Sensitivity Analysis of a Spatially-Adaptive Estimator for Data Fusion
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Introduction Estimating Q In Spatial Dimensions Results

*Problem: No general capability for mapping and updating remote sensing data acquired * Innovations represent prediction error Uy = yy - ka|k. ] = Hep + vy  Obtain improved DEM and lower uncertainty sqrt(?) without spatial blurring

: - Where e; = x; - x |- 1 denotes error in estimate

from multiple sensors . . . . I'inal fused estimates (m)
o , . * The sequence U 18 Gaussian, white sequence for optimal filter

- Historical data often acquired from different sensors
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*Solution: Develop multiscale data fusion framework to combine 1image data J
* Model errors cause assumptions of uncorrelated noise to be violated TR R A et
- Yields correlation in vy, E[u,U jT] # 0 in general Fohh KR

0.8
- Use Kalman-based method to provide robust performance and limit computational complexity

*Application: Mapping topography

» Detect correlation in U, using autocorrelation function (ACF) [3] [4] | | 4‘ T SR S 54

- Fuse Digital Elevation Models (DEMs) acquired from different sensors and at different times , L
- Non-white ACF(v;) implies model errors
- Obtain improved DEM with sparse high-resolution data combined with dense low-resolution data L. . .

pro¥ WILSP 5 Y - Relate Kalman parameters {®, H, O, R} to ACF(v;) and update O using innovation-correlation method
- Obtain error map

Complexity Analysis

ACF{v, )= F {Ukuf_; ] =i E[ekeiﬂ_J] H +HE [ej,,uf_ j] fork = j

- Incorporate spatially-adaptive capability

- Non-iterative, O(N) operations, where N is number of leaf nodes

([ [ ] [ ] o ) ) . AMKS
Data Fusion Framework Sensitivity to Process Noise Variance

» Multiscale Kalman smoother (MKS) operates on a quad-tree

- Non-iterative, solve for O over contiguous pixel segements where non-white innovations detected

 Spatial Kalman filter used in the data fusion 1s scalar-valued and reaches steady state quickly - Implement at scale m=M-1, additional operations over MKS O(N/4)

- Begins with fine-to-coarse sweep up the tree (Kalman filtering with merge step) [1] - Use solution to the scalar time-invariant discrete-time Ricatti equation to examine sensitivity » Adaptive algorithm represents approximately 25% additional complexity and achieves

- Followed by coarse-to-fine sweep down the tree (Kalman smoothing) L , _ , , , o , ) L
- The Ricatti difference equation describes the evolution of the discrete-time a priori error variance P, up to 15% reduction in MSE
- Accommodates sparse and irregularly spaced measurements

C .. : : - The difference equation can be transformed into a system of two simultaneous linear difference equations [5]
- Computes minimum mean squared error estimates of state variables

Coarse Resolution - The general solution indicates the Kalman filter rate of convergence grows with Q and Q/R

‘ o] Conclusions
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- Allows explicit separation of state variables and observations
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Coarse-to-Fine Dynamic Model I]:gslv;rzv’:a;i (s)vov;elgg el ir{ “ R H+R, € AO(O/R) | A% MSE

2(5)=P(s)r(Bs)+T (m)w(s)  state equation Dot v ) | 010|524 Multiscale estimation represents an improvement over splicing high-resolution data by

W(s)=H(s)x(s)+1(s) measurement equation Kalman Filtering ix 1 53.7 accounting for realizations of the state process at multiple scales

* Numerical results were computed for different values of AQ(Q/R) 0.1 447
10 16.6  AMKS data fusion provides smaller MSE than standard MKS data fusion

- Relative improvement of the adaptive estimator degraded for large AQO(Q/R) values 1 30.5

100 2.2

10 13.8 - The amount of improvement depends on the values of O, AQ, and R

m  =scale y(s) = sensor measurement

S = node index on multiresolution tree  v(s) = measurement noise process ~N(0,R(s))
Bs = backshift from s (coarse to fine) d(s) = coarse-to-fine state transition

x(s) = state variable [(s) = stochastic detail model

W(S) = white noise process NN(O,I) H(S ) = observation-state mapping Fine Resolution

- Improvements 1n the MKS implementation are generally less than in 1-D Kalman filter

- Updated images of Q provide information about where the MKS algorithm 1s suboptimal
Results

o .  Alternate approaches to spatially-adaptive MKS will be investigated, such as multiple-model
Sp atlaHY'Adaptlve MKS » Fused multiple DEMs from different radars with standard deviations 07, >2.5 m filter banks

» Kalman process noise variance Q 1s derived from the downward model [1] TOPSAR 2000 (Finke) at 5 m resolution TOPSAR 2000 (Finke) at 5 m resolution
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* MKS has no mechanism to make I', P¢, or Q vary spatially filter

in scale :

- No variation with (i, /), only with scale m . - m | | - : ] G. Noriega and S. Pasupathy, “Adaptive Estimation of Noise Covariance Matrices in Real-Time Preprocessing of
oOw-resolution 4
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- Compensates for modeling errors in Q S * Mean height standard deviations for each observation 0y, and fusion results sqrt(P%)

- Spatially-varying Q represents actual topography more accurately Observation | Mean o, (m) Fused results Mean sqrt(P*) (m)

- Updated Q 1mages provide insight about topographic features e ERS 18 ERS + TOPSAR-1 1.1

TOPSAR-1 1.9 prior + TOPSAR-2 0.76 ACknOWIEdgments

TOPSAR-2 1.9 prior + TOPSAR-3 0.60
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