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Abstract

In the early 1990s, the state-of-the-art in commercial
chromosome image acquisition was grayscale.
Automated chromosome classification was based on the
grayscale image and boundary information obtained
during segmentation. Multi-spectral image acquisition
was developed in 1990 and commercialized in the mid-
1990s. One acquisition method, multiplex fluorescence
in-situ hybridization (M-FISH), uses five color dyes.
We previously introduced a segmentation algorithm for
M-FISH images that minimizes the entropy of classified
pixels within possible chromosomes. In this paper, we
extend this entropy-minimization algorithm to work on
raw image data, which removes the requirement for
pixel classification. This method works by estimating
entropy from raw image data rather than calculating
entropy from classified pixels. A successful example
image is given to illustrate the algorithm. Finally, it is
determined that entropy estimation for minimum
entropy segmentation adds a heavy computational
burden without contributing any significant increase in
classification performance, and thus not worth the
effort.

1. Introduction

Chromosomes are the cell structures that contain genetic
information. When chromosomes are photographed, the
images contain much information about the health of an
individual. The images are useful for diagnosing
disorders and studying various diseases. In the past, it
has been necessary for laboratory technicians to
examine these images visually to collect the useful
information contained in these images. However, since
many images often have to be inspected and since visual
inspection is time consuming and expensive, many
attempts have been made to automate chromosome

image analysis. For example, automated segmentation
algorithms for grayscale chromosome images have been
able to correctly decompose about 80-90% of touching
and overlapping chromosomes [1, 2, 3]. These
automated procedures rely on chromosome shape and
texture.

In the 1990’s, new techniques were developed to dye
chromosomes with multiple colors so that each
chromosome class appears to be a distinct color. This
makes analysis of chromosome images easier, not only
for human inspection, but also for computer analysis.
This research focuses on one such dying technique,
known as M-FISH (multiplex fluorescence in-situ
hybridization). This work takes advantage of the multi-
spectral information in M-FISH images to improve past
methods of computer segmentation and analysis of
chromosome images.

2. Multi-spectral M-FISH images

A new way to image chromosomes came about with the
invention of chromosome painting [4], combinatorial
labeling [5] and ratio labeling [6]. These techniques
made use of fluorophores (dyes) that attach to a single
class of chromosomes, parts of chromosomes, or
specific sequences of DNA. Using these techniques,
one could create a combination of fluorophores such
that each class of chromosomes absorbed a different
combination of these fluorophores [7, 8, 9]. Therefore,
each chromosome class would appear to be a different
color and would be visually distinguishable from all of
the other classes.

An image of each fluorophore can be obtained by
employing appropriate optical filters. This way, each
pixel could be represented as a vector, where each
element represents the intensity of the response to one
fluorophore. Instead of obtaining a grayscale image by
traditional chromosome imaging techniques, such as
Giemsa banding [10], a multi-spectral image could now
obtained in which the spectral composition at each point



reveals the combination of fluorophores and, thus, the
chromosome class of the matter at that point. Using this
combinatorial labeling, known as M-FISH, one can
determine the chromosome class at every pixel.

Such an imaging technique has a couple of obvious
advantages. First, the task of chromosome classification
is greatly simplified. Instead of determining and then
comparing the chromosome lengths, centromere
positions, and banding patterns, one only has to look at
the spectral information within that chromosome. The
second advantage is that it is possible to detect smaller
translocations and rearrangements than were discernible
with grayscale chromosome banding patterns only [11].

3. Multi-spectral entropy
estimation for segmentation

Traditional chromosome segmentation methods use
shape information from the boundary of the
chromosomes to detect and decompose clusters. Cut
points are then found by examining the shape of
boundary of the cluster [2, 3, 12]. Occasionally,
grayscale information from inside the chromosome
clusters is also used. One popular method is “valley
searching” [13] where a minimum cost algorithm
attempts to locate low gray-value valleys running
through the cluster to locate separation between the
chromosomes.

With M-FISH images, a new source of information is
available for segmentation. There are examples in
which even a trained observercannot determine the
correct segmentation just by looking at boundary or

greyscale information in a cluster of chromosomes, but
seeing the multispectral information makes itobvious
(See Fig. 1).

To use the multi-spectral information available in M-
FISH, we previously introducedan objective function of
minimum entropy that uses this multi-spectral
information to evaluate possible cut lines [14]. For the
objective function, we used a measure of entropy. In
particular, we used Shannon’s definition of entropy for
a discrete random variable [15]
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wheren is the number of possible classes. Probabilitypi

was calculated as the percentage of classi pixels within
the object. In a perfectly classified and segmented
image, the entropy of each segment will be zero, since
all the pixels in each segment will be classified into the
same class. The larger the number of different classes
that are found within a segment, the higher the entropy
will be.

However, to use this entropy measure, it was
necessary to employ a step of pixel classification before
segmentation. We propose calculating entropy from
raw image data, using a differential entropy estimation
technique, and thus avoiding this classification step. In
particular, we have used the nearest neighbor estimation
technique [16].

Let ρn,i be the nearest neighbor distance ofXi and its

nearest neighborXj: jinjijin XX −= ≤≠ ,, minρ . Then

the nearest neighbor estimate is given by

(1)

a) Boundary of cluster b) Multi-spectral information in cluster

Figure 1: Comparison of two types of cluster information
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This estimator can be shown to have mean square
consistency. It has been chosen because it is defined for
multiple dimensions and because it is less
computationally complex than other methods such as
minimal spanning tree methods [17].

Aside from the benefit of being able to remove the
step of pixel classification from the process of
chromosome image segmentation, the hope with this
algorithm was that performance might be gained over
past minimum entropy methods [14] on chromosomes
whose pixels lay near the decision boundary of two
classes for some pixel classifier. In such a case, the
classified pixels for that chromosome might come from
some distribution of two different classes, while the
vector values of the pixels within that chromosome
might actually be very close to each other. So in this
case, a minimum entropy algorithm based on classified
pixels might incorrectly split the chromosome, whereas
the entropy estimation technique would correctly
recognize the object as a single chromosome.

4. Example

Fig. 2 segments an M-FISH image using the entropy
method. The original chromosome image is in Fig. 2a.
Fig. 2b shows the connected components of the image
after thresholding. In this image, several groups of
chromosomes (those labeled 16, 19, 23, 29, and 35) are
labeled as a single object. Fig. 2c shows the entropy-
segmented chromosomes. All touching chromosomes

were correctly split. The two overlapped chromosomes
(40 and 43) were correctly identified. In these
chromosomes, both ends are labeled as one
chromosome.

5. Conclusion

This paper extends the idea of entropy as a criterion for
selecting cut lines to decompose groups of
chromosomes that touch and overlap each other. This
algorithm uses nearest neighbor distances to estimate
entropy from raw image data to accomplish minimum
entropy segmentation without requiring pixel
classification.

We tested the entropy estimation technique on
selected images from a public database of 200 hand-
segmented M-FISH images. This database is available
from Advanced Digital Imaging Research at

http://www.adires.com/projects/mfish_db.shtml

This database contains 200 hand-segmented M-FISH
images, or approximately 9000 individual
chromosomes.

For comparison, a simple pixel classification
algorithm was run on the entire ADIR MFISH dataset.
Performance of the pixel classifier was around 70% for
the entire database, although it varied widely across the
dataset from images with 30% classification accuracy to
95%. Images used for the test had pixel accuracy rates
of 70-80%. We then performed minimum entropy
segmentation using the algorithm found in [14].

The entropy estimation algorithm worked on many
images, but its performance was very sensitive to its
parameters, such as the entropy threshold that
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b) Connected components
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c) Entropy-segmented imagea) M-FISH image

Figure 2: Example of an M-FISH image
segmented with entropy segmentation

(2)



distinguished chromosomes from chromosome clusters,
and the entropy difference threshold, that is the drop in
entropy necessary for a cut to be considered valid.
Often a set a parameters could be found that would
work for an image or two, but no general set of
parameters worked for a large number of the database
images. Some images had no set of parameters that
segmented the image correctly. In general, performance
did not exceed that of entropy segmentation via pixel
classification [14].

Furthermore, the computation time of the entropy
estimation algorithm was prohibitive, often taking hours
to days to segment a single image. This drawback made
it impossible to test the algorithm on all 200 images in
the dataset, so only a few images were tried, but the
performance of the algorithm on these images never
exceeded that of the pixel-classification-based
algorithm. Even though integrating entropy estimation
into the algorithm avoids the step of pixel classification,
the added computational load of entropy estimation for
each possible cut point is much larger than the step of
pixel classification, which it replaced.

Thus it seems that entropy estimation adds the
unnecessarily burdensome computation while providing
no increment in performance. This is likely because
rarely are chromosome’s pixel vector-values smooth
and still found on a pixel classifier’s decision boundary.
Apparently, more often what happens is that high
variance is found within chromosome pixel vector
values, but this variance still falls within pixel classifier
bounds, so its pixels are still classified well and thus
segmented correctly.

Because of its computational complexity and its poor
segmentation performance, we conclude that entropy
estimation is a poor method for minimum entropy
MFISH segmentation.
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