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ABSTRACT

Grayscale error di�usion introduces nonlinear distortion (directional artifacts and false textures), linear distor-
tion (sharpening), and additive noise. In color error di�usion what color to render is a major concern in addition
to �nding optimal dot patterns. This article presents a survey of key methods for artifact reduction in grayscale
and color error di�usion. The linear gain model by Kite et al. replaces the thresholding quantizer with a scalar
gain plus additive noise. They show that the sharpening is proportional to the scalar gain. Kite et al. derive the
sharpness control parameter value in threshold modulation (Eschbach and Knox, 1991) to compensate linear
distortion. False textures at mid-gray (Fan and Eschbach, 1994) are due to limit cycles, which can be broken up
by using a deterministic bit 
ipping quantizer (Damera-Venkata and Evans, 2001). Several other variations on
grayscale error di�usion have been proposed to reduce false textures in shadow and highlight regions, including
green noise halftoning (Levien, 1993) and tone-dependent error di�usion (Li and Allebach, 2002). Color error
di�usion ideally requires the quantization error to be di�used to frequencies and colors, to which the HVS is
least sensitive. We review the following approaches: color plane separable (Kolpatzik and Bouman 1992) design;
perceptual quantization (Shaked et al. 1996, Haneishi et al. 1996) ; green noise extensions (Lau et al. 2000);
and matrix-valued error �lters (Damera-Venkata and Evans, 2001).
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1. INTRODUCTION

Digital halftoning is the process of representing continuous-tone (a.k.a. grayscale and color) images with a �nite
number of levels for the purpose of display on devices with �nite reproduction palettes. Examples include
conversion of a 24-bit color image to a three-bit color image and conversion of an 8-bit grayscale image to a
binary image. The resulting images are called halftones. Until the late 1990s, printing presses, ink jet printers,
and laser printers were only able to apply or not apply ink to paper at a given spatial location. For grayscale
printing, the ink dots were black. For color printing, a cyan, magenta, and yellow ink dot is possible at each
spatial location. Many color printing devices can also produce a black ink dot. In these cases, the printer is a
binary device capable of reproducing only two levels, where the presence of a dot on the paper may be indicated
by the level �1, and the absence of a dot may be indicated by the level +1. In other applications, such as
display on monochrome or color monitors, the levels available are usually more than two, but �nite. In all cases,
the goal of digital halftoning is to produce, via an ingenious distribution of dots, the illusion of continuous tone.

Halftoning is more complicated than simply truncating each multi-bit intensity to the lower resolution.
Simple truncation would give poor image quality because the quantization error would be spread equally over



all spatial frequencies. Halftoning methods in current use may be categorized as classical screening, dithering
with blue noise, direct binary search, and error di�usion. All four categories of halftoning methods may be
found in modern desktop printers (the direct binary search method may be implicitly present as the method
to design the screen being used). Of these halftoning approaches, error di�usion is the particular focus of this
paper. Error di�usion is particular interesting to analyze because it involves a non-separable in�nite impulse
response �lter in addition to the nonlinearity introduced by the severe quantization.

Classical screening, which is the oldest halftoning method in printing, applies a periodic array of thresholds
to each color of the multi-bit image. Pixels can be converted to �1 (black) if they are below the threshold or
+1 (white) otherwise. With the continuous-tone images taking pixel values from �1 to +1 inclusive, a mask of
M uniform thresholds would be a permutation of the set f�M�1
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levels. When applying a mask with uniform thresholds to a constant mid-gray image, half of the halftone pixels
within the extent of the mask would be turned on, and half would be turned o�. The ordering of the thresholds
in the mask has a signi�cant e�ect on the visual quality of the halftone. A clustered dot screen would cluster
dots in a connected way, which helps mitigate ink spread when printed. A dispersed dot screen would spread
out the dots, which is well suited for low-cost displays. Both classical clustered dot and dispersed dot screens
su�er from periodic artifacts due to quantization by a periodic threshold array.

To a very rough approximation as a linear spatially-invariant system, the human visual system is lowpass
to the luminance component of a color image or to a monochrome image with respect to spatial frequency.
The human visual system is in general less sensitive to uncorrelated high-frequency noise than uncorrelated
low-frequency noise. Dithering with blue noise (i.e. high-frequency noise)1 attempts to place the quantization
noise from the halftoning process into the higher frequencies. Noise shaping is a characteristic of error di�usion
as described below, but large periodic masks of thresholds (e.g. 128 x 128 pixels) can be designed to produce
halftones with blue noise.2, 3

Direct binary search4 produces blue noise halftones by iteratively searching for the best binary pattern to
match a given grayscale image by minimizing a distortion criterion. The distortion criterion incorporates a
linear spatially-invariant model of the human visual system as a weighting function.5 The direct binary search
method produces the halftones with the highest visual quality to date. Due to its implementation complexity, it
is impractical for use as a halftoning method in desktop printers. However, direct binary search can be employed
to design screens6 and error di�usion parameters.7

Error di�usion produces halftones of much higher quality than classical screening, with the tradeo� of
requiring more computation and memory.8 Screening amounts to pixel-parallel thresholding, whereas error
di�usion requires a neighborhood operation and thresholding. The neighborhood operation distributes the
quantization error due to thresholding to the unhalftoned neighbors of the current pixel. The term \error
di�usion" refers to the process of di�using the quantization error along the path of the image scan. In the
case of a raster scan, the quantization error di�uses across and down the image. \Qualitatively speaking, error
di�usion accurately reproduces the graylevel in a local region by driving the average error to zero through the
use of feedback".9

The two most common families of halftoning methods in desktop printers are screening and error di�usion.
This paper reviews and analyzes a wide variety of error di�usion methods. Section 2 �rst describes classical
error di�usion for grayscale images. Classical error di�usion sharpens the image and often generates false
textures (called worms) in shadow, mid-gray, and highlight regions of the original image. This section shows
how to linearize error di�usion using a scalar gain model for the quantizer, and applies the scalar gain model
to compensate for frequency distortion in the error di�usion process. Frequency distortion compensation is
used in objective quality measures. This section also presents several other 
avors of error di�usion, including
edge enhanced, green noise, tone dependent, and block. Section 3 describes error di�usion for color halftoning.
The application of grayscale error-di�usion methods to the individual colorant planes fails to exploit the HVS
response to color noise. Visually objectionable artifacts, e.g. false color spikes can result due to the same. The
section describes alternative approaches using perceptual non-scalar (or vector) quantization and using matrix-
valued error �lters to reduce these artifacts. Section 4 summarizes the paper and concludes with open research
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Figure 1. System block diagram for grayscale error di�usion halftoning where m represents a two-dimensional spatial

index (m1;m2) and h(m) is the impulse response of a �xed 2-D nonseparable FIR error �lter having scalar-valued

coe�cients.

problems. We have implemented several error di�usion methods described in this paper in a freely distributable
halftoning toolbox for Matlab:

http://www.ece.utexas.edu/~bevans/projects/halftoning/toolbox/index.html

2. GRAYSCALE ERROR DIFFUSION

Halftoning methods may be classi�ed into three categories| amplitude modulation (AM), frequency modulation
(FM) and AM-FM hybrid halftoning. In AM halftoning, the dot size is varied depending on the graylevel value
of the underlying grayscale image while the dot frequency is held constant, e.g. clustered-dot ordered dither.
FM halftones have a �xed dot size and shape, but the frequency of the dots varies with the graylevel of the
underlying grayscale image. Conventional digital FM halftones have a �xed dot size of one pixel, e.g. those
produced by dispersed-dot ordered dither and error di�usion. AM-FM halftones have variable dot shape/size,
and variable dot frequency that depends on the graylevel value to be reproduced. Examples of AM-FM halftones
include \green-noise" halftones by Levien,10 halftones on space �lling curves,11 and halftones with texture
control.12

Section 2.1 describes classical error di�usion, including Floyd-Steinberg error di�usion. Classical error di�u-
sion su�ers from false textures (worms) in shadow and highlight regions, and at mid-gray levels. Sections 2.2{2.4
reviews classical error di�usion and presents variations on error di�usion to correct for worms at mid-gray values.
Sections 2.5 and 2.7 report variations on error di�usion to correct for worms in shadow and highlight regions.
Two methods7, 13 report to remove worm artifacts for all tones.

2.1. Classical Error Di�usion Methods

The major 1976 advance in digital halftoning by Floyd and Steinberg8 di�uses the quantization error over the
neighboring continuous-tone pixels. As a grayscale image is raster scanned, the current pixel is thresholded
against mid-gray to -1 (black) or 1 (white). The quantization error e is scaled and added to the nearest four
grayscale (unhalftoned) pixels. The scaling factors are shown below, where � represents the current pixel14:
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An alternate but equivalent implementation of error di�usion feeds back a �ltered version of the quantization
error to the input. This form, which is shown in Fig. 1, is also known as a noise-shaping feedback coder. In Fig.
1, x(m) denotes the graylevel of the input image at pixel location m, such that x(m) 2 [�1; 1]. The output
halftone pixel is b(m), where b(m) 2 f�1; 1g. Here, 1 is interpreted as the absence of a printer dot and �1 is
interpreted as the presence of a printer dot. Q(�) denotes the standard thresholding quantizer function given by

Q(x) =

�
+1 x � 0
�1 x < 0

(1)



The error �lter h(m) �lters the previous quantization errors e(m) 2 [�1; 1]:

h(m) � e(m) =
X
k2S

h(k) e(m� k) (2)

Here, � means linear convolution, and the set S de�nes the extent of the error �lter coe�cient mask. The error
�lter output is fed back and added to the input. Note that (0; 0) =2 S. The mask is causal with respect to the
image scan.

To ensure that all of the quantization error is di�used, h(m) must satisfy the constraintX
k2S

h(m) = 1 (3)

This ensures that the error �lter eliminates quantization noise at DC where the human visual system is most
sensitive.15 The quantizer input u(m) and output b(m) are given by

u(m) = x(m)� h(m) � e(m) (4)

b(m) = Q(u(m)) (5)

Error di�usion halftones have signi�cantly better quality over clustered and dispersed dot dither halftones,
because they are free from periodic artifacts and shape the quantization noise into the high frequencies where
the human eye is least sensitive. Since the halftone dots are of single pixel size, the illusion of continuous-tone
is created by varying the dot frequency with graylevel. Thus, error di�usion is an example of FM halftoning.

The design of the error �lter is the key to high quality error di�usion halftoning methods. The Floyd-
Steinberg error �lter was designed by trial-and-error to give four dyadic taps. Jarvis16 and Stucki17 proposed
dyadic 12-tap error �lters to reduce worms. Fig. 2 shows an example of a Floyd-Steinberg and Stucki error
di�used halftones. For comparison purposes, a direct binary search halftone is also shown in Fig. 2. Recently,
Ilbery13 proposed a 25-tap Cauchy error �lter to remove worm artifacts completely.

2.2. Analysis of Error Di�usion

Error di�used halftones su�er from several types of degradation. Knox18 made the �rst major contribution
to the analysis of error di�usion by mathematically showing that halftone quality can be improved by non-
standard scanning techniques. For example, using a serpentine scan leads to a more symmetric error distribution.
Moreover, he analyzed threshold modulation, which is the process of modulating the input of the quantizer,
so as to break up objectionable artifacts in error di�usion.19 Objectionable artifacts in error di�usion include
\worm" artifacts in the very low and high graylevels and limit cycle artifacts in the mid-tones.

Hauck,20 and later Anastassiou21 and Bernard,22 observed that error di�usion halftoning is two-dimensional
sigma-delta modulation. Sigma-delta modulation is a popular method for A/D and D/A conversion in digital
audio23 that also employs feedback. This observation enabled others to analyze limit cycles and frequency
responses of error di�usion methods by using results from sigma-delta modulation.

The mid-tone artifacts are the analogs of \limit cycles" in sigma-delta modulation.24 Fan and Eschbach25

analyzed constant input limit cycles in error di�usion and were able to predict which patterns which were most
likely to occur. They also demonstrated how the error �lter coe�cients may be manipulated in order to reduce
limit cycle behavior. Fan26 showed that a su�cient condition for the stability of error di�usion is satis�ed if the
error �lter weights are positive and sum to one. Fan also made the weaker conjecture that the error di�usion
halftoning system is stable if the �lter 1�H(z) has only one zero at DC on the unit bicircle.

Knox27 showed that error di�usion halftoning typically sharpens the original image. The amount of sharp-
ening is proportional to the correlation of the input image with the error image. Closed-form frequency-domain
analysis is enabled by a key result in one-dimensional sigma-delta modulation by Ardalan and Paulos.28 They
developed a linear gain model for the quantizer, which was accurate at low frequencies.



(a) Original Barbara image (b) Floyd-Steinberg error di�used halftone

(c) Jarvis error di�used halftone (d) Direct binary search halftone

Figure 2. Comparison of two classical error di�usion methods with the iterative direct binary search method. The direct

binary search halftone is courtesy of Ti-chiun Chang and Jan Allebach of Purdue University.

Kite, Evans, Bovik, and Sculley29, 30 applied the Ardalan and Paulos model for the quantizer. At the input to
the quantizer, the signal component experiences a linear gain, and the quantization noise component undergoes
a linear gain plus additive uncorrelated noise, as shown in Fig. 3. The gains are chosen to minimize the error
incurred by using the model. For the noise path, Kn = 1, which is independent of the error �lter.29, 30 They also
showed that the value of Ks is proportional to the amount of image sharpening. For example, Ks � 2 for Floyd-
Steinberg, and Ks � 4 for Jarvis error di�usion. Jarvis halftones are visually sharper than Floyd-Steinberg
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Figure 3. Linear gain model of the quantizer splits the quantizer input-output relationship into independent signal and

noise paths.

halftones. They derived the signal transfer function (STF) and noise transfer function (NTF):

STF(z) =
Bs(z)

X(z)
=

Ks

1 + (Ks � 1)H(z)
(6)

NTF(z) =
Bn(z)

N(z)
= 1�H(z) (7)

The noise transfer function accurately predicts the highpass noise shaping when H(z) is lowpass. When H(z) is
lowpass, the signal transfer function passes low frequencies and ampli�es high frequencies. These transfer func-
tions accurately predict the image sharpening and noise shaping e�ects in grayscale error di�usion halftoning.

2.3. Edge Enhancement Error Di�usion

Eschbach and Knox31 modify conventional error di�usion to adjust halftone sharpness, as shown in Fig. 4. Edge
enhancement error di�usion scales the current image pixel by a constant L and adds the result to the quantizer
input. Hence, this may be regarded as an example of image-dependent threshold modulation.

As L increases, the sharpness of the resulting halftone increases. In a global sense, one value of L exists
that minimizes sharpening, assuming that the image is wide sense stationary (WSS) and the input and output
to the quantizer are jointly WSS.30 Smaller values of L would cause blurring, and larger values would cause
sharpening, with respect to the original grayscale image. Hence, L can be set to reduce linear distortion.

Kite et al.9, 30 develop a formula for the globally optimal value of L that causes the signal components to be
rendered in the halftone without sharpening when using a thresholding quantizer:

Lopt =
1�Ks

Ks

(8)

Here, the quantizer is modeled as a linear gain Ks for the signal path plus uncorrelated noise for the noise
path,30 as described in Section 2.2. Fig. 5(b) shows an unsharpened Floyd-Steinberg halftone using L = � 1

2
,

i.e. Ks = 2. Fig. 5(c) shows an edge-enhanced Floyd-Steinberg halftone using L = � 3
4
, i.e. Ks = 4.

If the gain value Ks is chosen to be the linear minimum mean square error (LMMSE) estimator of the
quantizer output vs. its input,30, 32 then the error is guaranteed to be uncorrelated with the quantizer input.
Since the model linearizes the quantizer, edge-enhancement error di�usion may be analyzed using linear system



-

x(m) ��
��
+

+

�

- -

b(m)

�

u(m)

?

��
��
+

�

+

�

e(m)
h(m)

6

Q(�)

-

H
H
H
H

�
�
�
�L

?

��
��
+

Figure 4. System block diagram for edge enhancement error di�usion where h(m) represents a �xed 2-D non-separable

�nite impulse response error �lter and L represents the scalar edge enhancement factor.

theory. The linear gain value a�ects signal shaping in error di�usion and the additive uncorrelated noise
a�ects the noise shaping.30, 32 The linear gain value does not signi�cantly a�ect the noise-shaping behavior
of error di�usion.29, 30 This approach assumes that the input and output to the quantizer are jointly wide
sense stationary stochastic processes. Since we must approximate statistical averages with sample averages,
computing the LMMSE estimator on a per-image basis is computationally intensive.

Knox de�ned the error image in error di�usion to be the matrix of quantization errors scaled and displayed
as an image.27 Knox observed that the correlation of the error image with respect to the original is directly
related to the frequency distortion produced by error di�usion. The greater the correlation of the original
image with the error image, the sharper the halftone. Applying the linear gain model to edge enhancement
error di�usion with L = Lopt the signal component of the error image is shown mathematically to be equal to
zero. Using Lopt in practice results in an error image that has low correlation with the input image. Thus, the
sharpness cancelling methods are consistent with Knox's observations.

In the general case, the optimal value of L for sharpness compensation depends on (1) the error �lter coe�-
cients h(m), (2) the quantizer function Q(�), and (3) the input grayscale image. Damera-Venkata and Evans33

develop a least mean squares (LMS) framework for spatially adaptive algorithms using adaptive threshold mod-
ulation. The adaptive algorithms converge in the mean to the optimal value of L if the input and output of the
quantizer are jointly WSS, and the input image is WSS. In a non-stationary environment, the algorithm tracks
local variations in the input image. With this method, the linear gain that determines the sharpening of an
error di�usion system need not be computed explicitly. The adaptive algorithm has a simple update of

L(k+1) = L(k) � �
�
o(k) � x(k)

�
x(k) (9)

where k denotes the previous location in the scan direction and k + 1 is the current location. The scalar � is
the convergence parameter in the LMS algorithm.

2.4. Block Error Di�usion

Conventional FM halftones (with single pixel halftone dots) su�er from physical printer imperfections such as
dot gain and dot transfer issues.34 The dot gain reduces the tonal range and causes loss of de�nition in the
reproduced image.12 Lau, Arce and Gallagher12 further note that if the size/shape variation from printed dot
to printed dot is small, then the e�ects of dot gain can be mitigated by dot gain compensation methods. If,
however, there is a large variation in the size/shape of the printed dots, then clustering of the digital halftone
dots adds robustness to the halftoning process, and in many cases becomes a necessity.35



(a) Original Barbara image (b) Edge enhanced halftoning with a

attened frequency response

(c) Edge enhanced halftoning with (d) Block error di�used halftone
Stucki-like sharpening (3� 3 pixel clusters)

Figure 5. Variations on classical Floyd-Steinberg error di�usion halftoning.

AM-FM hybrid halftones do not su�er from periodic artifacts since they are not realizations of periodic
stochastic processes. At the same time, the dots themselves are clustered, and hence these halftones are more
robust to dot gain when printed. Lau, Arce and Gallagher12 have extensively analyzed the spatial and spectral
characteristics of these methods.

Velho and Gomez11 produce AM-FM halftones by �rst dividing the image into cells along a space �lling
curve scan. Then, they compute the average intensity within a cell and generate a clustered dot pattern to
approximate the average intensity. The di�erence between the dot pattern intensity and average intensity within



the cell is propagated to neighboring regions along the scan. The dot patterns are repositioned within the cell
to introduce randomness and counteract periodic artifacts. The number of pixels in a cell controls the dot size.

Damera-Venkata, Monga and Evans36 develop a framework for block error di�usion. Block error di�usion
replaces a pixel in conventional error di�usion with a pixel block. In a pixel block, the quantization error at
each pixel is di�used to select suitable pixels in neighboring blocks in properly selected proportions. Hence, an
entire block of quantization error is di�used at a time. The model for block error distribution and operation of
the block �lter are shown in essentially the same as classical error di�usion block diagram in Fig. 1 except that
the error �lter has matrix-valued coe�cients. Fig. 5(d) shows a block error di�used halftone. Fig. 6 explains
the operation of the block error �lter.

pixel-block of
error filter mask

current pixel-block

Figure 6. Block error �lter operating on pixel-blocks of 2�2 pixels. The shaded circle indicates the current pixel-block.

The un�lled circles indicate the error image pixels underlying the block �lter mask. The pixels in the output pixel-block

are computed using four linear combinations of all 16 error pixels within the error �lter mask.

Fan37 proposes a dot-to-dot error di�usion algorithm which combines traditional clustered dot dithering and
error di�usion. He alleviates contouring with ordered dither by using a threshold matrix with linear/periodic
thresholds. The basic idea is to perform error di�usion on dots instead of pixels so that coarse quantization
artifacts can be reduced.37 He uses periodic block thresholds and a scalar error �lter.

Damera-Venkata, Monga and Evans36 use aperiodic block thresholds and a matrix-valued error �lter. They
start with a scalar �lter with the same support as the multi�lter or block �lter, and represent its coe�cients by
the row vector

~
 =
�
g(0) j g(1) j : : : j g(K2 � 1)

�
(10)

A multi�lter ~� may be derived from it as follows:

~� = ~

O

~D (11)

Here,
N

denotes the Kronecker product operation and ~D is an MN � MN di�usion matrix. This is for
pixel-blocks of size M � N . Since the elements of ~
 are the coe�cients of a conventional error �lter, they
are non-negative and sum to one. Thus, to satisfy the constraints that all quantization error be di�used, the
di�usion matrix must satisfy the constraints

~D1 = 1 (12)

~D � 0 (13)

where 1 represents an MN � 1 column vector with all of its elements equal to one. The physical meaning of
deriving the block �lter from a given conventional error �lter via (11) is that the quantization error incurred at
the current pixel block is di�used to the neighboring pixel-blocks in the same proportions that a conventional
error �lter di�uses error to its neighboring pixels. The constraints on the di�usion matrix simply indicate that all
of the quantization error that is di�used to a pixel block must be di�used among pixels that compose the block.
Thus, the pixel-blocks in the block-error di�usion framework are made to behave like pixels in conventional error
di�usion and the block errors are di�used in much the same way as pixel errors in conventional error di�usion.

In determining whether a pixel-block is minority or majority, we �rst compare the quantization at mid-gray
of the current quantizer input block and the current original grayscale block. If they are equal, then the block is
a majority pixel-block; otherwise, it is a minority pixel-block. If the pixel block is determined to be a minority
block, then the output pixel block is replaced with the desired dot-shape.



Using the block error di�usion framework, the authors generalize conventional error di�usion halftoning to
produce FM halftones with user-controlled dot size and shape. The generated FM halftones can be designed to
have very low dot size/shape variation, and the dot spacing is modulated depending on the underlying grayscale
image.36 FM halftones with clustered dots may be used to provide robust printed dots over all graylevel values.

Clustering pixels into blocks, i.e. as user-de�ned dot shapes, could be very useful for printers capable of
rendering ink at the sub-pixel level, e.g. using sub-pixel laser pulse modulation in xerographic systems.14 In
this case, the proposed block error di�usion framework could render di�erent dot shapes (depending on the
underlying grayscale image) at the sub-pixel level, in which case the rendered block area would be the same as
the rendered pixel area. Damera-Venkata and Yen38 also use dot shape modulation within block error di�usion
to embed information in hardcopy.

The block error di�usion framework may be e�ciently implemented as a single-pass method that processes
a neighborhood of blocks using a raster scan. Although the method could be extended to use other scans at the
block level, a raster scan is preferred due to its simplicity. Based on a raster scan, the authors develop a fast
parallel implementation of block error di�usion as a polyphase �lterbank.36 Block error di�usion36 is shown to
be approximately MN times faster than conventional error di�usion for pixel-block size of M �N .
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Figure 7. System block diagram for the green noise error di�usion of Levien. Here, h(m) represents a �xed 2-D non-

separable FIR error �lter, and f represents a 2-D FIR hysteresis �lter. The hysteresis constant G controls cluster

size.

2.5. Green Noise Error Di�usion

Fig. 7 shows the setup for output-dependent feedback proposed by Levien.10 The conventional error di�usion
algorithm is a special case of Levien error di�usion when the hysteresis constant is G = 0. As with conven-
tional error di�usion, the quantization error e(m) is computed by subtracting the current modi�ed input u(m)
(modi�ed by incorporating past error terms via a linear weighting �lter h(m)) from the current output b(m).

Levien error di�usion di�ers from conventional error di�usion in that it �lters the past output pixels by f ,
scales the result by a hysteresis constant G, and adds the result to the quantizer input. The halftoned output is

b(m) =

8<
:

1 u(m) +G
X
k2O

f(k)b(m� k) > 0

�1 otherwise
(14)

Here O is a causal support set that does not include 0. Only past errors are included in the �ltering.

The e�ect of adding a �ltered version of the output to the quantizer input results in clustering of output
pixels. Green noise halftoning produces an aperiodic clustered dot process which regulates dot reproduction



(a) Original Barbara image (b) Green noise error di�usion
with G = 1:0 using serpentine scan

(c) Error di�usion by Marcu (d) Tone-dependent error di�usion

Figure 8. Variations on error di�usion to improve rendering in shadow and highlight regions. The halftone in (c) is

courtesy of Gabriel Marcu of Apple, Inc. The halftone in (d) is courtesy of Ti-chiun Chang and Jan Allebach of Purdue

University.

and tonal control on laser printers. More generally, green noise halftoning bene�ts printing processes with dot
transfer and dot gain problems.12 Lau, Arce and Gallagher12 discovered that the pattern power spectrum
of Levien error di�usion contained mid-frequency or green noise components between the blue noise patterns
produced by regular error di�usion and ordered dither patterns. The hysteresis constant G controls the size of
the dot clusters in the Levien algorithm. Lau, Arce and Gallagher12 also suggested randomly perturbing the
error �lter coe�cients to eliminate periodic artifacts in green noise error di�usion. Fig. 8(b) shows a green noise



halftone for G = 1:0. For green noise halftoning, serpentine scans generally give a signi�cant visual improvement
over raster scans.

Damera-Venkata and Evans33 suggest an LMS adaptive algorithm to adapt the hysteresis �lter coe�cients
in order to minimize mean square error between the output and the input. The LMS update equation is

f (k+1) = PC

�
f (k) � �

�
o(k) � x(k)

�
o
(k)

f

�
(15)

where k denotes the previous location in the scan direction and k+1 is the current location. The scalar � is the
convergence parameter in the LMS algorithm, and f (k+1) denotes the vector of hysteresis �lter coe�cients at

the current pixel. o
(k)

f denotes the outputs used in the computation of the previous pixel, stacked into a vector.
The projection operator PC denotes a projection onto the convex set of �lter coe�cients that are non-negative
and sum to unity. The adaptive algorithm converges in the mean to the optimal value of G if the input and
output of the quantizer are jointly WSS, and the input image is WSS.33

For printers with pulse width modulation capability, He and Bouman39 develop a green noise error di�usion
algorithm (a.k.a. AM/FM halftoning) by simultaneously optimizing the dot density and dot size at a given
graylevel. This is accomplished by �rst modeling the tone and distortion surfaces as functions of the dot size �
and the dot density �. They �nd the optimal � and � by minimizing distortion D(�; �) subject to the constraint
that the tone T (�; �) approximates the desired tone curve. The FM component of the algorithm lays out the
dot centers while the AM part modulates the cluster sizes. The resulting dot pattern is the stochastic clustered
dot pattern characteristic of green noise error di�usion.

2.6. Adaptive Error Di�usion

While many of the aforementioned approaches for improving error di�usion attempt to break up the pattern-
ing artifacts either use random perturbation or systematically change the way error is di�used, Kolpatzik and
Bouman40 use an explicit error criterion and then �nd the error-di�usion kernel (or error �lter) that min-
imizes the error criterion under some assumptions on the characteristics of the quantization error in error
di�usion. Wong41 uses an adaptive method for dynamically adjusting the error �lter to minimize a local fre-
quency weighted error criterion that re
ects the local characteristics of the image being halftoned (or binarized).
The minimization procedure is performed simultaneously with the error di�usion procedure using the LMS al-
gorithm. Further, Wong's framework makes no assumptions on the quantization error. The adaptive error
di�usion scheme is illustrated in Fig. 2.6

2.7. Tone-Dependent Error Di�usion

Marcu42 extended error di�usion to improve the halftone rendering at extreme levels of gray in the input image.
In these shadow and highlight regions, the graylevel pixel is thresholded to a white or black dot. Then, the
algorithm would search previously halftoned pixels to see if the same dot type has been rendered within a
certain distance. If so, then the dot is suppressed. The search distance is larger for more extreme gray levels.
Instead of using geometric distances, Marcu creates two lookup tables (requiring 338 bytes). The �rst lookup
table indicates how many past (halftoned) pixels to search. This number indicates how many index o�sets (with
respect to the current pixel) to read from the second lookup table. On average, 10 past pixels are searched. For
extreme gray levels of 1 and 254, 148 past (halftoned) pixels would be searched, which would reach up to nine
rows above the current pixel row. Fig. 8(c) shows an example of Marcu's method.

Several tone dependent error di�usion methods have been developed. Methods included using error �lters
with di�erent extents and coe�cients according the the gray level of the current pixel being halftoned.43{45

Ostromoukhov46 designed optimal error �lter weighting for a subset of gray levels based on blue noise spectra.

As mentioned in Section 1, direct binary search yields the best halftones to date. Analoui and Allebach4

permute the current halftone using toggling and near-nearest neighbor swapping to improve a measure of visual
quality with respect to the original image. Li and Allebach7 employ direct binary search to choose the free
parameters in error di�usion in a tone-dependent manner. For each gray level, a constant image at that gray
level is input. Then, iterative search is employed to optimize the threshold and error �lter coe�cients. The
approach is continued for all gray levels. When applied to an image at a given pixel, tone-dependent error



Figure 9. Adaptive error-di�usion system using the LMS algorithm for error minimization

di�usion looks up the threshold and error �lter coe�cients using the graylevel at the given pixel as the index.
Fig. 8(d) shows an example of tone-dependent di�usion.

3. COLOR ERROR DIFFUSION

Color error di�usion is a high-quality method for color rendering of continuous-tone digital color images on
devices with limited color palettes such as low-cost displays and printers. For display applications the input
colorant space is a triplet of red, green, and blue (RGB) values, and the choice of output levels (i.e., the
color palette) is a design parameter. For printing applications the input colorant space is a quadruple of cyan,
magenta, yellow, and black (CMYK) values and the output levels are �xed. For example, for a bi-level CMYK
printer there are 16 possible output colors. In this article we use an input RGB color space and discuss binary
error di�usion. This allows us to concentrate the exposition to the essential properties of color error di�usion
system design without having to focus on the issues of color palette design and device dependent nonlinear color
transformations.

The application of grayscale error di�usion methods to the individual colorant planes fails to exploit the
human visual system response to color noise. Ideally the quantization error must be di�used to frequencies and
colors, to which the human visual system is least sensitive. Further it is desirable for the color quantization
to take place in a perceptual space (such as Lab) so that the colorant vector selected as the output color is
perceptually the closest to the color vector being quantized. We discuss each of the above two design principles
of color error di�usion that di�erentiate it from grayscale error di�usion.

Section 3.1 describes color plane separable design and color plane separable implementation for error dif-
fusion. The correlation of the color planes in error di�usion may be taken into account by using a (vector)
quantizer based on a perceptual criterion, as discussed in Section 3.2.1 and 3.2.2, or matrix-valued error �lters,
as discussed in Section 3.3. These methods fall under the general umbrella of vector error di�usion.

3.1. Separable Methods

Kolpatzik and Bouman40 use separable error �lters in a luminance-chrominance to account for correlation among
the color planes. Separate optimum scalar error �lters are designed for the luminance and chrominance channels



independently based on a separable model of the human visual system. However, no constraints are imposed
on the error �lter to ensure that all of the red-green-blue (RGB) quantization error is di�used. Kolpatzik and
Bouman model the error image as a white noise process and derive the optimum separable error �lters to be
used on the luminance and chrominance channels respectively. Such an approach implicitly assumes that there
is no correlation between the luminance and chrominance channels. This implies that the transformation matrix
from RGB to luminance-chrominance space is unitary. Damera-Venkata and Evans32 solve for the optimum
nonseparable error �lter in the general case when all the error is required to be di�used, a non-separable color
vision model is used and the linear transformation into the opponent color space is non-unitary. The luminance-
chrominance separable error �lters of Kolpatzik and Bouman are included in the general formulation of vector
error di�usion.32

3.2. Quantization based on perceptual criteria

The use of the mean squared error (MSE) criterion in a colorant space is equivalent to uniform, separable, scalar
quantization. The visual quantization error may be further reduced by performing the quantization according
to perceptual criteria. Such methods typically aim to minimize colorimetric error, luminance variations, or a
combination of the two.

3.2.1. Colorimetric quantization in error di�usion

Haneishi et al.47 suggested the use of the XYZ and Lab spaces to perform quantization and error di�usion. In
this case the rendering gamut is no longer a cube. The MSE criterion in the XYZ or Lab space is used to make
a decision on the best color to output. The quantization error is a vector in the XYZ space is di�used using an
error �lter. (Lab space is not suitable for di�using errors due to its nonlinear variation with intensity.) This
method performs better than separable quantization but su�ers from boundary artifacts4748 such as the \smear
artifact" and the \slow response artifact" at color boundaries due to accumulated errors from neighboring pixels
pushing quantizer input colors outside the gamut. This causes a longer lag in cancelling the errors. This e�ect
may be reduced by clipping large color errors,4749 or by using a hybrid scalar-vector quantization method called
semi-vector quantization.48 This method is based on the observation that when errors in colorant space are
small vector quantization does not produce the smear artifact. When large colorant space errors are detected,
scalar quantization is used to avoid potential smearing. First, the colorants where the colorant space error
exceeds a preset threshold are determined and quantized with scalar quantization. This restricts the possible
output colors from which a color must be chosen using vector quantization in device independent color space.

3.2.2. Vector Quantization but Separable Filtering

One suggested improvement to separable color halftoning involves limiting the number of ink colors used to
render a speci�c pixel. Shaked, Arad, Fitzhugh, and Sobel50, 51 suggest a method for using error di�usion
for generating color halftone patterns that carefully examines each pixel's original color values simultaneously,
distinct from past error, in order to determine potential output colors. By limiting the colors used, the authors
argue that a smaller range of brightnesses in the colors are used to create each color area, which minimizes the
visibility of the halftone pattern. This criteria, which is known as the minimum brightness variation criterion
(MBVC), is based on the observation that the human eye is more sensitive to changes in \brightness" or
luminance than to changes in chrominance, as summarized next.

A given color in the RGB cube may be rendered using the eight basic colors located at the vertices of the
cube. Actually, any color may be rendered using no more than four colors, where di�erent colors requiring
di�erent quadruples.50 Moreover, the quadruple corresponding to a speci�c color is, in general, not unique.
Suppose we want to print a patch of solid color, what colors should we use? Traditional work on halftoning
addresses the issue of what pattern should the dots be placed in. The issue of participating halftone color was
raised in,52 but it served primarily as an example of how bad things can become. MBVC gives the issue a
full answer. Based on the above arguments, the authors state the criteria they arrive at as follows: \To reduce
halftone noise, select from within all halftone sets by which the desired color may be rendered, the one whose
brightness variation is minimal."

The method proceeds by separating the RGB color space into Minimum Brightness Variation Quadrants. A
RGB color space can be divided into six such quadrants.51 The algorithm then works as follows:



Given a pixel value RGB(m) and error e(m)

1. Determine MBVQ based only on RGB(m)

2. Find the vertex v MBVQ tetrahedron closest to RGB(m) + e(m)

3. Compute the quantization error RGB(m) + v(m)� v

4. Distribute error to the \future" pixels using standard error di�usion

A pixel whose original R, G, and B values are located within the WCMY tetrahedron will end up as one
of those four colors, depending on which vertex its error places it closest to. The algorithm e�ectively reduces
the number of pixel colors visible in a given solid region. It does not modify the color appearance when viewed
from a signi�cant distance away, however, since its average color should remain the same.

Another suggested improvement by Lau, Arce and Gallagher.53 extended Levien's work in green noise
error di�used halftones with clustered dots to color images. The extension employs an interference matrix to
multiply the quantizer input prior to quantization. The interference matrix controls the overlap of dots of the
individual primary colorants. Negative o�-diagonal terms inhibit the overlap, and and positive o�-diagonal
terms encourage the overlap, of corresponding colorants.

3.3. Vector Error Di�usion

Separable methods for color error di�usion do not take into account the correlation among color planes. Vector
error di�usion54 represents each pixel in a color image as a vector of values. The thresholding step would
threshold each vector component separately. The vector-valued quantization error (image) would be fed back,
�ltered, and added to the neighboring (unhalftoned) color pixels. A matrix-valued error �lter could take
correlation among color planes into account. For an RGB image, each error �lter coe�cient would be a 3 � 3
matrix.

As mentioned in Section 2.2, Kite et al.29, 30 quantify the sharpening and noise introduced by grayscale
error di�usion by linearizing error di�usion. They replace the quantizer with the linear gain model developed
by Ardalan and Paulos28 for sigma-delta modulation. The model accurately predicts the noise shaping and
image sharpening in error di�used halftones. Damera-Venkata and Evans32 generalize the linear system model
of grayscale error di�usion30 to vector color error di�usion by replacing the linear gain model with a matrix
gain model and by using properties of �lters with matrix-valued coe�cients.32 The proposed \matrix gain"
model includes the earlier linear gain model29, 30 as a special case. The matrix gain model describes vector
color di�usion in the frequency domain, and predicts noise shaping and linear frequency distortion produced by
halftoning.

The scalar gain model for the quantizer is shown in Fig. 3 in Section 2.2. As in the scalar case, the input
to the quantizer is divided into signal and noise components. In the noise path, the gain is unity (~Kn = I), so
the quantizer appears as additive uncorrelated noise. In the signal path, the gain is a matrix ~Ks. The matrix
gain is related to the amount of sharpening, and the noise image models the quantization error. ~Ks is chosen to
minimize the error in approximating the quantizer with a linear transformation, in the linear minimum mean
squared error sense:

~Ks = argmin
~
A

E[k b(m)� ~A u(m) k2] (16)

Here, b(m) is the quantizer output process (halftone), and u(m) is the quantizer input process. When b(m)
and u(m) are wide sense stationary,55 the solution for (16) is

~Ks = ~Cbu
~C�1
uu

(17)

where ~Cbu and ~Cuu are covariance matrices. The linearized vector error di�usion system has two inputs
(original signal and quantization noise) and one output (the halftone), like its scalar counterpart. Using (17),
the signal and noise transfer functions are32

Bs(z) = ~Ks

h
~I+ ~H(z)( ~Ks �~I)

i�1
X(z) (18)



Bn(z) =
h
~I� ~H(z)

i
N(z) (19)

In one dimension, (18) and (19) reduce to (6) and (7), respectively. The overall system response is given by

B(z) = Bs(z) +Bn(z) (20)

For RGB vector error di�usion, matrix-valued error �lter coe�cients are adapted in56 to reduce the mean
squared error between the halftone and original. However, mean squared error does not have perceptual meaning
in RGB space. Damera-Venkata and Evans32 form an objective function J that measures the average visually
weighted noise energy in the halftone. The output noise is computed by inverse transforming (19):

bn(m) =
h
~I� ~h(m)

i
? n(m) (21)

The noise energy is weighted by a linear spatially invariant matrix-valued HVS model, ~v(m), and form

J = E

�


 ~v(m) ?
h
~I� ~h(m)

i
? ~n(m)




2� (22)

Given a linear spatially invariant HVS model ~v(m), the problem is to design an optimal matrix-valued error
�lter

~hopt(m) = arg min
~
h(m)2C

J (23)

where the constraint C enforces the criterion that the error �lter di�uses all quantization error57

C =

(
~h(i); i 2 S j

X
i

~h(i)1 = 1

)
(24)

S is the set of coordinates for the error �lter support, i.e. S = f(1; 0); (1; 1); (0; 1); (�1; 1)g for Floyd-Steinberg.
Damera-Venkata also analyzes vector color error di�usion with memory constraints using the matrix gain
model.58 Here the error �lter is designed to minimize the visual e�ect of varying bit-allocations among the color
error bu�er channels. The human visual system model plays an important role in determining the performance
of the designed optimum matrix-valued error �lters.

We now explain the design of the linear human visual system model ~v(m). The linear color model employed
by Damera-Venkata and Evans32 is based on the pattern color separable model by Wandell et al.59, 60 They
transfer device dependent RGB values into an opponent representation.60, 61 The three opponent visual path-
ways are white-black (luminance pathway) and red-green and blue-yellow (chrominance pathways). By x-y, we
mean that in value, x is at one extreme and y is at the other.

Monga, Geisler and Evans62 generalize this linear color model as a linear transformation ~T to a desired color
space, which is not necessarily the opponent representation59 but any one that satis�es pattern color separability,
followed by appropriate spatial �ltering in each channel. A complete HVS model is uniquely determined by the
color space transformation and associated spatial �lters. This generalization provides a platform for evaluation
of di�erent models in perceptual meaning and error �lter quality obtained by minimizing (22).

The linear color model hence consists of (1) a linear transformation ~T, and (2) separable spatial �ltering on
each channel. Each channel uses a di�erent spatial �lter. The �ltering in the z-domain is a matrix multiplication
by a diagonal matrix D(z). In the spatial domain, the linear HVS model ~v(m) is computed as

~v(m) = ~d(m)~T (25)

Based on this framework, they evaluate four color spaces62 in which to optimize matrix-valued error �lters. The
objective measure used for evaluation is the noise shaping gain NG of the optimal �lter over the Floyd-Steinberg
�lter in decibels32:

NG = 10 log10

�
Jfs

Jopt

�
(26)



Here, J refers to the value of the objective function given by (22). They also performed a subjective assessment
procedure that evaluates the halftones based on a paired comparison task as described in.62 The results of
the subjective test corroborate the objective measures. The color spaces in order of increasing quality are (1)
YIQ space, (2) YUV space, (3) opponent color space,59, 60 and (4) linearized CIELab color space.63 These
color spaces in conjunction with appropriate spatial �lters as described in62 form a unique HVS model. The
color HVS model based on transformation to the linearized CIELab63 color space and spatial �lters for the
luminance frequency response due to Nasanen and Sullivan64 and the chrominance frequency response as given
by Kolpatzik and Bouman40 yields the best halftones. The subjective test is available online at

http://www.ece.utexas.edu/~vishal/cgi-bin/test.html.

3.4. Results

Fig. 10(a) shows the original toucan image. Fig. 10(b) shows a halftone generated by applying Floyd-Steinberg
error di�usion separably. The green color impulses on the red toucan are easily visible on a color monitor. Fig.
10(e) and Fig. 10(g) show the green and blue planes of the Floyd-Steinberg halftone, respectively. The color
impulses on the body of the red toucan are clearly visible in the green plane. Fig. 10(c) is a halftone generated
using MBVC error di�usion as described in Section 3.2.2. Fig. 10(d) shows a halftone generated by applying
an optimum matrix-valued error �lter. The green color impulses are eliminated. Fig. 10(f) and Fig. 10(h) show
the green and blue planes of the optimum halftone. The green channel (which contributes greatly to luminance)
does not show spurious color impulses. However, since the error is shaped into the blue-yellow channel, the blue
channel of the optimum halftone has several artifacts that are not easily visible in the optimum color halftone.

4. CONCLUSION

Two key results from 1-D sigma-delta modulation have been applied to error di�usion. The �rst result linearizes
the thresholding quantizer, which enables linear system analysis and frequency distortion compensation. For
the latter, the implementation complexity only increases by one multiplication and one addition per pixel. The
second result replaces the thresholding quantizer with a deterministic bit 
ipping quantizer to break up midtone
worms due to limit cycles. The implementation complexity would only increase by one comparison per pixel.

Two low-complexity approaches reduce false textures in shadow and highlight regions. Green noise halftoning
employs feedback from the output to the quantizer input and uses a 2-D �nite impulse response �lter and a
scalar gain in the feedback loop. The implementation complexity increase is one addition per �lter tap per
pixel, and one multiplication per pixel. Tone-dependent error di�usion applies a di�erent threshold and set of
error �lter coe�cients depending on the graylevel of the current pixel. The implementation complexity increase
is �ve additional memory accesses per pixel, and 1,280 additional bytes of memory.

One can combine tone-dependent error di�usion, deterministic bit 
ipping quantization, and sharpening
compensation to reduce false textures in shadow, midtone, and highlight regions as well as control the sharpening.
Direct binary search could design the error �lter coe�cients for each gray level. A serpentine scan could be
used to reduce directional artifacts.

Block error di�usion is a general framework for producing FM and AM-FM halftones with user controlled
shape, size, and sharpness. The framework could also be used to embed FM halftones in other FM halftones,
and has an e�cient parallel implementation. Future work could explore the e�ect of other forms of the di�usion
matrix on the halftone results. Another application is the design of AM-FM screens.

Future applications of the matrix gain model could include color halftone compression, inverse halftoning
of color halftones, and optimal spatially varying sharpness control. For example, JPEG quantization tables
or subband quantizer bit allocations in JPEG 2000 may be optimized based on the signal and noise transfer
functions and the visual model developed in Section 3.3. One may allocate fewer bits to image frequencies
where the color halftoning introduces high distortion. A method to design JPEG quantization tables based on
empirically determined frequency distortions for grayscale image halftoning is described in.65

In color error �lter design there are two major open problems. First, the constraints that are necessary for
good image quality in terms of color smoothness (reduced irregularity in the halftone noise) and halftone dot



(a) Original image (b) Floyd-Steinberg error �lter

(c) MBVC error di�usion (d) Optimum Error Filter

(e) Green plane of Floyd-Steinberg halftone (f) Green plane of optimum halftone

(g) Blue plane of Floyd-Steinberg halftone (h) Blue plane of optimum halftone

Figure 10. Role of human visual system model in color error di�usion



spacing have not yet been formulated. The second problem concerns stability of the vector di�usion framework.
In66 Fan analyzes stability of color error di�usion with separable color plane di�usion but vector quantization.
He establishes constraints on both the color error �lters and the quantization process that guarantee stability.
These constraints are su�cient but not always necessary. Likewise, a necessary and su�cient condition for the
numerical stability of color error di�usion with matrix valued �lters has been elusive. The design process in
Section 3.3 does not guarantee optimal dot distributions or numerical stability. The stability of the nonlinear
feedback system governed by the error di�usion equations requires that the quantization error be bounded for
all input colors in the input color gamut.
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