
CLUSTERING ALGORITHMS FOR PERCEPTUAL IMAGE HASHING

Vishal Monga, Arindam Banerjee, and Brian L. Evans

Center for Perceptual Systems
The University of Texas at Austin, Austin, TX 78712

{vishal,abanerje,bevans}@ece.utexas.edu

ABSTRACT

A perceptual image hash function maps an image to a short
binary string based on an image’s appearance to the human
eye. Perceptual image hashing is useful in image databases,
watermarking, and authentication. In this paper, we de-
couple image hashing into feature extraction (intermedi-
ate hash) followed by data clustering (final hash). For
any perceptually significant feature extractor, we propose
a polynomial-time heuristic clustering algorithm that auto-
matically determines the final hash length needed to satisfy
a specified distortion. We prove that the decision version
of our clustering problem is NP complete. Based on the
proposed algorithm, we develop two variations to facilitate
perceptual robustness vs. fragility trade-offs. We test the
proposed algorithms against Stirmark attacks.

1. INTRODUCTION

An image hash function maps an image to a short binary
string based on the image’s appearance to the human eye.
In particular, a perceptual hash function should have the
property that two images that look the same map to the
same hash value, even if the images have small bit-level
differences. This differentiates a perceptual hash from tra-
ditional cryptographic hashes, such as SHA-1 and MD-5
[1]. SHA-1 and MD-5 hashes are extremely sensitive to the
input data; i.e., a one bit change in the input changes the
output dramatically.

A perceptual image hash function would facilitate com-
parisons and searches of images in large databases in which
several “perceptually identical” versions of an image may
exist. Other applications lie in the area of authentication
[2] and watermarking [3, 4].

We partition the problem of deriving an image hash into
two steps, as illustrated in Fig. 1. The first step extracts
a feature vector from the image, whereas the second stage
compresses this feature vector to a final hash value. In
the feature extraction step, the two-dimensional image is
mapped to a one-dimensional feature vector. This feature
vector must capture the perceptual qualities of the image.
That is, two images that appear identical to the human
visual system should have feature vectors that are close in
some distance metric. Likewise, two images that are clearly

Research was supported by a gift from the Xerox Foundation.

Figure 1: Block diagram of the Hash Function

distinct in appearance must have feature vectors that differ
by a large distance. For the feature vector extraction, many
algorithms could be used, e.g. [5, 6, 7, 8, 9]. For the rest of
the paper, we will refer to this visually robust feature vector
(or its quantized version) as the “intermediate hash”.

The second step takes an intermediate hash extracted
from the image and an estimate of the hash’s distribution,
and compresses the intermediate hash value to the final
hash value. Many algorithms have been proposed for this
second step, including those based on error correcting codes
[7] and secure compression for authentication applications
[10]. While compression is their primary goal [7], [10], no
explicit attempt is made to ensure that perceptually iden-
tical images are compressed to the same hash value.

The second step will involve clustering between the in-
termediate hash vector of an input source (image) and the
intermediate hash vectors of its perceptually identical ver-
sions. We develop a clustering algorithm based on the dis-
tribution of intermediate hash vectors to address exactly
this problem. Another important issue is the length (or
granularity) of the final hash required to cluster images
within a specified distance. Underestimating this length
can severely affect the perceptual qualities of the hash. A
significant contribution of our work is that this length is
determined naturally as an outcome of our proposed clus-
tering algorithm.

2. PROBLEM STATEMENT

Let V denote the metric space of intermediate hash vectors
extracted at stage 1 of the hash algorithm in Fig. 1 and
(li, lj) denote two arbitrary vectors in this space. Further,
let D(., .) denote the distance metric applicable to the vec-
tors in V . Our goal is to have all images that are visually
indistinguishable map to the same hash value. In that sense
an image hash function is similar to a vector quantization
(VQ) or clustering scheme. We are attempting to cluster

all images whose intermediate hash vectors are close in a
metric into the same cell. In particular, it is desired that

if D(li, lj) < ε then C(li) = C(lj) (1)

if D(li, lj) > δ then C(li) 6= C(lj) (2)

where 0 < ε < δ. C(lj) represent the clusters to which these
vectors map after applying the clustering algorithm.

3. FORMULATION OF THE COST FUNCTION

In this section, we formulate the cost function to be mini-
mized by the proposed clustering algorithm. First, we ana-
lyze several fundamental properties of our requirements of
(1), (2), and the intermediate hash.

We say that an error is encountered when either (1)
and/or (2) is not satisfied for any pair of vectors (li, lj).
The requirement in (1) is actually impossible to guarantee
for every input pair. Intuitively, then, we must ensure that
errors occur for vectors that are less likely or that the clus-
tering must necessarily be dictated by the probability mass
function of the vectors in V .

We now describe the construction of our clustering cost
function. Let P be the joint distribution matrix of each
pair li, lj) in the input space where Pij = p(i, j) = p(i)p(j).
p(i), p(j) respectively denote the probability of occurrence
of vectors li, lj and n is the total number of vectors to be
clustered.

Next, we define C1 as the joint cost matrix for violating
(1), i.e. the cost paid if D(li, lj) < ε, yet C(li) 6= C(lj). In
particular, ∀ i, j = 1, 2, ..., n

c1(i, j) =

{
Γ(−αD(li,lj)) if D(li, lj) < ε, C(li) 6= C(lj)
0 otherwise

where α > 0 and Γ > 1 are algorithm parameters. This con-
struction follows intuitively because the cost for violating
(1) must be greater for smaller distances, i.e. if the vectors
are really close and not clustered together.

Similarly, C2 is defined as the joint cost matrix for vi-
olating (2)

c2(i, j) =

{
Γ(αD(li,lj)) if D(li, lj) > δ, C(li) = C(lj)
0 otherwise

In this case however, the cost is an increasing function of
the distance between (li, lj). This is also natural as we
would like to penalize more if vectors far apart (and hence
perceptually distinct) are clustered together. The exponen-
tial cost ensures that errors associated with large distances
are penalized severely.
Further, let matrices S1 and S2 be defined as

s1(i, j) =

{
Γ(−αD(li,lj)) if D(li, lj) < ε
0 otherwise

s2(i, j) =

{
Γ(αD(li,lj)) if D(li, lj) > δ
0 otherwise

Note, that S1 is different from C1 in the sense that the
entries of S1 include the cost for all possible errors that can

be committed, while C1 is the cost matrix for the errors
actually made by the clustering algorithm. The same holds
for S2 and C2. Then, we normalize the entries in C1 and
C2 to define normalized cost matrices C̃1 and C̃2 such that

c̃1(i, j) =
c1(i, j)∑

i

∑
j
s1(i, j)

(3)

c̃2(i, j) =
c2(i, j)∑

i

∑
j
s2(i, j)

(4)

This normalization ensures that c̃1(i, j), c̃2(i, j) ∈ [0, 1).
Finally, we define the total cost function given by

Perr = E[C̃1 + C̃2] (5)

The expectation is taken over the joint distribution of (li, lj),
i.e. (5) may be rewritten as

Perr =
∑

i

∑
j

p(i)p(j) (c̃1(i, j) + c̃2(i, j)) (6)

The two additive terms in (5) i.e. E[C̃1], E[C̃2] quantify
the errors resulting from violating (1) and (2) respectively.
In particular, E[C̃1] can be interpreted as the expected cost
of violating (1). Similarly, E[C̃2] signifies the expected cost
incurred by violation of (2). Note for the particular case of
α = 0, E[C1] and E[C2] represent the total probability of
violating (1) and (2) respectively.

4. PROPOSED CLUSTERING ALGORITHMS

Finding the optimum clustering that would achieve a global
minimum for the cost function in (5) is a hard problem. The
decision version of the problem: “for a fixed number of clus-
ters k, is there a clustering with a cost less than a constant
?” is NP-complete. We sketch a proof of NP completeness
in the appendix. NP hardness results for the search version,
that actually finds the minimum cost solution, can be sim-
ilarly shown. In this paper, we present a polynomial-time
greedy heuristic for solving the problem.

4.1. Approach 0

For the following discussion vectors in the input space V will
be referred to as “data points”. A step by step description
of the algorithm follows.

1. Obtain user defined parameters ε, δ. Set k = 1

2. Select the data point associated with the highest prob-
ability mass, label it l1

3. Make the first cluster by including all data points lj
such that D(l1, lj) < ε

2

4. k = k + 1. Select the highest probability data point
lk amongst the unclustered points such that
minS∈C D(lk, S) ≥ 3

2
ε

where S is any cluster and C denotes the set of clus-
ters formed till this step of the algorithm. D(lk, S)
is calculated using the notion of distance from a set
given by: D(x, S) = miny∈S D(x, y)

5. Form the kth cluster Sk by including all unclustered
data points lj such that
D(lk, lj) < ε

2

6. Repeat steps 4–5 until no more clusters can be formed.

Figure 2: Visualization of the Clustering Algorithm

Fig. 2 shows a visualization of the clustering algorithm. The
data points in the input space are covered to a large extent
by hyperspheres (clusters) of radius ε

2
. For each pair of

points (li, lj) ∈ Sk and cluster center lk, we have

D(li, lj) < D(li, l
k) + D(lk, lj) (7)

This is true because D(, .,) defines a metric. By virtue of
Steps 3 and 6 of the algorithm, D(li, l

k) < ε
2
, D(lk, lj) < ε

2

and hence D(li, lj) < ε. The algorithm therefore attempts
to cluster data points within ε of each other and in addition
the cluster centers are chosen based on the strength of their
probability mass function. This ensures that “more likely”
as well as “perceptually close” data points are clustered
together. At this stage, we make the following observations:

• Each cluster is at least ε away from any other cluster
and hence there are no errors by violating (1), Step
4. of the algorithm guarantees this.

• Within each cluster the maximum distance between
any two points is at most ε, and because 0 < ε < δ,
there are no violations of (2)

• The data points that are left unclustered are less than
3
2
ε from each of the clusters

For perceptual robustness, i.e. achieving (1), we would like
to minimize E[C̃1]. Likewise, in order to maintain fragility
to visually distinct inputs, we would like E[C̃2] to be as
small as possible (ideally zero). Exclusive minimization of
one would compromise the other. Next, we present two

different approaches to handle the unclustered data points
so that trade-offs may be facilitated between achieving goals
(1) and (2).

4.2. Approach 1

1. Select the data point l∗ amongst the unclustered points
that has the highest probability mass

2. For each existing cluster Si, i = 1, 2...k compute di =
maxx∈Si D(l∗, x)
Let Sδ = {Si such that di ≤ δ}

3. IF Sδ = φ THEN k = k + 1. Sk = l∗ is a cluster of
its own
ELSE for each Si ∈ Sδ define
F (Si) =

∑
l∈S̄i

p(l)p(l∗)c1(l, l
∗)

where S̄i denotes the complement of Si, i.e., all clus-
ters in Sδ except Si. Then, l∗ is assigned to the clus-
ter S∗ = arg minSi F (Si)

4. Repeat steps 1. through 3.

Step 3 of the algorithm looks for the set of clusters Sδ, such
that each point in the cluster is less than δ away from the
unclustered data point l∗ under consideration. Step 4 then
computes the minimum cost cluster to which to assign l∗.
In essence, this approach tries to minimize the cost in (5)
conditioned on the fact that there are no errors by violating
(2). This could be useful in authentication and security
applications in which mapping perceptually distinct inputs
to the same hash may be extremely undesirable.

4.3. Approach 2

1. Select the data point l∗ amongst the unclustered points
that has the highest probability mass

2. For each existing cluster Si, i = 1, 2, ...k define
F (Si) = β

∑
l∈S̄i

p(l)p(l∗)c1(l, l
∗)+

(1 − β)
∑

l∈Si
p(l)p(l∗)c2(l, l

∗), where β ∈ [1
2
, 1], and

S̄i denotes the complement of Si. Then, l∗ is assigned
to the cluster S∗ = arg minSi F (Si). Analogous to
Approach 1, this includes the case that l∗ is a cluster
by itself; in that case, we increment k.

3. Repeat steps 1 and 2.

Approach 1 presents a clustering that ensures E[C̃2] = 0.
The goal in Approach 2 is to effectively trade-off the mini-
mization of E[C̃1] at the expense of increasing E[C̃2]. This
can be readily observed by considering extreme values of β.
For β = 1

2
a joint minimization is performed. The other

extreme β = 1 corresponds to the case when the unclus-
tered data points are assigned, so as to exclusively minimize
E[C̃1]. For δ ≥ 5

2
ε, the two approaches coincide because all

the unclustered points are then necessarily within δ of the
existing clusters. Hence, a meaningful dual of Approach 1
does not exist. This is because requiring E[C̃1] = 0 leads
to the trivial solution that all data points are collected in
one big cluster.

Traditional VQ or source coding based compression ap-
proaches [12, 13, 14] are not well suited because they tend

M E[C̃1] E[C̃2] Final Hash Length
8 1.86 ∗ 10−5 2.372 ∗ 10−7 102 bits
16 1.219 ∗ 10−7 5.70 ∗ 10−9 54 bits

Table 1: Cost Function values, compression of intermediate
hash vectors using the proposed clustering

to minimize an average or maximum distance value which
is not an appropriate objective function for the perceptual
hashing application. In standard VQ based compression ap-
proaches, the size of the codebook (here, the length of the
hash) is decided in advance and optimization is performed
to select the best codevectors. In our algorithm, the length
of the hash (given by dlog2(k)e bits) is determined adap-
tively for a given ε, δ and source distribution.

5. EXPERIMENTAL RESULTS

An intermediate hash vector extracted from an image I
will be referred to as fv(I). Let Isim represent the class
of images such that Isim looks the same as I. Likewise, a
perceptually distinct image will be denoted by Idiff . In the
presented experiments, the intermediate hash vector was
generated using the method by Monga et. al in [9]. They
obtain a binary intermediate hash vector from a set of vi-
sually robust image feature points. Normalized Hamming
distance was used as the distance metric. In particular,
they determine by empirical tests

D(fv(I), fv(Isim)) < 0.2 (8)

DH(fv(I), fv(Idiff)) > 0.3 (9)

In our clustering framework, ε = 0.2 and δ = 0.3.
In our experiments, we extract a binary intermediate

hash vector of length L = 240 bits from the image and
hence the total number of vectors, n = 2240. Because of
space and complexity constraints it is clearly impractical
to apply the clustering algorithm to that large a data set.
Hence, we take the approach commonly employed in space
constrained VQ problems [12] i.e. we divide the intermedi-
ate hash vector into segments of a certain length M = L

m

(where m is an integer) and apply the clustering on each
segment separately. The resulting binary strings are con-
catenated to form the final hash. A similar approach for an
irreversible compression of binary hash values was used by
Venkatesan et. al in [7]. They employ error control decod-
ing using Reed-Muller codes [15]. In particular, they break
the hash vector to be compressed into segments of length
as close as possible to the length of codevectors in a Reed-
Muller error correcting code. Decoding is then performed
by mapping the segments of the hash vector to the nearest
codeword using the exponential pseudo norm (EPN) [7].

Tables 1 and 2, respectively, show values of the cost
function in (5) by compressing the intermediate hash vec-
tor using our proposed clustering scheme vs. the error con-
trol decoding scheme as described in [7]. We generated the
results in Table 1 by using Approach 2 and β = 1

2
. For

M E[C̃1] E[C̃2] Final Hash Length
8 1.526 ∗ 10−3 5.55 ∗ 10−4 120 bits
16 9.535 ∗ 10−2 6.127 ∗ 10−3 75 bits
16 5.96 ∗ 10−4 3.65 ∗ 10−5 165 bits

Table 2: Cost function values with compression of interme-
diate hash vectors using error control decoding.

Clustering Algorithm E[C̃1] E[C̃2]
Approach 1 7.64 ∗ 10−8 0
Approach 2, β = 1

2 7.43 ∗ 10−9 7.464 ∗ 10−10

Approach 2, β = 1 7.17 ∗ 10−9 4.87 ∗ 10−9

Table 3: Cost function values using Approaches 1 and 2
with trade-offs numerically quantified.

the error control decoding scheme, we use (8,4), (16,5) and
(16,11) Reed-Muller codes. The clustering algorithm was
also employed on segments of the same length to yield a
meaningful comparison. Clearly, the values for expected
cost by violating (1) and (2), i.e. E[C̃1] and E[C̃2], are
orders of magnitude lower using our clustering algorithm
(even as we achieve better compression). Hence, we show
that the codebook as obtained from using error correcting
codes does not fare well for perceptual hash compression.

Table 3 compares the value of the cost function in (5) for
the two different clustering approaches. Note, for Approach
2 (rows 2 and 3 of Table 3) the value of E[C̃1] is lower than
that for Approach 1. In particular, it can be shown that
(via our clustering algorithm) the lowest value of the cost
function is obtained using Approach 2 with β = 1

2
. Trade-

offs are facilitated in favor of (1) i.e. minimizing E[C̃1]
by using Approach 2 with β ∈ (1

2
, 1] and in favor of (2)

by employing Approach 1. For these results, the clustering
algorithm was applied to segments of length M = 20 bits.

We applied the two-stage hash algorithm on a database
of 50 images. The final hash length obtained was 46 bits.
For each image 20 perceptually identical images were gener-
ated using the Stirmark software [16], [17]. The attacks im-
plemented on the images included JPEG compression with
quality factors varying from 10 to 80, additive white Gaus-
sian noise (AWGN) addition, contrast enhancement, non-
linear (e.g. median) filtering, scaling and random shearing
and small rotation and cropping. The resulting hash values
for the original image and its perceptually identical versions
were same in over 95% cases. For other cases, the maximum
bit-level difference was 4 bits. Then we compared hash val-
ues for all possible pairings of the 50 distinct images (1225
pairs). One collision case was observed. For all other cases
the hash values (on a pairwise basis) were very far off. In
general, the performance of our hash function is limited by
the robustness of the feature detector.

In our experiments, we observed that some segments
of the source vector exhibit very “skewed” distributions.
In that case it is possible that trivial clusters be formed

i.e. only very low probability points would be included in
the cluster. For efficient compression, it is important that
the number of clusters formed in our algorithm accurately
reflects the statistics of the source. A slight modification to
the basic algorithm as presented in Section 4 can be used to
achieve this. In particular, consider the algorithm at a stage
when m clusters are formed with i points already clustered.
Note i < n and m < k where k is the number of clusters that
results from the algorithm in Section 4. We can assign the
remaining data points i + 1, ..., n to the existing clusters in
the same fashion as the basic algorithm and then compute
the cost function in (5) for this clustering. If the increase in
cost, as compared to what is achieved by the algorithm in
Section 4, is not significant, then the clustering algorithm
terminates with the existing number of clusters.

Finally, the clustering algorithm can be used to com-
press feature vectors that are close in a arbitrary distance
metric. For real valued feature vectors, the number of data
points n should be chosen large enough to sufficiently rep-
resent source (feature vector) statistics. A codebook (com-
prising of cluster centers) can then be derived from these
data points using the proposed clustering and feature vec-
tors can be mapped to the nearest vector in the codebook
based on a minimum cost decoding rule.

6. REFERENCES

[1] A. Menezes, V. Oorschot, and S. Vanstone, Handbook of
Applied Cryptography, CRC Press, 1998.

[2] C. W. Wu, “On the design of content-based multimedia au-
thentication systems,” IEEE Transactions on Multimedia,
pp. 385–393, 2002.

[3] G. L. Friedman, “The trustworthy digital camera: restoring
credibility to the photographic image,” IEEE Transactions
on Consumer Electronics, vol. 39, pp. 905–910, Nov. 1993.

[4] M. K. Mihcak and R. Venkatesan, “Video watermarking
using image hashing,” Preprint, 2001.

[5] J. Fridrich and M. Goljan, “Robust hash functions for dig-
ital watermarking,” Proc. IEEE Int. Conf. on Information
Technology: Coding and Computing, Mar. 2000.

[6] C.-S. Lu and H.-Y. M. Liao, “Structural digital signature for
image authentication,” IEEE Transactions on Multimedia,
pp. 161–173, June 2003.

[7] R. Venkatesan, S. M. Koon, M. H. Jakubowski, and
P. Moulin, “Robust image hashing,” Proc. IEEE Conf.
on Image Processing, Sept. 2000.

[8] K. Mihcak and R. Venkatesan, “New iterative geometric
techniques for robust image hashing,” Proc. ACM Work-
shop on Security and Privacy in Digital Rights Manage-
ment Workshop, Nov. 2001.

[9] V. Monga and B. L. Evans, “Robust perceptual image hash-
ing using feature points,” Proc. IEEE Conf. on Image Pro-
cessing, submitted.

[10] M. Johnson and K. Ramachandran, “Dither-based secure
image hashing using distributed coding,” Proc. IEEE Conf.
on Image Processing, 2003.

[11] M. R. Garey and D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of Np-Completeness, W H Free-
man & Co, 1979.

[12] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic, 1992.

[13] X. Wu, “Adaptive binary vector quantization using ham-
ming codes,” Proc. IEEE Conf. on Image Processing, 1995.

[14] P. Franti and T. Kaukoranta, “Binary vector quantizer de-
sign using soft-centroids,” Signal Processing: Image Com-
munication, pp. 677–681, 1999.

[15] R. E. Blahut, Theory and Practice of Error Control Codes,
Addison-Wesley Publishing Company, 1983.

[16] F. A. P. Petitcolas and R. J. Anderson, “Evaluation of copy-
right marking systems,” Proc. IEEE Int. Conf. on Multi-
media Systems, pp. 574–579, 1999.

[17] “Fair evaluation procedures for watermarking systems,”
http://www.petitcolas.net/fabien/watermarking/stirmark,
2000.

A. PROOF OF NP-COMPLETENESS

In this section, we prove that a decision version of the
clustering problem that asks if it is possible to have a k-
clustering such that the cost function in (6) is below a cer-
tain constant is NP-complete. We achieve this by a reduc-
tion (details skipped for brevity) from the decision version
of the k-way weighted graph-cut problem [11].
Proof. (Sketch) Let G = (V, W (E)) be a weighted graph
where V is the set of vertices, E is the set of edges and
W (E) denote the weights on the edges. It is useful to
think of V as the set of points be clustered, and the weight
W (eij) on the edge eij between vi and vj as the distance
between the points vi and vj . The k-way weighted graph-
cut problem asks if there is a subset C ⊆ E of edges with∑

e∈C
W (e) ≤ K0, where K0 is a constant, such that the

graph G′ = (V, W (E\C)) has k pairwise disjoint subgraphs.
We sketch a log-space reduction to the clustering problem
in (6) for a fixed k. We construct a graph G̃ = (V, W̃) from
G as follows: Consider each possible vertex pair (vi, vj)
with i, j = 1, . . . , n. Denote wij = W (eij). If wij < ε,
w̃ij = K1c1(i, j), where c1(i, j) is as defined in section 3
with D(li, lj) = wij , and K1 is a positive constant. If
wij > δ, w̃ij = −K2c2(i, j), where c2(i, j) is as defined
in section 3 with D(li, lj) = wij , and K2 is a positive con-
stant. For ε ≤ wij ≤ δ, w̃ij = 0. Consider the same k-way
graph-cut problem on G̃. Let C̃ be a subset of the edges.
For edges in C̃ with positive wij , the sum of the weights,
say S1, directly correspond to the sum of the c1(i, j) terms
in (6). For edges in C̃ with negative weights, the sum of the
weights, say S2 is negative. Let −N, N > 0, denote the sum
of all negative weights in W̃ . Now, N + S2 is the sum of
the weights in W̃ \ C̃, that exactly corresponds to the sum
of the c2(i, j) terms in (6). Hence, N +S1 +S2 corresponds
to the cost function in (6) up to an additive constant, when
the p(i) is uniform. Note that only constant number of in-
dices of the vertices, which need O(log n) space, must be
maintained to complete the reduction. Hence, the k-way
weighted graph-cut reduces to the clustering problem in
log-space.

