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Abstract|Image halftoning converts a high-resolution im-
age to a low-resolution image, e.g. a 24-bit color image to a
three-bit color image, for printing and display. Vector error
di�usion captures correlation among color planes by using
an error �lter with matrix-valued coe�cients. In optimizing
vector error �lters, Damera-Venkata and Evans transform
the error image into an opponent color space where Eu-
clidean distance has perceptual meaning. This paper eval-
uates color spaces for vector error �lter optimization. In
order of increasing quality, the color spaces are YIQ, YUV,
opponent (by Poirson and Wandell), and linearized CIELab
(by Flohr, Kolpatzik, Balasubramanian, Carrara, Bouman,
and Allebach).
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I. Introduction

Image halftoning converts a high-resolution image to

a lower resolution image, e.g. for printing and display.

Common examples are converting an eight-bit per pixel

grayscale image to a binary image, and a 24-bit color im-

age (with eight bits per pixel per color) to a three-bit color

image. Applying grayscale halftoning methods separably

to color images does not take the correlation among color

planes into account, and can lead to artifacts such as spu-

rious color impulses in the resulting halftones.

In grayscale halftoning by error di�usion, each grayscale

pixel is thresholded to white or black, and the quantiza-

tion error is fed back, �ltered, and added to the neighbor-

ing grayscale pixels [1]. Although an error �lter is typically

lowpass, the feedback arrangement causes the quantization

error to be highpass �ltered, i.e. pushed into high frequen-

cies where the human eye is least sensitive. The feedback

arrangement sharpens the original image by passing low

frequencies and amplifying high frequencies. Traditional

grayscale error di�used halftones appear sharper than the

original and contain highpass noise [2].

Vector error di�usion, �rst proposed in [3], represents

each pixel in a color image as a vector of values. The

thresholding step would threshold each vector component

separately. The vector-valued quantization error (image)

would be fed back, �ltered, and added to the neighbor-

ing (unhalftoned) color pixels. A matrix-valued error �lter

could take the correlation among color planes into account.

For an RGB image, each error �lter coe�cient would be a

3�3 matrix. For RGB vector error di�usion, matrix-valued

error �lter coe�cients are adapted in [4] to reduce the mean

squared error between the halftone and original. However,

mean squared error does not have perceptual meaning in
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RGB space.

A linear color human visual system (HVS) framework [5]

designs matrix-valued error �lters by transforming the er-

ror image into luminance and chrominance components and

minimizing a linear model of the human visual response to

the quantization noise. In this framework, mean squared

error has perceptual meaning. Based on this framework,

this paper evaluates four color spaces in which to optimize

matrix-valued error �lters. We �nd that the objective and

subjective rankings of color spaces agree. The color spaces

in order of increasing quality are (1) YIQ space, (2) YUV

space, (3) opponent color space [6], [7], and (4) linearized

CIELab color space [8]. The �rst two color spaces are com-

mon in video, where Y refers to the luminance component

and the other two letters refer to the two chrominance com-

ponents. The opponent color space is a part of the pattern-

color separable vision model [6], [7] that forms the basis for

the industry standard Spatial-CIELab (S-CIELab) color

space [7]. We did not consider the S-CIELab color space

because we are restricting our attention to color spaces

based on a linear transformation from RGB. However, the

HVS model with the linearized CIELab color space un-

der consideration [8] closely approximates the S-CIELab

framework.

Section II linearizes vector error di�usion and de�nes the

vector error �lter optimization problem. Section III gener-

alizes the linear color HVS model [5] to compute the vec-

tor error �lter coe�cients. Section IV describes color space

transformations and the associated spatial �lters. Sections

V and VI report objective and subjective quality measures,

respectively. Section VII concludes the letter.

II. Vector Color Error Diffusion

We use m to denote a 2-D spatial index (m1;m2) and z

to denote the z-domain variables (z1; z2).

A. Matrix Gain Model

Fig. 1 shows a model of vector color error di�usion

halftoning after linearizing the system by replacing the

quantizer with matrix gain ~K and an additive white noise

image n(m) [5]. The matrix gain is related to the amount

of sharpening, and the noise image models the quantization

error. ~K is chosen to minimize the error in approximating

the quantizer with a linear transformation, in the linear

minimum mean squared error sense

~K = argmin
~
A

E[k b(m)� ~A u(m) k2] (1)

where b(m) is the quantizer output process (halftone), and

u(m) is the quantizer input process. When b(m) and u(m)



MONGA, GEISLER, AND EVANS: HUMAN VISUAL SYSTEM MODELS 2

are wide sense stationary [9], the solution for (1) is

~K = ~Cbu
~C
�1

uu
(2)

where ~Cbu and ~Cuu are covariance matrices. The lin-

earized vector error di�usion system, shown in Fig. 1 has

two inputs (original signal and quantization noise) and one

output (the halftone). Using (2), the signal and noise trans-

fer functions are [5]

Bs(z) = ~K

h
~I+ ~H(z)(~K�~I)

i�1
X(z) (3)

Bn(z) =
h
~I� ~H(z)

i
N(z) (4)

The overall system response is given by

B(z) = Bs(z) +Bn(z) (5)

B. Error Measure

We form an objective function J that measures the av-

erage visually weighted noise energy in the halftone. The

output noise is computed by inverse transforming (4):

bn(m) =
h
~I� ~h(m)

i
? n(m) (6)

We weight the noise energy by a linear spatially invariant

matrix-valued HVS model, ~v(m), and form

J = E

�


 ~v(m) ?
h
~I� ~h(m)

i
? ~n(m)




2� (7)

Given a linear spatially invariant HVS model ~v(m), the

problem is to design an optimal matrix-valued error �lter

~hopt(m) = arg min
~
h(m)2C

J (8)

where the constraint C enforces the criterion that the error

�lter di�uses all quantization error [10]

C =
(
~h(i); i 2 S j

X
i

~h(i)1 = 1

)
(9)

S is the set of coordinates for the error �lter support, i.e.

S = f(1; 0); (1; 1); (0; 1); (�1; 1)g for Floyd-Steinberg.
For each of the four HVS models in Section IV, we ob-

tain the optimum �lter coe�cients by solving a matrix

version of the Yule-Walker equations, based on the con-

straint C [5]. We use a descent algorithm based on the

quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS)

update [11]. This reduces the number of iterations required

to converge to the minimum by about half for the same ef-

fort per iteration vs. steepest descent [5].

III. Generalized Perceptual Model

The linear color model employed by Damera-Venkata

and Evans [5] is based on the pattern color separable model

by Wandell et al. [6], [7]. They transfer device depen-

dent RGB values into an opponent representation [7], [12].

The three opponent visual pathways are white-black (lu-

minance pathway) and red-green and blue-yellow (chromi-

nance pathways). By x-y, we mean that in value, x is at

one extreme and y is at the other.

We generalize this model as a linear transformation ~T

to a desired color space, which is not necessarily the oppo-

nent representation [6] but any one that satis�es pattern

color separability, followed by appropriate spatial �ltering

in each channel. A complete HVS model is uniquely de-

termined by the color space transformation and associated

spatial �lters. This generalization provides a platform for

evaluation of di�erent models in perceptual meaning and

error �lter quality obtained by minimizing (7).

The linear color model Fig. 2 consists of (1) a linear

transformation ~T, and (2) separable spatial �ltering on

each channel. Each channel uses a di�erent spatial �lter.

The �ltering in the z-domain is a matrix multiplication by

a diagonal matrix D(z). In the spatial domain, the linear

HVS model ~v(m) is computed as

~v(m) = ~d(m)~T (10)

The following section discusses the transformation ~T and

the spatial �lters ~d(m).

IV. Color Transformations and Spatial Filters

Since we are targeting color halftones for display, we �rst

account for the nonlinear response of a CRT to frame bu�er

values. We pass the RGB values of original image through

this nonlinearity to obtain the RGB values of the colors

displayed on the monitor before halftoning. This ensures

that the colors in the halftone are closest to the colors ac-

tually rendered on the monitor. This process is the inverse

of gamma correction. We use \gamma uncorrection" as

speci�ed by the sRGB standard [13] on the original image

prior to halftoning.

We employ transformations to the following color spaces:

linearized CIELab [8], opponent [7], YUV, and YIQ. These

color spaces are chosen because they all score well in per-

ceptual uniformity [14] and approximately satisfy the re-

quirements for pattern color separability [6]. Since RGB

values are device dependent, we perform the color transfor-

mations based on an sRGB monitor. The transformation

to opponent color space is:

sRGB �! CIEXYZ �! opponent representation

The standard transformations from sRGB to CIEXYZ and

from CIEXYZ to opponent representation are taken from

the S-CIELab [7] code at

http://white.stanford.edu/~brian/scielab/scielab1-1

which is also the source for transformations to the YUV and

YIQ representations. The linearized CIELab color space is

obtained by linearizing the CIELab space about the D65

white point [8] in the following manner:

Yy = 116
Y

Yn
� 16 (11)
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Cx = 500

�
X

Xn

� Y

Yn

�
(12)

Cz = 200

�
Y

Yn
� Z

Zn

�
(13)

Hence ~T is sRGB �! CIEXYZ �! Linearized CIELab.

The Yy component is similar to the luminance and the

Cx and Cz components are similar to the R-G and B-Y

opponent color components. The original transformation

to the CIELab from CIEXYZ is a non-linear one

L� = 116f

�
Y

Yn

�
� 16 (14)

a� = 500

�
f

�
X

Xn

�
� f

�
Y

Yn

��
(15)

b� = 200

�
f

�
Y

Yn

�
� f

�
Z

Zn

��
(16)

where

f(x) =

�
7:787x+ 16

116
if 0 � x � 0:008856

x
1=3 if 0:008856< x � 1

The values for Xn, Yn and Zn are as per the D65 white

point [13].

The nonlinearity in the transformation from CIELab dis-

torts the spatially averaged tone of the images, which yields

halftones that have incorrect average values [8]. The lin-

earized color space overcomes this, and has the added ben-

e�t that it decouples the e�ect of incremental changes in

(Yy; Cx; Cz) at the white point on (L; a; b) values:

r(Yy;Cx;Cz)
(L�; a�; b�)jD65

=
1

3
I (17)

In the opponent color representation, data in each plane is

�ltered [7] by 2�D separable spatial kernels

f = k

X
i

!iEi (18)

where Ei = ki exp(� (x2+y2)

�2
i

). The parameters !i and �i

are based on psychophysical testing and are available in [7].

The spatial �lters for Linearized CIELab and the YUV and

YIQ color spaces are based on analytical models of the eye's

luminance and chrominance frequency response.

Nasanen and Sullivan [15] chose an exponential function

to model the luminance frequency response

W(Yy)(~�) = K(L)e��(L)~� (19)

where L is the average luminance of display, ~� is the radial

spatial frequency, K(L) = aL
b and

�(L) =
1

c ln(L) + d
(20)

The frequency variable ~� is de�ned [8] as a weighted magni-

tude of the frequency vector u = (u; v)T, where the weight-

ing depends on the angular spatial frequency � [15]. Thus,

~� =
�

s (�)
(21)

Image Linear CIELab Opponent YUV YIQ

lena 3.3511 3.2912 3.2731 3.2778

pasta 1.4623 1.4566 1.4472 1.4383

fruits 1.3832 1.3730 1.3682 1.3644

peppers 1.9562 1.8766 1.8633 1.8545

TABLE I

Noise Gain (in dB) of the Floyd-Steinberg error filter over

the optimum error filter for four HVS models.

where � =
p
u2 + v2 and

s (�) =
1� !

2
cos(4�) +

1 + !

2
(22)

The symmetry parameter ! is 0.7, and � = arctan
�
v
u

�
.

The weighting function s(�) e�ectively reduces the contrast

sensitivity to spatial frequency components at odd multi-

ples of 45o. The contrast sensitivity of the human viewer to

spatial variations in chrominance falls o� faster as a func-

tion of increasing spatial frequency than does the response

to spatial variations in luminance [16]. The chrominance

model we use re
ects this [17]:

W(Cx;Cz)(�) = Ae��� (23)

Here, � is determined to be 0.419 and A = 100 [17]. Both

the luminance and chrominance response are lowpass in

nature but only the luminance response is reduced at odd

multiples of 45o (Fig. 3). This will place more luminance

error across the diagonals in the frequency domain where

the eye is less sensitive. Using this chrominance response

as opposed to identical responses for both luminance and

chrominance will allow more low frequency chromatic error,

which will not be perceived by the human viewer.

V. Simulation Results

We evaluate four models based on linearized CIELab,

opponent, YUV, and YIQ color spaces using four images.

Table I gives the noise shaping gain NG of the optimal �lter

over the Floyd-Steinberg �lter in decibels [5]:

NG = 10 log10

�
Jfs

Jopt

�
(24)

Here, J refers to the value of the objective func-

tion given by (7). The linearized CIELab model out-

performs the other three models. The other three

models have similar performance. Matrix-valued er-

ror �lters for the four HVS models are available at

http://www.ece.utexas.edu/~vishal/halftoning.html.

VI. Subjective Testing

We develop a subjective assessment procedure for com-

paring the models based on a pair-comparison task. On

each trial, the observer saw an original image above a pair

of halftone images positioned to the left and right. The

images were displayed on a sRGB monitor. The observer
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was forced to pick the halftone that looked most similar

to the original. For each original image, observers made

six preference judgements, one for each possible pairing of

the four halftone images generated using the four di�erent

HVS models.

The relevant data from the assessment procedure is the

proportion of trials where one given halftoning method is

preferred to the other. If one method is not preferred over

the other, then the measured proportion should (ideally)

be 0.5. Further, to conclude that one method is signif-

icantly better, we require it to be picked over the other

60% or more of the time. Using the binomial probability

distribution, the total number of trials in the study was

picked so that the binomial proportion could be estimated

to within a tolerance of 0.03 with 95% con�dence. This re-

quirement resulted in a total of 960 comparisons [18], [19]

for each of the six possible pairings of the four halftoning

methods. The total comparisons/trials were obtained from

sixty subjects who judged 96 comparisons each.

Let A, B, C and D be the 4 halftoning methods (or HVS

models) to be compared. Based on the subjective test data,

we build

P =

2
664

0:5 pAB pAC pAD
pBA 0:5 pBC pBD
pCA pCB 0:5 pCD
pDA pDB pDC 0:5

3
775

where pAB is the proportion that method A was preferred

to method B. The entries in P satisfy P (k; l) = 1�P (l; k).
The data from the subjective assessment procedure gives

P as

P =

2
664

0.5 0.625 0.833 0.854

0.375 0.5 0.563 0.621

0.167 0.437 0.5 0.521

0.146 0.379 0.479 0.5

3
775

This results in a unique rank order of the methods i.e.

A � B � C � D, where A refers to the HVS model based

on Linearized CIELab, B refers to the model based on the

opponent color space, C to the YUV model and D to YIQ.

Note that if a rank order of the form A � B � C � D

exists, and we have pAB � 0:6, then we would automat-

ically have pAC � 0:6 and so forth, and we can conclude

that A is signi�cantly better than or preferred to B, C,

and D. Similarly, we can �nd if B is better than C and

so on. From the entries in P, we hence conclude that the

HVS model based on the linearized CIELab [8] color space

is the clear winner. In descending subjective quality,

Linearized CIELab � Opponent > YUV � YIQ

The objective rankings in Table I and subjective rankings

given by P agree. In Table I, YUV is slightly better than

YIQ in three of the four images. Likewise, the \perceptual"

distinction in the subjective test between YUV and YIQ is

not appreciable. The subjective test is available online at

http://www.ece.utexas.edu/~vishal/cgi-bin/test.html.

VII. Conclusion

For grayscale images, contrast sensitivity functions are

linear models of the HVS response vs. spatial frequency.

These linear HVS models have been explicitly used in

grayscale halftoning for more than a decade to improve

halftone quality [20]. For color images, similar linear HVS

models exist for luminance channels and certain chromi-

nance channels, which can be applied after a color space

transformation. In this letter, we evaluate four color HVS

models for color halftoning by vector error di�usion using

objective measures and subjective testing. The color HVS

model based on transformation to the linearized CIELab [8]

color space and spatial �lters for the luminance frequency

response in [15] and the chrominance frequency response

in [17] yields the best error �lter for vector error di�usion.

These results may be improved by the choice of a more

\perceptually accurate" transformation ~T (if available). A

similar analysis could be carried out for a printing applica-

tion. For example, we could �rst convert the CMY image to

a CIEXYZ image [12], then CIEXYZ to the desired color

space, and �nally apply the spatial �lters. The reported

procedure for subjective testing of color halftones is gen-

eral and could be used to compare halftones generated by

di�erent methods.
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Fig. 1. Linearized model of vector color error di�usion. The quantizer
has been replaced by a linear transformation by ~K plus additive
noise, n(m), that is uncorrelated with u(m). The original image
is x(m), and the halftone is b(m).

Fig. 2. Generalized Linear Color Model for the Human Visual System
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Fig. 3. Spatial frequency responses (a) luminance W(Yy)(u) and (b)

chrominance W(Cx;Cz)(u)
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(a) Original peppers image

(b) using linearized CIELab (c) using opponent color space

(d) using YUV (e) using YIQ

Fig. 4. Results of halftones of peppers generated by optimizing the vector error �lter in the four color spaces. Ti� versions of these images
are available at http://www.ece.utexas.edu/~vishal/halftoning.html.


