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•Problem: No general capability for mapping and updating remote sensing data acquired

from multiple sensors
­ Historical data often acquired from different sensors

­ Data sets may have different extents and resolutions

­ Different imaging geometry and wavelengths yield sensor-dependent errors

•Solution: Develop multiscale data fusion framework to combine image data
­ Use Kalman-based method to provide robust performance and limit computational complexity

•Application: Mapping topography
­ Fuse Digital Elevation Models (DEMs) acquired from different sensors and at different times

­ Obtain improved DEM with sparse high-resolution data combined with dense low-resolution data

­ Obtain error map

­ Incorporate spatially-adaptive capability

 • Kalman process noise variance Q is derived from the downward model [1]

Ps(s) = E[x(s)x(Bs)] = Φ2Ps(Bs) + Γ2(s)

Q(s) = Ps(Bs)[1 - Φ2Ps(Bs)/Ps(s)]

 • MKS has no mechanism to make Γ, Ps, or Q vary spatially

­ No variation with (i, j), only with scale m

• Benefits of adaptive MKS (AMKS) fusion [2]
­ Compensates for modeling errors in Q

­ Spatially-varying Q represents actual topography more accurately

­ Updated Q images provide insight about topographic features

• Spatial Kalman filter used in the data fusion is scalar-valued and reaches steady state quickly
­ Use solution to the scalar time-invariant discrete-time Ricatti equation to examine sensitivity

­ The Ricatti difference equation describes the evolution of the discrete-time a priori error variance Pk
-

­ The difference equation can be transformed into a system of two simultaneous linear difference equations [5]

­ The general solution indicates the Kalman filter rate of convergence grows with  Q and Q/R

Conclusions
• Multiscale estimation represents an improvement over splicing high-resolution data by

accounting for realizations of the state process at multiple scales

• AMKS data fusion provides smaller MSE than standard MKS data fusion

- The amount of improvement depends on the values of Q, ∆Q, and R

- Improvements in the MKS implementation are generally less than in 1-D Kalman filter

- Updated images of Q provide information about where the MKS algorithm is suboptimal

• Alternate approaches to spatially-adaptive MKS will be investigated, such as multiple-model

filter banks
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• Multiscale Kalman smoother (MKS) operates on a quad-tree
­ Begins with fine-to-coarse sweep up the tree (Kalman filtering with merge step) [1]

­ Followed by coarse-to-fine sweep down the tree (Kalman smoothing)

­ Accommodates sparse and irregularly spaced measurements

­ Computes minimum mean squared error estimates of state variables

­ Allows explicit separation of state variables and observations

m = scale
s = node index on multiresolution tree
Bs = backshift from s (coarse to fine)
x(s) = state variable
w(s) = white noise process ~N(0,1)

Coarse-to-Fine Dynamic Model

x(s)=Φ(s)x(Bs)+Γ(m)w(s) state equation

y(s)=H(s)x(s)+v(s) measurement equation
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Results

Mean h (m)Observation

1.6TOPSAR-3
1.9TOPSAR-2
1.9TOPSAR-1
18ERS

Mean σh (m)Observation

1.6TOPSAR-3
1.9TOPSAR-2
1.9TOPSAR-1
18ERS

Mean sqrt(Ps) (m)Fused results

0.60prior + TOPSAR-3
0.76prior + TOPSAR-2
1.1ERS + TOPSAR-1

Mean sqrt(Ps) (m)Fused results

0.60prior + TOPSAR-3
0.76prior + TOPSAR-2
1.1ERS + TOPSAR-1

18.8101
2.210010
30.511
16.61010
44.70.11
53.7110
38.50.011
52.40.1010

% MSEQ(Q/R)Q

18.8101
2.210010
30.511
16.61010
44.70.11
53.7110
38.50.011
52.40.1010

% MSEQ(Q/R)Q ∆ ∆

Estimating Q In Spatial Dimensions
• Innovations represent prediction error υk = yk - Hxk|k-1 = Hek + vk

­ Where ek = xk - xk|k-1 denotes error in estimate

• The sequence υk is Gaussian, white sequence for optimal filter

• Model errors cause assumptions of uncorrelated noise to be violated
­ Yields correlation in υk , E[υkυj

T] = 0 in general

• Detect correlation in υk using autocorrelation function (ACF) [3] [4]
­ Non-white ACF(υk) implies model errors

­ Relate Kalman parameters {Φ, H, Q, R} to ACF(υk) and update Q using innovation-correlation method

f(Q)

• Numerical results were computed for different values of ∆Q(Q/R)
­ Relative improvement of the adaptive estimator degraded for large ∆Q(Q/R) values

1

2

3 6

5

4

7

8

9

y(s) = sensor measurement
v(s) = measurement noise process ~N(0,R(s))
Φ(s) = coarse-to-fine state transition
Γ(s) = stochastic detail model
H(s)  = observation-state mapping

Complexity Analysis
• MKS

- Non-iterative, O(N) operations, where N is number of leaf nodes

• AMKS

- Non-iterative, solve for Q over contiguous pixel segements where non-white innovations detected

- Implement at scale m=M-1, additional operations over MKS O(N/4)

• Adaptive algorithm represents approximately 25% additional complexity and achieves

   up to 15% reduction in MSE

Results
• Obtain improved DEM and lower uncertainty sqrt(Ps) without spatial blurring

• Mean height standard deviations for each observation σh and fusion results sqrt(Ps)

• Fused multiple DEMs from different radars with standard deviations σh >2.5 m

DEM
heights

height
standard
deviations

data
dropouts


