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ABSTRACT

Conventional grayscale error di�usion halftoning produces worms and other objectionable artifacts. Tone de-

pendent error di�usion (Li and Allebach) reduces these artifacts by controlling the di�usion of quantization

errors based on the input graylevel. Li and Allebach optimize error �lter weights and thresholds for each (in-

put) graylevel based on a human visual system model. This paper extends tone dependent error di�usion to

color. In color error di�usion, what color to render becomes a major concern in addition to �nding optimal dot

patterns. We present a visually optimum design approach for input level (tone) dependent error �lters (for each

color plane). The resulting halftones reduce traditional error di�usion artifacts and achieve greater accuracy in

color rendition.

1. INTRODUCTION

Digital halftoning transforms a continuous tone image (grayscale or color) to an image with a reduced number

of levels for display (or printing). Examples include converting an 8-bit per pixel grayscale image to a binary

image, and a 24-bit color image (with 8 bits per pixel per color) to a 3-bit color image.

In grayscale halftoning by error di�usion, each grayscale pixel is thresholded to white or black, and the

quantization error is fed back, �ltered (lowpass), and added to the neighboring grayscale pixels.1 Although the

error �lter is typically lowpass, the feedback arrangement causes the quantization error to be highpass �ltered,

i.e. pushed into high frequencies where the human eye is least sensitive. Grayscale error di�usion, however,

introduces nonlinear distortion (worms and false textures), linear distortion (sharpening) and additive noise.2

Many variations and enhancements on error di�usion have been developed to improve halftone quality, which

includes using variable thresholds,3{5 variable �lter weights6 and di�erent scan paths.7

Recently, tone dependent error di�usion methods have been developed for grayscale error di�usion.8, 9 These

methods use error �lters with di�erent coe�cients for di�erent graylevels in the input image. The quantizer

threshold is also modulated based on the input graylevel.8 In this paper, we formulate the design of input-level

dependent color error di�usion halftoning systems. An independent design for each color plane would ignore

the correlation amongst color planes. The color quantization error must ideally be di�used to frequencies and

colors to which the eye is least sensitive. Our design procedure trains error �lters for each color plane in order

to minimize the perceived error between a constant-valued continuous-tone color image and its corresponding

halftone pattern. A color human visual system (HVS) model takes into account the correlation among color

planes. We employ an HVS model based on a transformation to the Linearized CIELab color space10 that

exploits the spatial frequency sensitivity variation of the luminance and chrominance channels. The e�cacy of

Linearized CIELab in computing color reproduction errors in halftoning is shown in.11 The resulting halftones

overcome many of the artifacts associated with traditional error di�usion viz. worms and false textures. The

accuracy of color rendition is also higher. The color HVS model helps minimize the visibility of the halftone

pattern.
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Figure 1. System block diagram for grayscale error di�usion halftoning where m represents a two-dimensional spatial

index (m1;m2) and h(m) is the impulse response of a �xed 2-D nonseparable FIR error �lter

2. CLASSICAL ERROR DIFFUSION

In grayscale halftoning by error di�usion, each grayscale pixel is thresholded to white or black, and the quantiza-

tion error is fed back, �ltered and added to the neighboring grayscale pixels.1 The system block diagram shown

in Fig. 1, is also known as a noise-shaping feedback coder. In Fig. 1, x(m) denotes the graylevel of the input

image at pixel locationm, such that x(m) 2 [0; 255]. The output halftone pixel is b(m), where b(m) 2 f0; 255g.
Here, 0 is interpreted as the absence of a printer dot and 255 is interpreted as the presence of a printer dot.

Q(�) denotes the standard thresholding quantizer function.

The error �lter h(m) �lters the previous quantization errors e(m):

h(m) � e(m) =
X
k2S

h(k) e(m� k) (1)

Here, � means linear convolution, and the set S de�nes the extent of the error �lter coe�cient mask. The error

�lter output is fed back and added to the input. Note that (0; 0) =2 S. The mask is causal with respect to the

image scan. To ensure that all of the quantization error is di�used, h(m) must satisfy the constraint

X
k2S

h(m) = 1 (2)

This ensures that the error �lter eliminates quantization noise at DC where the human visual system is most

sensitive.12 The quantizer input u(m) and output b(m) are given by

u(m) = x(m)� h(m) � e(m) (3)

b(m) = Q(u(m)) (4)

Error di�usion produces high quality halftones because the quantization noise is shaped into the high frequencies

where the human eye is least sensitive. Since the halftone dots are of single pixel size, the illusion of continuous-

tone is created by varying the dot frequency with graylevel.

3. GRAYSCALE TONE DEPENDENT ERROR DIFFUSION

Tone dependent error di�usion (TDED) methods use error �lters h(m) of di�erent sizes and coe�cients for

di�erent graylevels.8,9 Optimal error weighting for selected graylevels based on \blue-noise" spectra was

introduced in.13

Li et al. design error �lter weights and thresholds so that the resulting halftones approximate dot patterns

generated by DBS. DBS14 produces high quality halftones by searching for the best binary pattern to match a

given grayscale image by minimizing a visual distortion criterion. For the TDED algorithm in,8 the error �lter



and threshold matrix, denoted by h(m) and t(m; a) respectively, are functions of input pixel value a 2 [0; 255].
The binary output b(m), is determined by

b(m) =

�
1; if u(m) � t(m;x(m))

0; otherwise.
(5)

The quantization error e(m) and the quantizer input u(m) are then computed as in conventional grayscale error

di�usion. The threshold matrix used by Li and Allebach8 is based on a binary DBS pattern for a constant input

of mid-gray.

t(m; a) =

�
tu(a) if p[m; 128] = 0

tl(a) otherwise.
(6)

where tu(a) and tl(a) are tone dependent parameters satisfying tu(a) � tl(a). The function p[m; 128] is a

halftone pattern generated by DBS that represents a constant patch of mid-gray. By substituting (6) into (5),

the thresholding process can be represented by

b(m) =

8<
:

1 if u(m) � tu(x(m))

0 if u(m) < tl(x(m))

p[m; 0:5] otherwise.

(7)

For the error �lter design, the authors chose the magnitude of the DFT of the DBS pattern as an objective

spectrum for the halftone pattern for input graylevel values in the midtones (21-234). For the highlight and

shadow regions (graylevel values in 0-20 and 235-255) the objective spectrum is the DFT of the graylevel patch.

Let BDBS(k; l) and BTDED(k; l) denote the DFT of the DBS and the tone dependent error di�usion patterns,

respectively. The goal is then to search for the tone dependent parameter vector v = (tu(a); tl(a); h(m; a)) that
minimizes

J =
X
k

X
l

(jBTDED(k; l)j � jBDBS(k; l)j)2 (8)

subject to the constraints

tu(a) + tl(a) = 1 (9)

tu(a) � tl(a) (10)X
k2S

h(k; a) = 1 (11)

h(k; a) � 0 8 k 2 S (12)

A serpentine scan is used in the design. Note that BDBS(k; l) would be replaced by X(k; l) (the DFT of the

input graylevel patch) for the highlight and shadow regions. The di�erence jBTDED(k; l)j � jX(k; l)j is then
weighted (convolved) by a human visual system frequency response14 to compute the perceived error. The

algorithm to search for the optimum tone dependent parameter vector vopt is described in.8

Independent design/application of grayscale halftoning methods to each color plane fails to exploit the visual

response to color noise. The error �lters must hence be designed to shape quantization errors to frequencies

and colors, to which the HVS is least sensitive.

4. PERCEPTUAL MODEL

This section describes the model for calculating the perceived halftone in Linearized CIELab color space using

the frequency responses of a channel-separable HVS.



4.1. Linearized Uniform Color Space

The linearized CIELab color space is obtained by linearizing the CIELab space about the D65 white point10 in

the following manner:

Yy = 116
Y

Yn
� 16 (13)

Cx = 500

�
X

Xn

� Y

Yn

�
(14)

Cz = 200

�
Y

Yn
� Z

Zn

�
(15)

The Yy component is proportional to the luminance and the Cx and Cz components are similar to the R-G and

B-Y opponent color chrominance components on which Mullen's data15 is based. The original transformation

to the CIELab from CIEXYZ is a non-linear one.16 The nonlinearity in the transformation from CIELab

distorts the spatially averaged tone of the images, which yields halftones that have incorrect average values.10

The linearized color space overcomes this, and has the added bene�t that it decouples the e�ect of incremental

changes in (Yy; Cx; Cz) at the white point on (L; a; b) values:

r(Yy;Cx;Cz)(L
�; a�; b�)jD65

=
1

3
I (16)

4.2. Human Visual Frequency Response

Nasanen and Sullivan17 chose an exponential function to model the luminance frequency response

W(Yy)(~�) = K(L)e��(L)~� (17)

where L is the average luminance of display, ~� is the radial spatial frequency, K(L) = aLb and �(L) = 1

c ln(L)+d
.

The frequency variable ~� is de�ned10 as a weighted magnitude of the frequency vector u = (u; v)T, where the
weighting depends on the angular spatial frequency �.17 Thus,

~� =
�

s (�)
(18)

where � =
p
u2 + v2 and

s (�) =
1� !

2
cos(4�) +

1 + !

2
(19)

The symmetry parameter ! is 0.7, and � = arctan
� v
u

�
. The weighting function s (�) e�ectively reduces the

contrast sensitivity to spatial frequency components at odd multiples of 45o. The contrast sensitivity of the

human viewer to spatial variations in chrominance falls o� faster as a function of increasing spatial frequency

than does the response to spatial variations in luminance.18 Our chrominance model reects this19:

W(Cx;Cz)(�) = Ae��� (20)

Both the luminance and chrominance response are lowpass in nature but only the luminance response is reduced

at odd multiples of 45o. This will place more luminance error across the diagonals in the frequency domain

where the eye is less sensitive. Using this chrominance response as opposed to identical responses for both

luminance and chrominance will allow more low frequency chromatic error, which will not be perceived by the

human viewer.



Figure 2. Block Diagram for Calculating Perceptual Error Metric

5. TONE DEPENDENT COLOR ERROR DIFFUSION

5.1. Perceptual Error Metric

We train error �lters to minimize a visually weighted squared error between the magnitude spectra of a

\constant" input color image and its halftone pattern. Let x(R;G;B)(m) and b(R;G;B)(m) denote the con-

stant valued continuous tone and halftone images respectively. The calculation of the perceptual error met-

ric is illustrated in Fig. 2. x(Yy ;Cx;Cz)(m) and b(Yy;Cx;Cz)(m) are obtained by transforming x(R;G;B)(m)

and b(R;G;B)(m) to the YyCxCz space. The di�erence in their spectra �(k; l) is then computed as �(k; l) =
X(Yy;Cx;Cz)(k; l)�B(Yy;Cx;Cz)(k; l) where

X(Yy;Cx;Cz)(k; l) = FFT (x(Yy;Cx;Cz)(m)) (21)

B(Yy;Cx;Cz)(k; l) = FFT (b(Yy;Cx;Cz)(m)) (22)

where FFT is the fast Fourier transform.

HVS �lters in Section 4 are applied to the luminance and chrominance components of the error image

in the spatial frequency domain. This corresponds to a multiplication of the �lter and error image spectra

P(k; l) = �(k; l)HHV S(k; l). Here, HHV S(k; l) denotes the FFT of the human visual spatial �lter. Note, P(k; l),
HHV S(k; l) and �(k; l) are vector-valued

�(k; l) = (�Yy (k; l); �Cx(k; l); �Cz(k; l)) (23)

HHV S(k; l) = (HYy
(k; l); HCx

(k; l); HCx
(k; l)) (24)

P(k; l) = (PYy (k; l); PCx(k; l); PCz(k; l)) (25)



We de�ne the perceived error metric as the total squared error (TSE) given by

TSE =
X
k

X
l

jPYy (k; l)j2 + jPCx(k; l)j2 + jPCz(k; l)j2 (26)

5.2. Formulation of the Design Problem

The design problem is then to obtain error �lters for each color plane that minimize the TSE de�ned in eqn.

(26), subject to the constraints that all quantization error to be di�used

X
k2S

hm(k; a) = 1; hm(k; a) � 0 8 k 2 S (27)

where the subscript m takes on values R;G and B and hence the constraints are imposed on error �lters in

each of the 3 color planes. The error �lter coe�cients are a function of the input level a 2 [0; 255]. The design
objective is to obtain error �lter weights for each (R;G;B) vector in the input. For 24 bit color images, this

would amount to a total of 2563 input combinations. We consider input values along the diagonal line of the

color cube i.e. (R;G;B) = ((0; 0; 0); (1; 1; 1)::::(255; 255; 255)). This choice is made as the HVS is very sensitive

to colors around the neutral axis.20 This results in 256 error �lters for each color plane. Note that the TSE in

general, is not a convex function. Hence, a global minimum cannot be guaranteed. The space of solutions (error

�lter weights) however comprises a convex set. The algorithm to search for the error �lter weights is described

in.8 The design is based on a Floyd-Steinberg1 support for the error �lter.

6. RESULTS

Figs. 3 and 4 shows color halftone images generated by (1) Floyd-Steinberg error di�usion, (2) grayscale TDED8

applied separately to the R, G and B color planes, and (3) the proposed color TDED method. The color TDED

halftone in Fig. 4(d) does not su�er from directional artifacts such as diagonal worms. Worms can be seen in

the Floyd-Steinberg halftone in the yellow and blue extremes of the ramp. False textures in the Floyd-Steinberg

halftone are prominent in the middle of the yellow region (a third of the ramp length from the left) and in the

center of the ramp (where yellow turns into blue). These are nearly absent in Fig. 4(d). The choice of color

to render is also better for the color TDED halftone. In Fig. 4(b), white dots are rendered in the blue region.

These are replaced by a mixture of magenta, cyan and black dots in the color TDED halftone which are less

visible. By virtue of the Li and Allebach's design,8 traditional error di�usion artifacts viz. worms and false

textures are almost completely removed in Fig. 4(c).

The halftone textures in Fig. 4(c) are also homogeneous. However, the color rendition is similar to that of

Floyd-Steinberg error di�usion in Fig. 4(b). This is expected because the separable design for each color plane

does not necessarily shape the color noise to frequencies of least visual sensitivity. Detail of the halftones in

Fig. 4(b), (c) and (d) are shown in Fig. 3(a), (b) and (c). Note the signi�cant improvement in the reduction of

color halftone noise in Fig. 3(c) over Figs. 3(a) and (b).

(a) Floyd-Steinberg (b) Grayscale TDED (c) Color TDED

Figure 3. Halftones of a portion of the blue section of the color ramp in Fig. 4(a). Grayscale TDED is applied separably

to each color plane.



(a) Original Color Ramp Image

(b) Floyd-Steinberg error di�usion

(c) Separable application of grayscale TDED8

(d) Color TDED with serpentine scan

(e) Color TDED with traditional raster scan

(f) Color TDED with 2-row serpentine scan

Figure 4. A color ramp and its halftone images. The halftone in (c) is courtesy of Prof. Jan P. Allebach and Mr.

Ti-chiun Chang at Purdue University.

For color TDED, the conventional raster scan (Fig. 4(e)) still shows the tendency for dots/holes to line up

in horizontal or diagonal worms, particularly at extreme levels. Although the serpentine scan (Fig. 4(d)) almost

completely removes directional artifacts, it can only be executed as a serial process. A 2-row serpentine scan8

employed in Fig. 4(f) generates comparable results to Fig. 4(d) but has more parallelism.

The results in Figs. 5 and 6 explain the role of color HVS model. Note that the green diagonal worms in

the shadow region (extreme levels) under the roof that appear in the Floyd-Steinberg halftone in Fig. 5(a) are

removed for the most part in Fig. 5(b). Monochrome images corresponding to the Yy and Cx components of



(a) Floyd-Steinberg Halftone (b) TDED Halftone

Figure 5. (a) Floyd-Steinberg and (b) TDED halftones of the house image

the Floyd-Steinberg and TDED halftones are presented in Fig. 6(c) through (f). The Yy component is obtained

by converting the �nal halftone to the YyCxCz color space and setting both the Cx and Cz components to zero,

resulting in (Yy ; 0; 0). The resulting vector is transformed back to the RGB space for display. To show only the

Cx component of the halftone images both the Yy and Cx components are set to zero. The resulting vector is

then transformed back to the RGB space. This vector will not in general be a monochrome image due to the

chromaticity of the Cx component. Therefore, the RGB components are normalized to maximum chromaticity

Cx = [0; 1; 0] to be printed in a black and white medium. Comparing Fig. 6(c) and (d) for Floyd-Steinberg

error di�usion, we see that both the Yy and Cx components exhibit similar texture. In contrast, we see in Fig.

6(e) and (f) that the Cx component has much lower frequency texture than the Yy component, which is from

the more aggressive HVS �ltering of the chrominance planes. When viewed as true color images, the overall

halftone texture is much less visible in the TDED halftone.

7. ENHANCEMENTS

In addition to using error �lter weights that depend on the input level, error �lter shape and size may also

be varied for di�usion of errors. Li and Allebach8 use wider matrices to improve rendering of shadow and

highlight regions. With a wider matrix, the current pixel to be binarized will be a�ected by a larger area of the

halftone region. Fig. 7 shows color error �lter shapes (for each color plane) that are dependent on the input

level a 2 [0,255]. To keep the computational complexity low, we use an error-weighting matrix that still has

four non-zero terms, as does the Floyd-Steinberg �lter, but with variable locations. The locations of the weights

were determined empirically. The results presented in Section 6 use the error �lter shapes in Fig. 7.

Many other approaches reduce directional artifacts in error di�usion. Fan proposed an error weighting matrix

that allows the quantizer error to propagate further back on the next line to reduce worm artifacts.21 Other

approaches used larger error-weighting matrices/�lters for highlight and shadow regions.9, 22 These ideas may

all be combined into designing error �lter weights and shape for each input level.

8. CONCLUSION

An input level (tone) dependent color halftoning algorithm was proposed. A linear channel-separable color HVS

model is used to design visually optimum error �lters for each color plane. Several error di�usion artifacts were

reduced. The accuracy of color rendition is also greater. To further improve homogeneity of halftone textures,

color DBS23 may be incorporated into the design of input-level dependent color error �lters. Future work could

investigate the design of optimum matrix valued �lters24 for tone dependent vector error di�usion.



(a) Yy component of the Floyd-Steinberg halftone
(b) Cx component of the Floyd-Steinberg

halftone

(c) Yy component of the TDED halftone (d) Cx component of the TDED halftone

Figure 6. Luminance and chrominance components of the halftones in Fig. 5.



Figure 7. Input level dependent error �lters, where * denotes the current pixel.
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