and hence, there is no loss of generality.

B.1 Validation by constructing a linearly distorted original

We linearly distort the original image without introducing quantization noise by processing

the original image of Fig. 3(a) by using (13). This is equivalent to processing the original image

according to Fig. 2, with the additive noise ignored. Fig. 3(b) shows the resulting image. Fig.

3(c) shows the result of halftoning with the �xed error �lter. Figs. 3(b) and 3(c) have comparable

linear distortion. To see this, we simply form the residual image by subtracting Fig. 3(b) from

Fig. 3(c). The result is shown in Fig. 3(d). The residual in Fig. 3(d) is uncorrelated with the

original and represents quantization noise. This is consistent with the modeling of Section III-A.

To quantify the degree of correlation of the residual image with the original image, we introduce

a correlation matrix de�ned by

~Crx =

0
BBBB@

�rredxred �rredxgreen �rredxblue

�rgreenxred �rgreenxgreen �rgreenxblue

�rbluexred �rbluexgreen �rbluexblue

1
CCCCA (19)

where �rixj represents the correlation coe�cient [15] between the color plane i in the residual

and the color plane j in the original image. The correlation matrix for the residual shown in Fig.

3(d), with respect to the original image shown in Fig. 3(a), is

~Crx =

0
BBBB@

0:0067 0:0007 0:0051

0:0065 0:0039 0:0049

0:0082 0:0040 0:0062

1
CCCCA

B.2 Validation by constructing an undistorted halftone

The model predicts that the linear distortion su�ered by the color input image is given by

(13). This means that if one pre�lters the input color image by using the �lter

~G(z) = [~I+ ~H(z)(~K�~I)]~K�1 (20)

then the resulting halftone should exhibit a at low-frequency response with respect to the

original color image. Fig. 4 shows error di�usion modi�ed to include the pre�lter. We now prove

the following proposition.
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Proposition 1: Fig. 4 is exactly equivalent to Fig. 5 when ~L = ~K�1�~I, whenever [~I� ~H(z)]

is invertible.

Proof: By analyzing Fig. 4, the input to the quantizer u(m) in the z-domain is

U(z) = ~G(z)X(z) � ~H(z)E(z) (21)

E(z) = B(z) �U(z) (22)

From (21) and (22),

E(z) = [~I� ~H(z)]�1[B(z) � ~G(z)X(z)] (23)

Substituting for E(z) given by (23) in (21) yields

U(z) = [~I+ ~H(z)(~I � ~H(z))�1]~G(z)X(z) � ~H(z)(~I� ~H(z))�1B(z) (24)

Now, by analyzing Fig. 5,

U(z) = X(z)� ~H(z)E(z) (25)

E(z) = B(z) �U(z) (26)

From (25) and (26),

E(z) = [~I� ~H(z)]�1[B(z) �X(z)] (27)

Also, since

X0(z) = [~I+ ~L]X(z)� ~H(z)E(z) (28)

we substitute (27) into (28)

X0(z) = [(~I+ ~L) + ~H(z)[~I � ~H(z)]�1]X(z) � ~H(z)(~I� ~H(z))�1B(z) (29)

Comparing (24) and (29), it follows that Fig. 4 and Fig. 5 are equivalent in the sense that they

have the same quantizer input and hence output if

[(~I+ ~L) + ~H(z)[~I� ~H(z)]�1] = [~I+ ~H(z)(~I� ~H(z))�1]~G(z) (30)

By using

~P(z) = ~I+ ~H(z)(~I� ~H(z))�1 (31)

equation (30) becomes

~L = ~P(z)[~G(z)�~I] (32)
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Substituting for ~G(z) given by (20),

~L = ~P(z)[[~I+ ~H(z)(~K�~I)]~K�1 �~I]

= ~P(z)[~K�1 + ~H(z) � ~H(z)~K�1 �~I]

= ~P(z)[[~I� ~H(z)][~K�1 �~I]]

= ~K�1 �~I (33)

This completes the proof.

For grayscale error di�usion, this result reduces to the result derived in [3] in which the gain

is scalar-valued and the error �lter has scalar coe�cients. Fig. 5 feeds a linear transformation

~L of the input image into the quantizer input. The matrix gain model predicts that the linear

distortion in the halftoning process must be eliminated. To check this result, we �rst compute

the residual of an unmodi�ed halftone (i.e. halftoned using ~L = ~0) with respect to the original.

Fig. 3(a) shows the original image to be halftoned. Fig. 3(c) shows the halftone image, which

was halftoned with ~L = ~0 (usual vector color error di�usion). Fig. 6(a) shows the residual with

respect to the original by subtracting Fig. 3(c) from Fig. 3(a). The correlation matrix for the

residual is

Crx =

0
BBBB@

0:3204 0:2989 0:0999

0:2787 0:3295 0:1605

0:2063 0:2952 0:1836

1
CCCCA

Fig. 6(b) shows the halftone image, which was halftoned with ~L = ~K�1 � ~I (modi�ed vector

color error di�usion). Fig. 6(c) shows the residual with respect to the original by subtracting

Fig. 6(b) from Fig. 3(a). The correlation matrix for the residual is

~Crx =

0
BBBB@

0:0052 0:0009 0:0040

0:0054 0:0023 0:0020

0:0058 0:0011 0:0027

1
CCCCA

This shows that the linear distortion has been removed by modi�ed vector color error di�usion,

since the residual with respect to the original is uncorrelated noise (signal components in the

residual have been eliminated).

Knox [2] shows that the error image for grayscale error di�usion e(m) is correlated with the

input image. Knox also shows that the sharpness of halftones increases as the correlation of the

error image with the input increases. Kite, Evans and Bovik [3] show that by adding dither,
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the quantization error may be decorrelated with respect to the input, and the sharpening (linear

distortion) e�ects of error di�usion vanish. They also conclude [3] that image sharpening is due

to the fact that the input to the error �lter contains signal components, which are fed back and

shaped. Since the system has a highpass response, this results in the halftone being sharper than

the original image.

We will show by using the matrix gain model that in the case of modi�ed error di�usion (Fig.

5), halftoning with the value of ~L which cancels linear distortion is a su�cient condition for the

error image (input to the error �lter) to be free of signal components from the input image.

By replacing the quantizer in Fig. 5 with a gain matrix ~K and analyzing the signal path,

Es(z) = ~K
h
~LX(z) +U(z)

i
�U(z)

= ~K ~L X(z) +
h
~K�~I

i
U(z) (34)

Since

U(z) = X(z) � ~H(z) Es(z) (35)

we obtain h
~I+

�
~K�~I

�
~H(z)

i
Es(z) =

h
~K ~L+ ~K�~I

i
X(z) (36)

By substituting ~L = ~K�1 � ~I into (36), Es(z) = 0. Hence, there are no signal components in

the error image. To check this prediction, and hence validate our modeling, We halftone test

images with ~L set to cancel linear distortion. Fig. 3(a) shows the original image to be halftoned.

Fig. 6(b) shows the halftone image by halftoning with ~L = ~K�1 �~I (modi�ed vector color error

di�usion). Fig. 6(d) shows the error image. The correlation matrix for the error image with

respect to the original is

~Cex =

0
BBBB@

0:0455 0:0235 0:0122

0:0493 0:0144 0:0164

0:0428 0:0142 0:0150

1
CCCCA

The low correlation of the error image was predicted by the theory and therefore strongly cor-

roborates it.

B.3 Validation of the noise response

According to our model, the noise shaping is predicted by (17). To verify the prediction, we

�rst compute a residual as described in Section III-B.1. This residual is shaped noise. We need
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to verify that the noise shaping is in fact given by (17). we halftone test images using the optimal

linear distortion cancelling method described in Section III-B.2. This corresponds to halftoning

with the value of ~L = ~K�1 � ~I. The matrix gain model predicts that the input to the error

�lter has no signal components. The input to the error �lter in this case is N(z). We then �lter

this noise image (i.e. input to the error �lter) according to (17) to form a predicted residual. If

the noise shaping equation is correct, then this residual must be spectrally close to the actual

residual image. This was indeed found to be the case. Fig. 7 shows radially averaged spectra

of the three color planes of the actual residual noise image and the residual computed using

the noise shaping predicted from the model. The close agreement of the spectra con�rms the

predictions of the matrix gain model. The next section analyzes the valid use of the matrix gain

model by considering the existence of matrix inverses assumed by the model.

C. Invertibility of matrices used in the model

Typically, the matrix ~K is diagonally dominant with its diagonal elements greater than 1, so

it is invertible. For the same reason, the matrix [~I+ ~H(z)(~K�~I)] in (13) is typically invertible.

The proof of Proposition 1 requires that the matrix [~I � ~H(z)] be invertible. This is typically

not satis�ed at DC for �lters like the Floyd-Steinberg �lter because [~I � ~H(1)] = ~0. However,

empirical results indicate that lim
z!1

E(z) does not blow up [16] because B(1) � X(1) and ~G(1) =

~I. In fact, the zero at DC cancels the pole at DC, and lim
z!1

E(z) = 0 for the block diagram of Fig. 5

and equals �~LX(1) for the block-diagram of Fig. 4. This means that the two block diagrams

are equivalent at DC because they have the same input to the quantizer. This is predicted by

the matrix gain model. Consider Fig. 5 by noting that

[~I� ~H(z)]E(z) = B(z) �X(z)

= ~K[~I+ ~L]X(z)� ~K~H(z)E(z) (37)

This implies that

[~I� ~H(z) + ~K~H(z)]E(z) = [~K(~I+ ~L)�~I]X(z) (38)

By taking the limit as z! 1,

E(1) = [~I+ ~L� ~K�1]X(1)

= 0 (39)

By analyzing Fig. 4 in a similar manner, lim
z!1

= �~L X(1)
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From (21) and (28), the two block-diagrams are equivalent at DC. At other frequencies for

which [~I� ~H(z)] might not be invertible, a similar analysis using the matrix gain model may be

applied to show that Figs. 4 and 5 are equivalent. However, the exact analysis may be in error

to some extent when [~I� ~H(z)] is not invertible.

IV. Designing the Error Filter

In designing the color error �lter coe�cients, we use the matrix gain model along with a so-

phisticated model for human color vision. The formulation results in an uncorrelated noise image

replacing the highly correlated error image in the objective function of [12]. Thus, the optimiza-

tion becomes less restrictive since we do not compensate for or try to minimize correlated signal

components in the error image. Recall from Section III that the correlated signal components

in the error image produced a sharpening e�ect which is usually desirable. We assume the un-

correlated noise image is a white noise process as in [11]. We minimize the visual impact of the

quantization noise by incorporating the matrix gain model into the optimization along with a

linear model for human color vision. We show that the optimal �lter may be obtained by a

solution of a matrix version of the Yule-Walker equations [17]. Because the error �lter does not

need to minimize correlated signal components, the �lter can be solely optimized for optimal

noise shaping.

Section IV-A formulates the design problem as a quadratic optimization problem with linear

constraints. Section IV-B derives the optimal solution and uses a gradient-descent algorithm to

compute the optimal �lter coe�cients. Section IV-C describes a linear color model for the human

visual system and shows that it may be represented as a linear transformation followed by spatial

�ltering. Our solution however, allows for any general linear shift-invariant color vision model

to be used. In Section IV-D the optimal solution is compared quantitatively and qualitatively to

separable Floyd-Steinberg error di�usion.

A. Formulation of the design problem

We use the matrix gain model to predict the noise shaping behavior of the color error di�usion

system. Based on the matrix gain model, we obtain the net noise component of the output as

bn(m) =
�
[~I� ~h] ? n

�
(m) (40)
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Since signal shaping is typically desirable or in any case under user control [18] we only need

to concentrate on the noise shaping. We de�ne the objective function J as the average visually

weighted noise energy in the output halftone. We use a linear spatially-invariant matrix-valued

model for the human visual system denoted by the matrix-valued �lter function ~v(�). We also

de�ne a constraint set C to ensure that all the quantization error (represented in a device inde-

pendent RGB space) is di�used [18] .

Thus, the color error di�usion system (~h(�); ~v(�)) for a given vision model ~v(�) may be solved

for an optimum �lter ~hopt(�)

~hopt(�) = arg min
~h(�)2C

J (41)

where

J = E
h
k
�
~v ?

h
~I� ~h

i
? n
�
(m) k2

i
(42)

and

C =

(
~h(i); i 2 S j

X
i

~h(i)1 = 1

)
(43)

B. Optimum error �lter design

The objective function of (42) may be rewritten as

J = E
h
k ~a(m)�

�
~v ? ~h ? n

�
(m) k2

i

= E

"
k ~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k0 � k) k2

#

= E Tr

"
~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k0 � k)

#

"
~a(m)�

X
k

X
k0

~v(k0)~h(k)n(m� k0 � k)

#T
(44)

where we have substituted a(m) = (~v ? n) (m) and used the fact that for a vector x, k x k2=

Tr
h
xxT

i
, where Tr denotes the trace operation. Also since the trace is a linear functional, (44)

may be further simpli�ed as

J = �1 +�2 +�3 +�4 (45)

where

�1 = E Tr
h
~a(m)~aT (m)

i
(46)

�2 = �E Tr

"
~a(m)

X
k

X
k0

nT (m� k0 � k)~hT (k)~vT (k0)

#
(47)
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�3 = �E Tr

"X
k

X
k0

~v(k0)~h(k)n(m� k0 � k)~aT (m)

#
(48)

�4 = E Tr

"X
p

X
q

X
r

X
s

~v(s)~h(r)n(m� s� r)nT (m� p� q)~hT (p)~vT (q)

#

(49)

By taking the �rst partial derivatives of (45) with respect to ~h(i) for all i 2 S and setting them

to zero, we obtain the �rst-order necessary conditions for an optimum solution. This requires

that a scalar function be di�erentiated with respect to a matrix. To do this, some results from

linear algebra are required.

The following results are stated here without proof. For proofs of the following, please see [17]:

d

d~XT
f(~X) =

�
d

d~X
f(~X)

�T

(50)

d

d~X
Tr(~A~X) = ~AT (51)

d

d~X
Tr(~A~X~B) = ~AT ~BT (52)

d

d~X
Tr(~XT ~A~X~B) = ~A~X~B+ ~AT ~X~BT (53)

Tr(~A~B) = Tr(~B~A) (54)

Let us consider the terms �1, �2, �3 and �4.

@

@~h(i)
�1 = 0 (55)

By using (50) and (52),

@

@~h(i)
�2 =

 
@

@~hT (i)
�2

!T

= �E

"
d

d~hT (i)
Tr
X
k0

a(m)nT (m� k0 � i)~hT (i)~vT (k0)

#T

= �E

"X
k0

n(m� k0 � i)aT (m)~v(k0)

#T

= �E

"X
k0

~vT (k0)a(m)nT (m� k0 � i)

#

= �
X
k

~vT (k)~ran(�i� k) (56)
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By using (52),

@

@~h(i)
�3 = �E

"
@

@~h(i)
Tr
X
k0

~v(k0)~h(i)n(m� k0 � i)aT (m)

#

= �E

"X
k0

~vT (k0)a(m)nT (m� k0 � i)

#

= �
X
k

~vT (k)~ran(�i� k) (57)

By considering �4, ~h(i) only occurs in three terms �41, �42 and �43 where

�41 = E

2
4TrX

p6=i

X
q

X
s

~v(s)~h(i)n(m� s� i)nT (m� p� q)~hT (p)~vT (q)

3
5

�42 = E

2
4TrX

r6=i

X
q

X
s

~v(s)~h(r)n(m� s� r)nT (m� i� q)~hT (i)~vT (q)

3
5

�43 = E

"
Tr
X
q

X
s

~v(s)~h(i)n(m� s� i)nT (m� i� q)~hT (i)~vT (q)

#
(58)

By using (52),

@

@~h(i)
�41 = E

2
4X
p6=i

X
q

X
s

~vT (s)fn(m� s� i)nT (m� p� q)~hT (p)~vT (q)gT

3
5

= E

2
4X
p6=i

X
q

X
s

~vT (s)~v(q)~h(p)n(m� p� q)nT (m� s� i)

3
5

=
X
p6=i

X
q

X
s

~vT (s)~v(q)~h(p)~rnn(p+ q� s� i) (59)

By using (50) and (52) as in (56),

@

@~h(i)
�42 =

"
@

@~hT (i)
�42

#T

= E

2
4X
r6=i

X
q

X
s

f~v(s)~h(r)n(m� s� r)nT (m� i� q)gT ~v(q)

3
5
T

= E

2
4X
r6=i

X
q

X
s

n(m� i� q)nT (m� s� r)~hT (r)~vT (s)~v(q)

3
5
T

= E

2
4X
r6=i

X
q

X
s

~vT (q)~v(s)~h(r)n(m� s� r)nT (m� q� i)

3
5

=
X
r6=i

X
q

X
s

~vT (q)~v(s)~h(r)~rnn(r+ s� q� i)

=
X
p6=i

X
q

X
s

~vT (s)~v(q)~h(p)~rnn(p+ q� s� i)
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(60)

To simplify @

@~h(i)
�43, we use (54) and (53)

�43 = E

2
664TrX

q

X
s

~v(s)|{z}
~Us

~h(i)|{z}
~X

n(m� s� i)nT (m� i� q)| {z }
~Vq;s

~hT (i)| {z }
~XT

~vT (q)| {z }
~Wq

3
775 (61)

By using (54) in (61) and applying (53),

@

@ ~X
�43 =

@

@ ~X
E

"
Tr
X
q

X
s

~Us
~X~Vq;s

~XT ~Wq

#

=
@

@ ~X
E

"
Tr
X
q

X
s

~XT ~Wq
~Us
~X~Vq;s

#

= E

"X
q

X
s

~Wq
~Us
~X~Vq;s + ~UT

s
~WT
q
~X~VT

q;s

#

= E

"X
q

X
s

~vT (q)~v(s)~h(i)n(m� s� i)nT (m� i� q)

#

+E

"X
q

X
s

~vT (s)~v(q)~h(i)n(m� i� q)nT (m� s� i)

#

= 2E

"X
q

X
s

~vT (s)~v(q)~h(i)n(m� i� q)nT (m� s� i)

#

= 2
X
q

X
s

~vT (s)~v(q)~h(i)~rnn(q� s) (62)

Finally, combining (62) with (60) and (59) and combining (57) and (56) yields the �rst-order

necessary conditions for an optimum solution to the minimization of (42)

X
k

~vT (k)~ran(�i� k) =
X
p

X
q

X
s

~vT (s)~v(q)~h(p)~rnn(p+ q� s� i) (63)

These equations may be regarded as a generalization of the Yule-Walker equations [17] from linear

prediction theory to the matrix case, with a generalized linear spatially-invariant weighting. The

above set of generalized Yule-Walker equations may be solved for the optimal �lter subject to

the constraints of (43) using the steepest descent algorithm [17].

We use a white noise image as an approximation to the uncorrelated noise image n(m). Thus,

the required autocorrelation matrices are approximated as

~rnn(k) = E
h
n(m)nT (m+ k)

i
� �(k) (64)
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~ran(k) = E

 X
t

~v(t)n(m� t)

!
nT (m+ k) �

X
t

~v(t)�(k + t) = ~v(�k) (65)

where �(k) is the two-dimensional Kronecker delta function [17]. In the optimization, the con-

straint is enforced by projection onto the convex constraint set. The convergence behavior of

this algorithm is discussed in [19]. The algorithm is guaranteed to converge if the convergence

parameter in the descent algorithm is chosen to be small enough [19].

The descent algorithm may be formulated as

@J

@~h(�)(i)

�
= �2

X
k

~vT (k)~v(i+ k) + 2
X
p

X
q

X
s

~vT (s)~v(q)~h(�)(p)�(p + q� s� i) (66)

~f (�)(i)
�
= ~h(�)(i)� �

@J

@~h(�)(i)
(67)

~h(�+1)(i) = P
�
~f (�)(i)

�
(68)

where � refers to the iteration number, and P is the projection operator that projects the iterate

into the constraint set C, which is de�ned by (43). We use the convergence parameter � = 0:005

in our simulations. The projection operator is de�ned as [20]

P
�
~f (�)(i)

�
�
= ~f (�)(i)�

1

3 j S j

0
@X
i2S

~f (�)(i)�~I

1
A11T (69)

C. Linear color model for the human visual system

To obtain a true matrix linear color model, one needs to model the color processing of the

human visual system as a convolution with a matrix-valued �lter ~v(m). The development of

such a model is beyond the scope of this paper and a topic for future research. Instead, we

use a pattern-color separable model for the human visual system based on the work of Poirson

and Wandell [14], [21]. The pattern-color separable color vision model forms the basis for the

S-CIELab color space, which has become an industry standard [22]. The pattern-color separable

model �rst transforms device dependent RGB values (where R, G and B are coe�cients of

standard spectral tristimulus basis functions) into a space with basis functions represented by

the normalized color sensitivities of the three fundamental cones responsible for human color

vision. The three cones are called the L, M and S cones respectively, to denote long (L), medium

(M), and short (S) wavelength sensitivities. Thus, at each pixel an RGB value is transformed

into the corresponding cone photoreceptor absorption rates. The L, M and S basis functions are

referred to in the literature as the Smith-Pokorny cone fundamentals [23]. The LMS coordinates
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are then transformed using a color transformation into an opponent representation [24]. The

three opponent visual pathways are the white-black (or the luminance pathway), red-green and

blue-yellow pathways (chrominance pathways). The \-" in red-green and blue-yellow should be

read as \minus" and not confused with a hyphen. Thus, white and black are in opposition, red

and green are in opposition, and blue and yellow are in opposition. Such a representation is

very di�erent from early RGB models where it was believed that humans respond to the three

primary colors [24]. Strong support for the opponent representation comes from the fact that

humans do not perceive colors that are reddish green or yellowish blue since the red-green and

yellow-blue visual pathways are opponent channels. Poirson and Wandell [14], [21] found that

spatial frequency sensitivity to color patterns could be modeled as spatial frequency sensitivity

of the three channels in the opponent representation.

Thus, the linear color model consists of

1. A linear transformation ~T and,

2. Separable spatial �ltering on each channel using a di�erent spatial �lter on each channel.

This operation may be regarded as a matrix multiplication in the frequency domain by a

diagonal matrix ~D(z).

Thus, v(m) is computed as

v(m) = ~d(m)~T (70)

We now describe the the computation of the model parameters for viewing RGB images on a

monitor. First, one needs to account for the fact that the 8-bit values that are put in the frame

bu�er to trigger the red, green, and blue guns of the CRT are not the RGB tristimulus values of

the colors displayed on the monitor. This is because the CRT has a nonlinear response to frame

bu�er values. Thus, we need to pass the RGB values of the image through this non-linearity

to obtain the RGB coordinates of the colors displayed on the monitor. This corresponds to the

inverse of gamma correction. The color images are �rst pre-processed with this point-nonlinearity

before they are halftoned. This ensures that the colors in the halftone are closest to the color

actually rendered on the monitor.

The linear transformation ~T is computed as the composition of two linear transformations ~C

and ~O. The transformation ~C is the transformation that converts linear RGB values into Smith-

Pokorny cone absorption rates. ~C is a monitor dependent transformation. The transformation ~O

that transforms the LMS coordinates into the opponent representation is given in [14], [21], [22]
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and is monitor independent. The spatial frequency weighting functions for the three opponent

visual pathways were obtained for viewing images displayed on the monitor at 72 dpi (dots per

inch) at a \normal" viewing distance of 18 inches using the parameters given in [22].

D. Simulation Results

Several random initial guesses were tried, and the descent algorithm was terminated when the

changes in the objective function were below a prede�ned threshold. Using this method, one may

explore di�erent minimizers (solutions that result in nearly the same objective function value).

The uniformity in the dot distributions produced by di�erent initial guesses was di�erent. It has

been shown [25], [26], [27] that frequency weighted mean squared error alone cannot guarantee

optimum dot distributions. This problem can be alleviated by using threshold modulation [28].

For the purpose of this work, since we are only concerned with the noise shaping behavior of

error di�usion, we chose a solution that has a reasonably uniform dot distribution.

Our calibration data used a monitor display  � 2:2, and a monitor dependent transformation

matrix ~C

~C =

0
BBBB@

2:0935 7:6018 1:1235

0:7921 7:6394 1:6264

0:0894 0:8020 7:6618

1
CCCCA (71)

The optimal �lter coe�cients obtained for this monitor were

~h(0; 1) =

0
BBBB@

0:6316 �0:1306 0:0323

�0:0430 0:3993 0:0327

�0:0167 �0:1082 0:7379

1
CCCCA

~h(1; 1) =

0
BBBB@

�0:1949 0:1289 �0:0242

0:0817 �0:0730 0:0645

0:0454 0:1585 �0:4017

1
CCCCA

~h(1; 0) =

0
BBBB@

0:3598 �0:0549 0:0403

�0:0018 0:2906 0:0173

�0:0080 �0:0895 0:4867

1
CCCCA

~h(1;�1) =

0
BBBB@

0:2181 �0:0112 0:0047

0:0222 0:1515 0:0580

0:0129 0:0213 0:1614

1
CCCCA
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The optimal �lter that was obtained based on our calibrated color monitor and was tested

on �ve standard color test images (lena, peppers, pasta, fruits, hats). In each case, to evaluate

the noise shaping behavior, we produced undistorted halftones using the color signal distortion

canceling method developed in Section III-B.2. Section III-B.2 showed that according to the

matrix gain model, the quantization error image in the distortion canceling method is in fact

the uncorrelated noise injection into the halftoning system. Therefore, we used the error image

produced while halftoning the set of test images with distortion canceling schemes using the

optimal �lter and the Floyd-Steinberg error �lter, respectively, as the noise image in the objective

function of (42). The e�ective noise shaping gain (in dB) of the optimal �lter over the separable

Floyd-Steinberg �lter may be computed as

NG = 10 log10

 
Jfs

Jopt

!
(72)

where the numerator and denominator in the argument of the log function are the objective func-

tions computed by using (42) for the optimal �lter and the Floyd-Steinberg �lter, respectively.

Sample averages were used to estimate the expectations. Table I tabulates the noise gain of the

optimal �lter over using a separable Floyd-Steinberg error �lter.

Fig. 8(a) shows the pasta image halftoned using Floyd-Steinberg halftoning on each color

plane. Fig. 8(b) shows a magni�ed view of a portion of the image. Figs. 9(a) and 9(b) show

the corresponding results for halftoning with the optimal error �lter. The optimal �lter results

in less visible halftone noise. It signi�cantly reduces color impulses when compared with scalar

error di�usion using �lters with scalar coe�cients. The halftone noise patterns produced by

conventional Floyd-Steinberg error scalar �lter were signi�cantly more visible when observed

on the calibrated monitor as compared to the noise patterns produced by the optimal �lter.

However the proposed design procedure does not guarantee that the distribution of the color

dots is the most regular possible. It must be emphasized that since the optimal �lter coe�cients

are dependent on a particular monitor con�guration, the above design process must be applied

on a case-by-case basis. Since our color model is de�ned in a device independent color space,

our preceding discussion holds for other color spaces as well. For example, if we are working in a

Cyan Magenta Yellow (CMY) color space (for a printing application), then we can convert CMY

into corresponding CIE XYZ coordinates [24] and then into the opponent representation. Thus,

using a new color transformation matrix ~T, the optimal �lter for this case can be calculated

using the method described in this section.
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V. Parallel Implementation of the Error Filter

In this section, we show that an error �lter with matrix-valued coe�cients has a parallel

implementation, which can increase throughput by up to a factor of three. A �lter with matrix-

valued coe�cients can be implemented with conventional �ltering operations applied in parallel

to each component of the vector sequence being �ltered.

Analyzing (5) and using F(z) for the z-transform of the feedback signal, we obtain

0
BBBB@

F0(z)

F1(z)

F2(z)

1
CCCCA =

0
BBBB@

H0;0(z) H0;1(z) H0;2(z)

H1;0(z) H1;1(z) H1;2(z)

H2;0(z) H2;1(z) H2;2(z)

1
CCCCA

0
BBBB@

E0(z)

E1(z)

E2(z)

1
CCCCA (73)

We represent the �ltering using Fig. 10. Each of the �lters Hi;j(z), i; j = 0; 1; 2, is a polyphase

component of the multi�lter, and represents a conventional scalar �lter that can be derived from

the �lter coe�cients of the multi�lter ~h using the polyphase decomposition. In fact, hi;j(m) =h
~h(m)

i
i;j
. Since ~h is �xed, the polyphase components of its rows may be precomputed. Nine

polyphase �lters are required for the implementation.

The result is a set of conventional �lters with scalar coe�cients, which enables the components

of the input signal vector sequence to be bu�ered and �ltered independently of the other compo-

nents, in parallel. Since the �lters hi;0, hi;1 and hi;2 are operate in parallel, the parallel polyphase

implementation is three times faster than a sequential implementation of (4). We may utilize

three low-bandwidth, low-cost embedded processors instead of one high bandwidth processor to

get the same performance at a lower cost [13] or use a processor with VLIW or SIMD parallel

processing operations, such as the TMS3206000 or Intel Pentium MMX respectively. The parallel

implementation does not require shared circular bu�ers. Each component of the input vector

sequence is put into a separate circular bu�er on each of the three parallel digital signal proces-

sors (DSPs). This allows for fast, low-overhead loop code making the implementation e�cient

on parallel programmable DSPs.

VI. Conclusion

This paper formalizes the idea that error di�usion may be approximated as a system that

produces frequency distortion and adds additive noise [29]. The modeling approach generalizes

modeling methods for scalar error di�usion [3] to the vector case. We linearize vector error

di�usion based on a \matrix gain model" for the quantizer that accounts for correlations among
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the components of the vector error being di�used. We use this modeling to predict the linear

signal distortion and noise shaping e�ects of vector error di�usion. Based on the model, we derive

a low-complexity compensation method to eliminate signal frequency distortion in vector error

di�usion. The model could potentially be used for color halftone compression, in which one may

decide to allocate bits according to the signal distortion and noise injection pro�les predicted by

the model.

We develop a model-based error �lter design method in which the objective is to minimize the

visual e�ect of the additive noise injection produced by vector error di�usion. We cast the optimal

error �lter design problem as a generalized weighted linear prediction problem and derived the

set of equations that may be regarded as a generalization of the Yule-Walker equations. The

solution of the generalized set of equations results in color error �lters with visually optimum noise

shaping. The explicit modeling for the human visual system incorporates a generalized linear

spatially invariant matrix-valued weighting and is not restricted to the pattern-color separable

model [14] that is used to obtain our �lters. Thus, more general linear visual models could be

used if they were available. Future work could explore the role of the constraints in designing

optimal color error �lters. Better results were obtained when the lossless di�usion constraints

were not strictly observed. Symbolic optimization such as the approach of [30] could be used

to explore constrained design spaces in an automated framework where the error �lter can be

simultaneously optimized to satisfy several constraints.

Finally we showed that the matrix-valued color error �lters, when put into polyphase form,

have an e�cient parallel implementation. Such an implementation was especially valuable when

using conventional embedded digital signal processor architectures.
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image Noise gain

(dB)

lenna 3.2868

peppers 1.8775

fruits 1.3741

pasta 1.4563

hats 1.0452

TABLE I

Noise gain of the optimal filter on standard test images.
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Fig. 1. System block diagrams for block error di�usion halftoning. ~h represents a �xed 2-D nonseparable

FIR error �lter with matrix valued coe�cients. The vector m represents the 2-D index (m1;m2).
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Fig. 2. System block diagram for vector color error di�usion model, where ~K represents a linear trans-

formation of the signal component of u(m) and n(m) is a noise process uncorrelated with the signal

component of u(m).
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(a) 256 � 256 lenna (b) lena generated using model ~K                        

(c) Halftoned lenna (d) Residual noise image

Fig. 3. Validation of matrix gain model by linearly distorting the original image. Here, the residual image

has been scaled using a full-scale contrast stretch for display purposes.
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Fig. 4. System block diagrams for vector color error di�usion halftoning with a �xed pre-�lter ~g having

matrix valued coe�cients.
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Fig. 5. System block diagrams for modi�ed vector color error di�usion halftoning. ~L represents a constant

linear transformation.
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(a) Residual image when ~L = ~0 (b) Halftone generated using optimal ~L                        

(c) Residual image using optimal ~L (d) Input to error �lter using optimal ~L

Fig. 6. Validation of matrix gain model by creating an undistorted halftone. Here, the residual image and

the input to the error �lter have been scaled using a full-scale contrast stretch for display purposes.
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Fig. 7. Predicted and actual radially averaged spectra for residual noise image: (a) (b) green and (c)

blue planes. Solid lines indicate actual spectra while the dashed lines represent predicted spectra
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(a) pasta halftoned with Floyd-Steinberg �lter.

(b) Magni�ed portion of halftone.

Fig. 8. Performance of the separable Floyd-Steinberg �lter.
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(a) pasta halftoned with optimal �lter.

(b) Magni�ed portion of halftone.

Fig. 9. Performance of the optimal �lter.
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Fig. 10. Parallel structure for the error �lter. Each output color component is obtained by �ltering

the color components of the inputs with di�erent �lters, each with scalar valued coe�cients, and

then combining their outputs. i = 0; 1; 2, correspond to the computation of the red, green and blue

components of the output respectively.
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